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Abstract: Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum
fields and are one of the most common vectors for plant viruses, resulting in significant agricultural
yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical
pesticides that have negative health and environmental impacts. As a result, a large amount of
pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent
need for an intelligent autonomous system that can locate and spray sufficiently large infestations
selectively within the complex crop canopies. We have developed a large multi-scale dataset for
aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously
annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches,
showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting
its effectiveness for real-world applications. In this study, we trained and evaluated four real-
time semantic segmentation models and three object detection models specifically for aphid cluster
segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN
delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean
recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall
performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an
NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more
suitable for assessing aphid infestations than using detection models.

Keywords: aphid cluster; segmentation; detection; real time; multi-scale dataset

1. Introduction

With a growing global population, the increasing demand for food has led to
widespread innovations in the agricultural industry. Approximately 37% of the crops
grown worldwide are lost to pest damage, and 13% of this loss is directly attributed to
insects [1]. The impact is particularly pronounced in staple crops such as rice, wheat,
sorghum, and maize, not only posing significant threats to global food security but also
impacting various national economies [2], Consequently, there has been a consistent rise in
the use of chemical pesticides to combat these pests and maximize yields. The projected
expenditure on pesticides reached around USD 107 billion in 2023 and this figure is ex-
pected to further increase. The heightened usage not only translates to increased costs for
farmers but also underscores the numerous health risks associated with pesticide use. The
conventional pest treatments involve applying chemical pesticides uniformly across the
entire field using large sprayers in a continuous spray once a specific infestation threshold
is reached. However, this treatment approach becomes excessive when pests are only
fractionally present. Therefore, a more efficient method is sought after.

J. Imaging 2024, 10, 114. https://doi.org/10.3390/jimaging10050114 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10050114
https://doi.org/10.3390/jimaging10050114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0009-0003-3327-0218
https://orcid.org/0000-0001-6171-3176
https://orcid.org/0000-0002-9690-0067
https://orcid.org/0000-0003-2697-3727
https://orcid.org/0000-0001-7779-0504
https://orcid.org/0000-0002-0926-7874
https://orcid.org/0000-0001-5161-4123
https://orcid.org/0000-0003-3182-104X
https://doi.org/10.3390/jimaging10050114
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10050114?type=check_update&version=3


J. Imaging 2024, 10, 114 2 of 15

In order to provide timely aphid control and reduce the negative impacts of excessive
pesticide use through precision spraying, it is desirable to develop an intelligent robot
that can scout the field periodically, detect and localize any aphid infections, and apply
precise spray once aphids are detected using the on-board spray system, as shown in
Figure 1. This system will provide a more efficient, effective, and economical solution
for pest management. Through data collection and scouting techniques, farmers are able
to better plan their crop planting and treatment application to achieve higher yields and
save chemical costs by spraying more efficiently. Automated robotic technologies will
significantly reduce the labour costs and increase the yield by noticeable margins of up to
5% [3].

Figure 1. An intelligent scouting robot with onboard vision and spray system. The vision system
is used to detect and localize aphid affections, and the spray system can apply precise pesticide
application to the infected areas.

The implementation of an automated pest control system holds the potential to signifi-
cantly enhance farmers’ ability to pinpoint areas in need of treatment with precision, thus
reducing the overall pesticide usage and fostering sustainable agricultural methods. De-
spite the extensive research dedicated to automated pest detection, it remains a formidable
challenge, primarily due to the small size of individual pests and their adeptness at blend-
ing into their natural environment. Previous work has been conducted on the detection
and segmentation of aphids [4–7]; however, these works were explored in the context of
individual pest detection rather than assessing the overall infestation levels. The datasets
are also usually catered to the specific pests and the crops they affect. We explore the
feasibility of accurately detecting and segmenting these pests using lightweight models
capable of real-time inference speeds.

The primary focus of this paper is on the topic of automated aphid cluster localization
through object detection and semantic segmentation tasks. Our multi-scale dataset created
using high-resolution images from a sorghum field enables learning to detect aphid clusters
at different scales and in robust conditions. We trained popular real-time object detection
and semantic segmentation models to evaluate their performance against each other and
for the overall application of aphid infestation control. Through a comprehensive analysis,
considering the prediction precision, inference speed, and information parameters for
automated pest localization, we identify RT-DETR and Fast-SCNN as the top performers
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for aphid detection and semantic segmentation tasks, respectively. Furthermore, our
findings suggest that semantic segmentation proves more advantageous for this application
due to the additional spatial information it offers.

The main contributions of this study are summarized below.

• We created an extensive multi-scale dataset for aphid cluster detection and semantic
segmentation, utilizing real-world images captured in sorghum fields. This dataset
encompasses various viewpoints, diverse lighting conditions, and multiple scales,
thereby providing enhanced representations of aphid features. By leveraging this
dataset, we significantly improve the performance of the learning models in detecting
and segmenting aphid clusters.

• We conducted a benchmark evaluation to assess the performance of four state-of-the-
art real-time semantic segmentation models and three detection models using our
generated dataset. The outcomes of this evaluation offer a practical reference point for
aphid detection and segmentation in real-world scenarios.

Partial results of this paper were previously presented at the CVPR 2023 Workshops [8].
This paper is a significant extension of the workshop paper. In addition to segmentation,
the paper incorporates the task of aphid cluster detection with three additional real-time
detection models, a comparison with the previous fixed-scale dataset, as well as expanded
details regarding the segmentation models. The generated dataset can be downloaded at
https://doi.org/10.7910/DVN/N3YJXG accessed on 23 April 2024.

2. Related Works

Convolutional Neural Networks (CNNs) have demonstrated exceptional effectiveness
in feature extraction during the past decade. Utilizing CNNs has led to state-of-the-art
achievements in various image analysis tasks, including image classification [9,10], object
detection [11,12], and semantic segmentation [13,14]. However, the task of pest localization
remains challenging for these models, primarily due to the diminutive sizes of insects.
Barbedo [15] spearheaded the use of image processing techniques and handcrafted features
to automatically detect and count pests on leaves with simple black backgrounds, but more
effective features were needed to improve the performance. Using the histogram-oriented
gradient algorithm and a support vector machine, Ref. [4] devised a way to identify and
count aphids with greater accuracy. However, with the advent of CNNs, there was a push
to move towards learning features directly from the data.

A modification of the widely used U-Net model was introduced in [5] to segment
semantically and count the individual aphid nymphs on leaves. While this method demon-
strated high precision and recall, its applicability was limited by the dataset consisting
solely of ideal laboratory images featuring simple black backgrounds. Consequently, the
model lacked generalizability to the natural settings where these pests are typically found.
Hence, it is imperative for models to exhibit robustness to diverse viewpoints and intri-
cate crop canopies in the real-world environments where these systems are deployed. A
tiny-sized dense distribution network, TD-Det, was proposed in [6] and evaluated using
the APHID-4K dataset from [16]. The model consisted of a transformer feature pyramid
network and used a multi-resolution training method, highlighting the effectiveness of
using multiple resolutions of the images for training. The need for more datasets of this
variety was further addressed by the small dataset, LeLePhiD [17], where they annotated
aphid clusters for infestation detection.

In our preliminary investigation [18], we assembled an extensive dataset of aphids
in their natural habitat and undertook a comparative analysis of various object detectors
using this dataset. However, the dataset was constructed at a fixed scale, and the mod-
els implemented were not tailored for real-time applications. Moreover, the bounding
boxes provided by the detection models lacked the requisite precision for accurately es-
timating the infection levels. Given the recent developments regarding real-time models,
this paper shifts its focus towards real-time aphid localization within both detection and
segmentation contexts.

https://doi.org/10.7910/DVN/N3YJXG
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3. Dataset

Aphids are recognized for consistently causing significant damage to both grain and
sweet sorghums [19]. To ensure the accuracy and representativeness of the data collected
for our dataset in capturing the natural habitat of aphids, we took high-resolution images
from sorghum fields in both the northern and southern regions of the State of Kansas
during the aphid growing season. This was achieved using an imaging rig equipped with
three GoPro cameras positioned at different heights, as shown in Figure 2. This setup
facilitates capturing diverse images from various viewpoints, heights, and lighting condi-
tions. This approach enables the models to better comprehend the spatial characteristics
of sorghum aphids across different environments, ultimately yielding more robust and
generalizable results.

Figure 2. The imaging rig used to capture images. It is equipped with three adjustable GoPro cameras
to take images from different heights and viewpoints.

The initial images exhibited sparse aphid concentration, with those devoid of any
aphids being filtered out via manual examination by domain-trained research assistants,
yielding a dataset comprising 5447 images, each sized at 3647 × 2736 pixels. Given that
aphids typically congregate in groups, our approach for infestation assessment focused
on identifying clusters rather than individual insects. To this end, during the annotation
process, we set a threshold of six or more closely located aphids to define a cluster [18].
This criterion ensured that only clusters of a significant size, indicative of an economic
threat, were detected.

To facilitate a statistically meaningful analysis, we implemented 10-fold cross-validation
to mitigate potential biases resulting from random data splitting and the substantial class
imbalance against background pixels. The selected images were randomly divided into
10 equal sets. Given the sparsity and small sizes of the aphid clusters in the original high-
resolution images, we employed patch generation to enhance cluster presence and ensure
robust localization across different scales. This patch generation process, as illustrated
in Figure 3, involved subdividing the images into patches at three distinct scales: Scale 1
(0.132W × 0.132H), Scale 2 (0.263W × 0.263H), and Scale 3 (0.525W × 0.525H), where W
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and H represent the width and height of the original image, respectively. Some sample
images at different scales are shown in Figure 4. To maintain annotation completeness, a
10% overlap was incorporated between adjacent patches. To prevent any potential data
leakage across the sets, the patch generation was conducted after the fold separation of the
original images.

Figure 3. Two examples of the different scales that were used in training. Image (left) shows how the
original high-resolution 3647 × 2736 image was subdivided to create patches at the 0.525W × 0.525H
scale (Scale 3), where W and H refer to the width and height of the original image. At this scale,
the original image will yield 4 patches. Image (right) shows how the image was further subdivided
to create patches at the 0.263W × 0.263H scale (Scale 2). This scale will yield 16 patches from the
original image. In each case, adjacent patches were taken with an overlap of 10%.

Figure 4. Example images from the dataset alongside their corresponding ground truth labels. The
first row shows the appearance of the aphid clusters and the second row has the corresponding
ground truth masks overlaid on them. The first, second, and third columns show image patches at
Scale 1, Scale 2, and Scale 3, respectively.

The generated dataset comprised a total of 54,742 multi-scale image patches, with
35,140, 13,311, and 6291 patches captured from the top, middle, and bottom camera heights,
respectively. Additionally, there were 36,478, 14,628, and 3636 images obtained from
Scale 1, Scale 2, and Scale 3, respectively. Despite the extensive patch generation process,
annotations of aphid clusters remained sparse, accounting for only 2.45% of each image.
Initially, annotations were provided in the form of semantic segmentation masks, from
which bounding boxes were derived. The statistical distribution of the aphid clusters is
shown in Figure 5. To create the object detection dataset, overlapping boxes were merged.
In contrast, our previous study [18] exclusively focused on developing the dataset at
a single scale. However, as evidenced by our experiments, the incorporation of multi-
scale data enables models to learn features at varying resolutions, thereby contributing to
improved performance.
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Figure 5. Histograms showing the mask area percentage across the images and the number of images
per scale. The chart on the left shows the percentage of aphid cluster masks using intervals of 10%
from 0% to 100%. As most images lie in the interval between 0% and 10%, the chart in the center
further breaks that interval down for closer analysis. The chart on the right provides the number of
images at each scale.

In the literature, there are two other aphid image datasets with automated aphids
for detection. APHID-4K is a high-resolution dataset containing 4294 images of wheat
aphids [16]. However, as this dataset is annotated for individual aphid detection and
counting, it is less suitable for infestation-level assessment. LeLePhiD is another dataset
introduced in [17] for semantically segmenting aphid clusters on lemon leaves. While this
dataset is suitable for assessing aphid concentration and finding infestation severity, it
is a very small dataset with only 665 images and each image consists of a single lemon
leaf taken from 30 to 50 cm away, making it hard for practical applications. Compared
to these two datasets, our dataset is significantly larger, with 54,742 images captured at
multiple scales and from various viewpoints; it offers a comprehensive and diverse dataset
for large-scale pest detection research.

4. Models

With the increased demands of practical applications like autonomous vehicles and
intelligent systems, efficient models have been developed to quickly process visual infor-
mation and take immediate action. This highlights the need for models that can work
with high-resolution image data at high processing speeds. In this study, we implemented
some of the most popular real-time semantic segmentation networks, including Fast-SCNN,
BiSeNetV1, BiSeNetV2, and Small HRNet, as well as real-time object detection networks
such as Faster R-CNN, RT-DETR, and YOLOv7.

4.1. Segmentation Models

Fast-SCNN [20] achieves state-of-the-art segmentation speeds coupled with a
lightweight design, making it ideal for embedded systems with limited computational
memory. Its binary path architecture effectively distributes the computation load and
integrates various region-based context information to enhance segmentation accuracy.
Bilateral Segmentation Network (BiSeNet) [21,22] is another noteworthy family of real-
time segmentation networks employing a similar two-pathway architecture. By fusing
high-level semantic information with low-level features, BiSeNet strikes a balance between
segmentation speed and accuracy, making it highly suitable for real-time applications.
High-Resolution Network (HRNet) [23] serves as a robust backbone for various computer
vision tasks. Its simplified version, Small HRNet, achieves real-time speeds while preserv-
ing high-resolution representations. This is achieved through a high-resolution stem in
the initial stage, followed by the gradual addition of high-to-low-resolution streams in the
main body. All these models demonstrate remarkable capability in achieving real-time
speeds across different benchmark datasets while maintaining high levels of accuracy.

4.2. Detection Models

Faster R-CNN is a prominent two-stage real-time object detector building upon the
Fast R-CNN model by incorporating a Region Proposal Network (RPN). This RPN shares
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full-image convolution features with the detection network to enable cost-free region
proposals [24]. The YOLO (You Only Look Once) family of models represents state-of-
the-art single-stage object detection networks, renowned for their real-time processing
speeds and competitive accuracy [25]. YOLOv7, a recent addition to this family, is an
anchor-based model capable of achieving higher speed and accuracy compared to other
known object detectors. Wang et al. [26] demonstrated through ablation studies that scaling
the network depth and width sequentially, while concatenating the layers, optimizes the
YOLOv7 architecture for improved performance. The Real-Time Detection Transformer
(RT-DETR), introduced by Lv et al. [27], stands out as the first real-time end-to-end object
detector to achieve state-of-the-art speed and accuracy. It surpasses all YOLO detectors at
the same scale by employing a hybrid encoder capable of efficiently processing multi-scale
features. RT-DETR also enhances the initialization of object queries through IoU-aware
query selection, thereby avoiding delays caused by Non-Maximal Suppression (NMS).
Leveraging these three object detectors, we conducted experiments for real-time aphid
cluster detection, capitalizing on their respective strengths in speed and accuracy to address
the requirements of our study effectively.

5. Experimental Setup and Evaluation Metrics

Pre-Processing: The original 3647 × 2736 images were utilized to generate patches at
three different scales. Patches containing less than 1% aphid cluster coverage were filtered
out as they typically represented remnants of clusters from the patch generation process or
were deemed insignificant in terms of economic threat. This curation process yielded a final
dataset comprising 54,742 multi-scale images. Prior to training, all images were resized
to 1024 × 1024 pixels and normalized based on the mean and standard deviation of the
dataset. For the semantic segmentation task, considering the substantial class imbalance
between aphid clusters and background classes, class weights were computed using the
pixels in the image masks and were applied during training. These weights were calculated
as follows:

WAphid Cluster =
Total pixels

Aphid cluster pixels
(1)

WBackground =
Total pixels

Background pixels
(2)

Training Setup: The models were implemented in Python using PyTorch. For the
segmentation models, we utilized the MMSegmentation library [28]. Additionally, we
employed the MMDetection library for the Faster R-CNN model, while the official imple-
mentations were utilized for the other object detection models. The training was conducted
using 4 NVIDIA v100 GPUs with a total memory capacity of 64 GB.

Training Pipeline: During training, all segmentation models underwent
160,000 iterations utilizing Stochastic Gradient Descent (SGD) with a learning rate set
to 0.001, a momentum of 0.9, a weight decay of 0.005, and a batch size of 2. Conversely, a
batch size of 8 images was employed for the object detection models. For training YOLOv7
and Faster R-CNN, SGD was utilized as the optimizer. YOLOv7 was trained with a learning
rate of 0.01, a momentum of 0.937, and a weight decay of 0.0005, while Faster R-CNN used
a learning rate of 0.02, a momentum of 0.9, and a weight decay of 0.0001. RT-DETR, on the
other hand, employed AdamW as the optimizer, trained with a learning rate of 0.0001, a
momentum of 0.9, and a weight decay of 0.0001.

Model Evaluation: For the object detection task, we utilized the popular mean
Average Precision (mAP) metric across various Intersection over Union (IoU) thresholds,
including 0.25, 0.5, and 0.75. In the segmentation task, model evaluation relied on two
key metrics: Intersection over Union (IoU) and Dice coefficient. These metrics are defined
as below.

IoU =
Area of overlap
Area of union

(3)
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Dice =
2 × Area of overlap

Total area
(4)

The speed of all models is evaluated based on how fast they are able to detect aphid
clusters by their frames per second (FPS).

6. Experimental Results

Utilizing the generated multi-scale patches, we have achieved a comprehensive rep-
resentation of aphid clusters from diverse viewpoints, thereby enhancing the robustness
of our models across different regions within a sorghum field. By leveraging this dataset,
we trained the identified object detection and semantic segmentation networks, thereby
establishing a benchmark for aphid cluster localization. This effort contributes significantly
to the broader objective of infestation management.

6.1. Segmentation

The four real-time semantic segmentation models we used in our experiments included
Fast-SCNN, BiSeNetV1, BiSeNetV2, and Small HRNet. The performance of these models is
shown in Table 1. The results show the mean Intersection over Union (mIoU), mean Dice
score (mDice), mean precision (mPrecision), mean recall (mRecall), and the speed in frames
per second (FPS). From the results, we can see the tradeoff between speed and accuracy, with
Small HRNet achieving the highest accuracy at 71.62 mIoU but having the slowest relative
speed at 31.57 FPS compared to the other networks. The BiSeNetV1 and BiSeNetV2 models
yield lower performance while having quite consistent speeds of 53.70 FPS and 56.19 FPS,
respectively. In terms of inference speed, Fast-SCNN stands out as the top performer among
all the models, achieving above real-time speeds at 91.66 FPS. Remarkably, it maintains
a high accuracy level of 71.25 mIoU. Given its superior performance compared to Small
HRNet and its exceptional speed, Fast-SCNN emerges as the overall best-performing model
for real-time aphid cluster segmentation. Table 1 also shows the overall recommendation
in the column “Rank”.

Table 1. Real-time segmentation results (sorted via mPrecision). Bold indicates top result. “Rank”
shows the overall recommendation.

Model mIoU mDice mPrecision mRecall FPS Rank

HRNet-Small 71.62 ± 0.47 81.15 ± 0.36 80.82 ± 1.20 81.64 ± 0.65 31.57 2
Fast-SCNN 71.25 ± 0.59 80.87 ± 0.50 80.46 ± 1.47 81.21 ± 0.67 91.66 1
BiSeNetV2 65.72 ± 0.53 75.58 ± 0.55 77.47 ± 1.34 74.06 ± 1.05 53.70 3
BiSeNetV1 59.94 ± 0.54 69.22 ± 0.70 72.39 ± 1.55 67.12 ± 1.40 56.19 4

Figure 6 illustrates the segmentation results across the four models and compares them
to the corresponding ground truth annotations. Small HRNet and Fast-SCNN demonstrate
the highest accuracy in producing segmentation masks closely aligned with the ground
truths. They effectively detect aphid clusters under various visual conditions, including
sparsely located clusters, partially occluded clusters, and those in low-light environments.
Additionally, Small HRNet exhibits proficiency in handling clusters with more intricate
shapes, while Fast-SCNN excels in delineating tighter boundaries, effectively avoiding
areas of leaves between clusters devoid of a significant number of aphids. In contrast, the
BiSeNet models tend to overlook aphid clusters that blend into the background crop canopy
and often misclassify similarly textured parts of the plant as clusters. Notably, BiSeNetV1
may also erroneously detect smaller individual clusters within larger ones rather than
recognizing them all as a single cluster.
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Figure 6. The predicted masks from the four real-time semantic segmentation models alongside
the ground truth mask annotations. Each row shows us the performance of the models at the three
different scales.

6.2. Detection

The experiments incorporated three real-time object detection models: Faster R-CNN,
YOLOv7, and RT-DETR. Table 2 presents the performance metrics of these models corre-
sponding to various IoU thresholds of 0.25, 0.5, and 0.75. It is evident that the IoU threshold
plays a significant role in determining the difficulty for models to generate True Positive
predictions. Higher IoU thresholds impose stricter localization requirements, leading to
lower average precision and recall. This underscores the tradeoff between the stringency
of the localization criteria and the overall performance of the model. Table 3 shows the
mean average precision and recall averaged across the three IoU thresholds, as well as
the corresponding frames per second (FPS) rates, where the column “Rank” indicates the
overall recommendation for practical deployment.

Among these detection models, RT-DETR achieved the highest accuracy, attaining a
61.63 mAP, while also managing the second fastest inference speed with an above real-time
speed of 72.55 FPS. Faster R-CNN emerges as the second-best performer with an accuracy of
57.83 mAP. Even though this model has the slowest relative speed, it is still able to maintain
above real-time speeds of 48.03 FPS. YOLOv7 achieved the lowest relative accuracy of
57.33 mAP, which is quite similar to Faster R-CNN, but its lightweight architecture enables
it to be more efficient, with the highest frame rate at 113.64 FPS. Although YOLOv7
demonstrates the fastest frame rate, its lower accuracy highlights the tradeoff between
speed and accuracy. Consequently, RT-DETR emerges as the optimal choice overall, offering
the best balance between accuracy and above real-time inference speeds.

The visual detection results from each of the three models, alongside their correspond-
ing ground truth bounding boxes, are depicted in Figure 7. From these results, we can see
that all the models generated bounding boxes that closely aligned with their ground truths.
Faster R-CNN, however, tended to produce additional bounding boxes, often detecting
smaller clusters in the background that pose a negligible economic threat, and occasionally
misidentifying the background components of the crop as clusters. Moreover, due to the
absence of Non-Maximal Suppression, Faster R-CNN resulted in overlapping bounding
boxes. Despite encountering challenges in detecting the sparsely populated clusters in the
dark and shadow-covered bases of the crops, RT-DETR demonstrated robustness across
various conditions, including different viewpoints, lighting conditions, leaf sizes, as well as
images with blur and shadow.
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Table 2. Object detection results detailed at different IoU thresholds of 0.25, 0.50, and 0.75. For
YOLOv7, 0.25, 0.5, and 0.75 were also set as the Non-Maximal Suppression thresholds for the
corresponding IoU thresholds.

Model Threshold AP Recall

Faster R-CNN
0.25 75.8 94.0
0.50 63.7 86.4
0.75 34.0 54.8

YOLOv7
0.25 74.9 71.1
0.50 61.0 58.2
0.75 36.1 40.0

RT-DETR
0.25 76.9 99.7
0.50 66.0 99.0
0.75 42.0 79.1

VFNet
0.25 51.2 89.0
0.50 38.4 79.0
0.75 16.2 37.0

GFLV2
0.25 51.3 88.2
0.50 38.2 76.6
0.75 15.5 34.5

PAA
0.25 49.2 91.6
0.50 37.9 82.4
0.75 16.5 38.8

ATSS
0.25 51.5 89.3
0.50 38.5 78.5
0.75 15.7 35.7

Table 3. Real-time object detection results (sorted via mAP). The mAP and mRecall are averaged
over IoU thresholds at 0.25, 0.50, and 0.75. Bold indicates top result. “Rank” shows the overall
recommendation. “×” means not recommended.

Model mAP mRecall FPS Rank

RT-DETR 61.63 92.60 72.55 1
Faster R-CNN 57.83 78.40 48.03 3
YOLOv7 57.33 56.43 113.64 2

VFNet 35.27 68.33 22.00 ×
GFLV2 35.00 66.43 21.98 ×
PAA 34.53 70.93 10.43 ×
ATSS 35.23 67.83 19.04 ×

In Tables 2 and 3, we also compared the detection performance with the following
four detection models reported in [18]: ATSS (Adaptive Training Sample Selection) [29],
GFLV2 (Generalized Focal Loss V2) [30], PAA (Probabilistic Anchor Assignment) [31], and
VFNet (VarifocalNet) [32]. Although these models were trained and evaluated from the
same original image dataset, their performance does not align with the results obtained
in this study. The primary reason for this variance is that these models were trained
using the fixed-scale dataset created in [18]. This comparison further underscores the
significance of creating a multi-scale dataset, emphasizing its crucial role in achieving
superior performance in aphid cluster detection and segmentation tasks.
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Figure 7. The predicted bounding boxes from the three object detection models as well as the ground
truth bounding boxes. Each row highlights the performance of the models at different lighting
conditions and viewpoints.

7. Discussion
7.1. Results Analysis

Despite the advancements in modern computer vision techniques, localizing small in-
sects remains a very challenging problem in automated detection and segmentation within
the agricultural field. This difficulty primarily arises from the minuscule sizes of these
pests and their adeptness at blending into complex natural crop environments. To tackle
these obstacles, we implemented a three-camera setup with varying heights and employed
multi-scale patch generation to create object detection and semantic segmentation datasets.
As a result, the resulting images encompassed a wide range of scales, viewpoints, and
heights, surpassing the diversity of the existing pest image datasets. Moreover, recognizing
that aphid infestations are typically clustered, with the size of the cluster indicating the
level of economic threat, our annotations occurred at the cluster level rather than focusing
on individual insects. Additionally, the utilization of class weights helped to address the
significant class imbalance, ensuring that the segmentation models could effectively learn
from the data.

Among the models evaluated, RT-DETR emerged as the top performer for object de-
tection, while Fast-SCNN excelled in semantic segmentation. This success can be attributed
to their combination of high speed and accuracy, making them well-suited for practical
agricultural applications. With its newly designed hybrid encoder able to efficiently process
multi-scale features, RT-DETR is able to avoid the delays caused by NMS and reduce
the computation time of the network. Using IoU-aware query selection also allows the
model to focus on the parts of the image that contain the most relevant objects, enhancing
the accuracy. From the results in Figure 7, we can see that RT-DETR performs quite well
relative to the other models and is robust to changes in lighting conditions and viewpoints.
Although YOLOv7 manages to achieve a higher frame rate, the combination of the highest
accuracy at a speed above real time ensures that RT-DETR is sufficient for quality real-time
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aphid cluster detection with higher recall. From Table 2, we also notice the tradeoff between
the localization strictness and the model’s performance. As the agricultural needs are vast
and diverse, this enables the threshold to be customized to different requirements.

The highly recommended model, Fast-SCNN, has a binary path architecture, which
allows it to efficiently downsample the images and concatenate the shared low-level
computed features to achieve its excellent speeds. However, it is this simplicity that keeps
it from outperforming the most accurate model, Small HRNet, which sacrifices speed for
its better accuracy. We see this further demonstrated in Figure 6 where Small HRNet is able
to segment more complicated boundaries to better fit the aphid clusters. Fast-SCNN is still,
however, able to quite accurately segment the clusters and account for different lighting
conditions and complicated crop backgrounds.

7.2. Recommendation for Aphid Infestation Control

Given that aphids typically appear sparsely but form dense clusters, the economic
impact of these pests correlates directly with the size of these clusters. For an autonomous
pest control system to effectively manage infestations in real time, it must quickly localize
these clusters and assess the severity of the infestation based on their sizes. Our comparative
results of object detection and semantic segmentation approaches demonstrate that the
additional spatial information provided by semantic segmentation, through the sizes of
the predicted masks, allows for an accurate determination of whether an infestation has
reached a critical threshold requiring intervention.

From Figure 8, we observe the predictions achieved by RT-DETR and Fast-SCNN for
object detection and semantic segmentation, respectively, on identical test images. While
both methodologies are adept at identifying small, isolated, and circular clusters of aphids,
challenges arise with atypical cluster formations. For example, in cases where clusters
form elongated lines along leaves or assume elongated shapes, as illustrated in the bottom
row of Figure 8, bounding boxes may cover extensive areas of the image, yet the actual
clusters occupy only sparse sections within these boxes. Conversely, the predicted masks
from semantic segmentation provide a more accurate representation of the area directly
occupied by the aphid clusters.

Figure 8. Prediction results for the same test images in object detection and semantic segmenta-
tion contexts from RT-DETR and Fast-SCNN, respectively. These examples show how semantic
segmentation is more beneficial due to the provided spatial information of the aphid clusters.
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Therefore, we recommend semantic segmentation for this task as its pixel-level preci-
sion in identifying aphid clusters proves to be more suitable. While RT-DETR provides high
accuracy at speeds above real time, Fast-SCNN’s capability to accurately segment clusters
with precise boundaries offers a more accurate assessment of the infestation level present
in the image. Nonetheless, we recognize that agricultural settings vary widely, and both
methodologies have demonstrated effectiveness in localizing aphid clusters in their natural
habitats. In scenarios where speed is a priority, or the sheer number of detected clusters is
sufficient for deciding on treatment actions, the detection approach may be preferred, still
yielding competitive results. In practical applications, we might establish a threshold such
that, if the total area covered by segmentation masks or detection bounding boxes in an
image exceeds a predetermined threshold, the onboard spray system would be activated to
apply pesticides to the identified areas.

8. Conclusions

Aphids cause some of the most consistent damage to wheat, rice, and sorghum crops
worldwide. As a primary cause of insect pest damage, recent advances in automated drone
technology have allowed farmers to target them more effectively using selective treatment.
However, for computer vision models to be able to detect and segment aphid clusters with a
sufficient level of performance, they require a large amount of diverse data. Using manually
collected and labelled high-resolution images, our large multi-scale dataset of aphid clusters
addresses the need to adequately assess the infestation levels of aphids in sorghum crops.
The different scales allow for better generalization capabilities and robustness to different
ranges of zoom and viewpoints. In our experiments, we trained popular real-time object
detection and semantic segmentation models to localize aphid clusters regarding real-time
speeds or better. Our results show that both RT-DETR and Fast-SCNN are ideal choices
for object detection and semantic segmentation, respectively, for providing high-quality
predictions at above real-time speeds. In terms of the overall better-suited task, semantic
segmentation is recommended due to the extra spatial information provided through the
masks. These findings highlight the promise of this problem domain, and further studies
with deployed models in the field may enable real-world data on the effects of these models
on the yield to be studied. Thus, this study will hopefully motivate further research that
drives us towards a more sustainable and efficient agricultural system.

Author Contributions: Conceptualization: B.M., D.F., A.S. and G.W.; methodology and experiment
analysis: R.R., C.I., G.B., T.Z. and G.W.; data curation: K.L., X.C. and I.G.; writing and editing: R.R.,
C.I., T.Z. and G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) under grant no. RGPIN2021-04244 and the United States Department of
Agriculture (USDA) under grant no. 2019-67021-28996.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset generated in this study can be downloaded at https:
//doi.org/10.7910/DVN/N3YJXG, accessed on 23 April 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Amiri, A.N.; Bakhsh, A. An effective pest management approach in potato to combat insect pests and herbicide. 3 Biotech 2019,

9, 1–12. [CrossRef] [PubMed]
2. Finegold, C.; Ried, J.; Denby, K.; Gurr, S. Global burden of crop loss. Gates Open Res. 2019, 3, 1.
3. Pearce, R. Precision Agronomy: Precision Ag Is Rapidly Evolving, with Many Emerging Benefits for Producers; Country Guide:

Winnipeg, MB, Canada, 2019.
4. Liu, T.; Chen, W.; Wu, W.; Sun, C.; Guo, W.; Zhu, X. Detection of aphids in wheat fields using a computer vision technique.

Biosyst. Eng. 2016, 141, 82–93. [CrossRef]

https://doi.org/10.7910/DVN/N3YJXG
https://doi.org/10.7910/DVN/N3YJXG
http://doi.org/10.1007/s13205-018-1536-0
http://www.ncbi.nlm.nih.gov/pubmed/30622854
http://dx.doi.org/10.1016/j.biosystemseng.2015.11.005


J. Imaging 2024, 10, 114 14 of 15

5. Chen, J.; Fan, Y.; Wang, T.; Zhang, C.; Qiu, Z.; He, Y. Automatic segmentation and counting of aphid nymphs on leaves using
convolutional neural networks. Agronomy 2018, 8, 129. [CrossRef]

6. Teng, Y.; Wang, R.; Du, J.; Huang, Z.; Zhou, Q.; Jiao, L. TD-Det: A Tiny Size Dense Aphid Detection Network under In-Field
Environment. Insects 2022, 13, 501. [CrossRef] [PubMed]

7. Zhang, T.; Li, K.; Chen, X.; Zhong, C.; Luo, B.; Teran, I.G.; McCornack, B.; Flippo, D.; Sharda, A.; Wang, G. A New Dataset and
Comparative Study for Aphid Cluster Detection. In Proceedings of the 2nd AAAI Workshop on AI for Agriculture and Food
Systems, Washington, DC, USA, 13–14 February 2023.

8. Rahman, R.; Indris, C.; Zhang, T.; Li, K.; McCornack, B.; Flippo, D.; Sharda, A.; Wang, G. On the real-time semantic segmentation
of aphid clusters in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, Canada, 17–24 June 2023; pp. 6298–6305.

9. Bur, A.M.; Zhang, T.; Chen, X.; Kavookjian, H.; Kraft, S.; Karadaghy, O.; Farrokhian, N.; Mussatto, C.; Penn, J.; Wang, G. Inter-
pretable computer vision to detect and classify structural laryngeal lesions in digital flexible laryngoscopic images. Otolaryngol.
Head Neck Surg. 2023, 169, 1564–1572. [CrossRef]

10. Ma, W.; Tu, X.; Luo, B.; Wang, G. Semantic clustering based deduction learning for image recognition and classification. Pattern
Recognit. 2022, 124, 108440. [CrossRef]

11. Li, K.; Fathan, M.I.; Patel, K.; Zhang, T.; Zhong, C.; Bansal, A.; Rastogi, A.; Wang, J.S.; Wang, G. Colonoscopy polyp detection and
classification: Dataset creation and comparative evaluations. PLoS ONE 2021, 16, e0255809. [CrossRef] [PubMed]

12. Zhang, T.; Luo, B.; Sharda, A.; Wang, G. Dynamic label assignment for object detection by combining predicted ious and anchor
ious. J. Imaging 2022, 8, 193. [CrossRef]

13. He, L.; Lu, J.; Wang, G.; Song, S.; Zhou, J. SOSD-Net: Joint semantic object segmentation and depth estimation from monocular
images. Neurocomputing 2021, 440, 251–263. [CrossRef]

14. Patel, K.B.; Li, F.; Wang, G. FuzzyNet: A Fuzzy Attention Module for Polyp Segmentation. In Proceedings of the NeurIPS’22
Workshop on All Things Attention: Bridging Different Perspectives on Attention, New Orleans, LA, USA, November 2022.

15. Barbedo, J.G.A. Using digital image processing for counting whiteflies on soybean leaves. J. Asia Pac. Entomol. 2014, 17, 685–694.
[CrossRef]

16. Du, J.; Liu, L.; Li, R.; Jiao, L.; Xie, C.; Wang, R. Towards densely clustered tiny pest detection in the wild environment.
Neurocomputing 2022, 490, 400–412. [CrossRef]

17. Parraga-Alava, J.; Alcivar-Cevallos, R.; Morales Carrillo, J.; Castro, M.; Avellán, S.; Loor, A.; Mendoza, F. LeLePhid: An Image
Dataset for Aphid Detection and Infestation Severity on Lemon Leaves. Data 2021, 6. [CrossRef]

18. Zhang, T.; Li, K.; Chen, X.; Zhong, C.; Luo, B.; Grijalva, I.; McCornack, B.; Flippo, D.; Sharda, A.; Wang, G. Aphid cluster
recognition and detection in the wild using deep learning models. Sci. Rep. 2023, 13, 13410. [CrossRef]

19. Munson, R.E.; Schaffer, J.A.; Palm, E.W. Sorghum Aphid Pest Management. 1993. Available online: https://mospace.umsystem.
edu/xmlui/handle/10355/8183 (accessed on 30 May 2023).

20. Poudel, R.P.K.; Liwicki, S.; Cipolla, R. Fast-SCNN: Fast Semantic Segmentation Network . arXiv 2019, arXiv:1902.04502.
21. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation.

arXiv 2018, arXiv:1808.00897.
22. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time

Semantic Segmentation. arXiv 2020, arXiv:2004.02147.
23. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution

Representation Learning for Visual Recognition. arXiv 2019, arXiv:1908.07919.
24. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv

2015, arXiv:1506.01497.
25. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,

arXiv:1506.02640.
26. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv: 2207.02696.
27. Lv, W.; Zhao, Y.; Xu, S.; Wei, J.; Wang, G.; Cui, C.; Du, Y.; Dang, Q.; Liu, Y. DETRs Beat YOLOs on Real-time Object Detection.

arXiv 2023, arXiv: 2304.08069.
28. Contributors, M. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. 2020. Available online:

https://github.com/open-mmlab/mmsegmentation (accessed on 30 May 2023).
29. Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training

sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 9759–9768.

30. Li, X.; Wang, W.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized focal loss v2: Learning reliable localization quality estimation for dense
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 11632–11641.

http://dx.doi.org/10.3390/agronomy8080129
http://dx.doi.org/10.3390/insects13060501
http://www.ncbi.nlm.nih.gov/pubmed/35735838
http://dx.doi.org/10.1002/ohn.411
http://dx.doi.org/10.1016/j.patcog.2021.108440
http://dx.doi.org/10.1371/journal.pone.0255809
http://www.ncbi.nlm.nih.gov/pubmed/34403452
http://dx.doi.org/10.3390/jimaging8070193
http://dx.doi.org/10.1016/j.neucom.2021.01.126
http://dx.doi.org/10.1016/j.aspen.2014.06.014
http://dx.doi.org/10.1016/j.neucom.2021.12.012
http://dx.doi.org/10.3390/data6050051
http://dx.doi.org/10.1038/s41598-023-38633-5
https://mospace.umsystem.edu/xmlui/handle/10355/8183
https://mospace.umsystem.edu/xmlui/handle/10355/8183
https://github.com/open-mmlab/mmsegmentation


J. Imaging 2024, 10, 114 15 of 15

31. Kim, K.; Lee, H.S. Probabilistic anchor assignment with iou prediction for object detection. In Proceedings of the Computer
Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXV 16; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 355–371.

32. Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8514–8523.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Works
	Dataset
	Models
	Segmentation Models
	Detection Models

	Experimental Setup and Evaluation Metrics
	Experimental Results
	Segmentation
	Detection

	Discussion
	Results Analysis
	Recommendation for Aphid Infestation Control

	Conclusions
	References

