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Abstract: Robots with bio-inspired locomotion systems, such as quadruped robots, have recently
attracted significant scientific interest, especially those designed to tackle missions in unstructured
terrains, such as search-and-rescue robotics. On the other hand, artificial intelligence systems have
allowed for the improvement and adaptation of the locomotion capabilities of these robots based
on specific terrains, imitating the natural behavior of quadruped animals. The main contribution
of this work is a method to adjust adaptive gait patterns to overcome unstructured terrains using
the ARTU-R (A1 Rescue Task UPM Robot) quadruped robot based on a central pattern generator
(CPG), and the automatic identification of terrain and characterization of its obstacles (number, size,
position and superability analysis) through convolutional neural networks for pattern regulation. To
develop this method, a study of dog gait patterns was carried out, with validation and adjustment
through simulation on the robot model in ROS-Gazebo and subsequent transfer to the real robot.
Outdoor tests were carried out to evaluate and validate the efficiency of the proposed method in
terms of its percentage of success in overcoming stretches of unstructured terrains, as well as the
kinematic and dynamic variables of the robot. The main results show that the proposed method
has an efficiency of over 93% for terrain characterization (identification of terrain, segmentation and
obstacle characterization) and over 91% success in overcoming unstructured terrains. This work was
also compared against main developments in state-of-the-art and benchmark models.

Keywords: biologically inspired robotics; quadruped robots; convolutional neural networks; robotics
vision; transfer learning

1. Introduction

The research and development of bio-inspired quadruped robots have evolved in
recent decades, resulting in robots with a great capacity for mimicry and locomotion modes
inspired by animal behavior in nature. In these developments, intelligence systems should
be highlighted. Biomimicry allows us to solve complex problems, such as moving through
complex environments, a topic currently of interest at the research level [1].

Among the main challenges and limitations of this type of robot is its movement
through unstructured terrain, with the presence of debris. In this way, terrestrial animals
such as horses [2] and snakes [3] have inspired several robotic developments, allowing
them to move with great agility in nature.

On the other hand, search-and-rescue robotics arise from the need to assist rescue
brigades in interventions at post-disaster events, seeking to protect lives and help detect
victims in the environment [4,5]. Historically, bio-inspired robots, such as those of the
caterpillar type, have been used in this type of intervention, including: the United States
(Twin Towers, 2001) [4,6], Japan (Fukushima, 2011) [7], Italy (Amatrice, 2016) [8] and Mexico
(2017) [9].

The rise of quadruped robots has made it possible to explore new alternatives for
exploration and displacement in rustic terrain, given their great agility, fast response times,
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omnidirectional movement, and ability to perform even in terrains where robots with
conventional locomotion systems (wheels or caterpillars) are not able to [10].

Quadruped robots currently use LiDAR-based systems to locate and identify the
terrain [11], which faces disadvantages in accurately characterizing stable zones and sur-
mountable obstacles, or they generalize the terrain using specific contact sensors for the
characterization of materials [12,13]. However, real scenarios, by nature, are constantly
changing, unstructured and unstable, which represents a challenge within state-of-the-art
robotic systems in adjusting gait patterns. This will be addressed in the first approach of this
study. On the other hand, there have been methods developed to generically identify the
type of terrain [14–16], but the problem of characterizing its elements is not focused, and
the obstacles that represent a challenge for mobility on these surfaces are not structured.

The main contribution of this work is overcoming the challenges of unstructured
terrain using the ARTU-R quadruped robot (A1 Rescue Task UPM Robot), automatically
adjusting the kinematic and dynamic parameters of its gait patterns based on the identifi-
cation of the terrain using a central pattern generator and characterization of the terrain
obstacles using neural networks for gait pattern regulation.

To this end, a simulation phase was started in environments by ROS-GAZEBO to
validate a virtual model of the robot, using the gait patterns studied in dogs to determine the
relevant parameters of the walk, which would later be adjusted based on the information
output from the neural network. The adjustments of the kinematic and dynamic parameters
of the robot’s gait patterns were made based on the automatic analysis of the terrain type
(gravel, earth or grass) and the type of obstacles in it.

This automatic recognition and semantic segmentation of the environment was carried
out by training a convolutional neural network (YOLOv8) using a dataset of more than
1700 images. Tests were carried out in real environments to validate the proposed method,
with successful results in overcoming unstructured terrain with the robot.

This paper is structured as follows: Section 2 shows the most relevant works on terrain
identification and characterization. Section 3 details the materials and methods used.
Section 4 describes the experiments and results. Finally, the main findings are presented in
Section 5.

2. Related Work
2.1. Automatic Terrain Identification Robotic Systems

The identification and characterization of environments is a widely studied problem
in robotics perception to determine the specific characteristics of the environment in order
to define advance and displacement strategies. The main methods used for this task are
LiDAR-type sensors, RGB-D cameras and sensors for material characterization [17]. In this
way, two subsections can be established for identifying terrain: sensors that require contact
with the soil material and visual-type sensors.

2.1.1. Identification Based on Contact Sensors

Common terrain identification methods use specific sensors built into the robot’s legs.
These sensors are distributed to identify different types of materials [12,13,18,19] and allow
locomotion parameters to be adjusted for the robots depending on the terrain. For their
part, other robots with hexapod legs use force/torque sensors and Bayesian-type classifiers
to determine terrain type [20].

Others base their functionality on vibration systems combined with linear discriminant
analysis to characterize the terrain, mainly types similar to the Martian rover [21–23].

Contact-based systems for land identification show promising results when there is
complete contact, but they face a series of problems when there is no complete contact
due to debris or there is a generalization of the entire terrain based on local measurements.
Another disadvantage is that it requires stable information.
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2.1.2. Identification Based on Visual Perception

Most works related to RGB-D type sensors [24,25] are limited to extracting characteris-
tics and identifying objects or planes [26–28].

On the other hand, lidar-type sensors are used for re-constructing 3D environments
and the semantic identification of areas and objects based on geometries and the extraction
of planes and surfaces [29–31]. However, most developments are limited to the extraction
of plans [32,33].

Some works use RGB imaging and neural networks for terrain identification, such
as [14,34,36? –38]. However, there is a lack of systems for detecting and characterizing
obstacles or surmountable zones for the robot, which is a fundamental factor for defining
walking modes and areas to avoid.

Although the methods based on visual systems are robust and reliable in characterizing
the environment, they show some disadvantages. Thus, lidar-based systems cannot infer
or provide information about the rigidity or stability of the ground or obstacles.

In this sense, the proposed method seeks to implement a proof of concept by using
neural networks trained with a starting criterion of surmountable or non-surmountable
obstacles, considering size and location, given by a user.

This first phase consisting of the detection and characterization of terrain allows
the robot intelligence systems to develop preliminary strategies to address unstructured
environments, by adjusting the modes of locomotion as progress is made, according to the
structure of the environment.

2.2. Gait Pattern Adjustment of Bioinspired Quadruped Robots

Biomimetic intelligence systems allow solving complex problems such as moving
across complex environments, which is currently of interest at the research level [1].

Some works combine several contact-type sensors to define the displacement of
quadruped robots based on the optimization of forces and torque control strategies [39,
40,42? ]. On the other hand, some developments integrate vision systems to achieve first
attempts at traversing terrain with a quadruped robot by using terrain mapping tools in
controlled environments [43].

The work “A Review of Quadruped Robots and environment perception” highlights
one of the main problems to be addressed within this area, which is the identification of the
terrain, which must be interpreted in a bioinspired way to be addressed satisfactorily [44].

There are also other works related to the regulation of gait parameters for robots with
legs, such as in ref. [45], which establishes that moving across unstructured terrains with a
single gait pattern is complex. This work proposes a system that regulates the gait patterns
of a hexapod robot and includes a method based on a fixed gait pattern and an adjustable
one based on the inclination of the terrain. In work developed by Zenfer, it is proposed to
adjust the gait patterns of a hexapod robot based on the terrain identified by a monocular
camera [46].

An analysis of the kinematics of a leg of a quadruped robot is presented in [47]. In [40],
one of the first developments in gait pattern regulation is shown, focusing on trot and
gallop by using contact sensors on the robot’s legs as feedback.

On the other hand, a method that feeds back the gait patterns of a spider-type robot
based on the terrain detected with an RGB-D vision system is proposed in [15]. At the
same time, Gong proposes a method for extracting the gait patterns of quadruped animals
based on their pose [48]. Chen proposes a method for pattern matching a robot with
legs–wheels [49]. A method to adjust the patterns in quadruped robots according to the
touchdown times of swing feet is evaluated in [50].

Several relevant works stand out within the state of the art. However, the method
proposed by the authors, which combines neural networks to identify the terrain from an
RGB image so as to define which obstacles/zones are surmountable, has not been addressed
so far to adjust the gait patterns.
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3. Methodology
3.1. Materials

The main equipment used for this work is ARTU-R, a quadruped robot, shown in
Figure 1. Its sensory system comprises the elements described in Table 1. This robot relies
on 12 brushless motors distributed among its four legs to moves. The main characteristics
of these motors are a weight of 0.605 Kg, a maximum torque of 33.4 N.m and an Encoder of
15 bits used to determine the position of each link.

A Gazebo simulation environment executed in a previous phase on a high-powered
computer (MSI-10th Gen, GTX-1660Ti) allows the simulation of different parameters and
configurations of movement.

Figure 1. ARTU-R quadruped robot (A1 Rescue Task UPM Robot), equipped with sensory equip-
ment for hostile environments. Numbers on the legs are assigned for identification throughout the
manuscript. Source: authors.

Table 1. Materials for the proposed system implementation.

Component Description

Unitree A1 Quadruped Robot
Nvidia Jetson Xavier-Nx On-board Embedded System

Real-Sense RGB-Depth Sensor
MSI1660-Ti Laptop Computer for Simulations

3.2. Kinematic Modeling of the Legs

The quadruped robot used in this work has three degrees of freedom per leg, which
amounts to a total of twelve degrees of freedom. Each limb is made up of three links.
The problem will be subdivided into two sections to find the inverse kinematics of the system.

In the first step, the situation of one of the legs in the frontal plane (YZ) in Figure 2a
will be analyzed to find the angle q0 as a function of the distances Pz and Py and the length
L0, using Equation (1).

In the second part of the kinematics calculation (Figure 2b), the triangle formed on
the limb’s lateral side is considered. Thus, it will be possible to obtain the angles q1 and
q2 from the x and y values. Equations (2) and (3) show the relationship for calculating
these angles.

These expressions are found as a function of the parameters of the forward step of the
robot given by (h, A), shown in Figure 2b, that will be combined with the outputs of the
neural network to generate the adaptive movement.
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(a) (b)

Figure 2. Views and parameters of the kinematic model of the robot. Source: authors. (a) Front view
of the kinematic model; (b) lateral view of the kinematic model.

q0 = tan−1(
y f (A)

L0
)− tan−1(

Pz

Py + L0
) (1)

q2 = cos−1(
(x f (A))

2 + (y f (A))
2 − L2

1 − L2
2

2 · L1 · L2
) (2)

q1 = tan−1(
y f (A)

y f (h))
)− tan−1(

L2 · sen(q2)

L1 − L2 · cos(q2)
) (3)

Iterative Configuration of Gait Patterns

Once the leg model is obtained, it is adapted to the different base gait patterns analyzed
in dogs (Figure 3), where each paw is identified from 1 to 4 according to Figure 1. There
are three types of patterns: configuration A, 2-2 alternate, where 1 + 4 and 2 + 3 are moved
synchronously; configuration B, 2-2 gallops alternative (movement of 1 + 2 and 3 + 4); and
configuration C, 1-3, that has four phases, leaving a support polygon of three legs while the
other one is in the air. It is worth noting that the three paws on the ground must continue
in a phased synchronous movement to generate an advance. This four-time-phase advance
for each leg is illustrated in grayscale for better visualization in Figure 3.

Figure 3. Synthesis of the gait patterns studied. A: 2-2 Altern, B: 2-2 Gallop, and C: 1-3.
Source: authors.
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The 2-2 gait pattern has great importance. This type of movement has different variants
depending on how the two pairs of limbs are organized. On the one hand, there is the
alternate mode, in which one front and one hind leg advance simultaneously. In this
method, two legs move, leaving the other two static, and later, at the end of the journey of
the first one, the other two start-up.

The trajectories to be followed by the hoof have been proposed as a positive sinusoidal
curve, with amplitude (A) and half the period equal to the step (h); the parameters shown
in Figure 2b.

3.3. Test Environments and Parameters

The simulations carried out in this work have been applied to different types of terrain,
all encompassed in the so-called orange sand, according to the Institute of Standards and
Technology (NIST). Taking NIST as the regulatory entity, the proposed environments are
classified into three types of arenas, yellow, orange and red, each one with a different level
of complexity [51]. Accordingly, the scenarios in this work contain moderate obstacles,
slight slopes and different consistencies of soils.

3.3.1. Simulated and Real Environments

The simulation phase allows the analysis of the defined gait patterns to evaluate their
functionality in unstructured terrain. The ROS-GAZEBO simulator is used, which recreates
both the physical and dynamic conditions of the environment. It also allows the integration
of the CAD model of the robot with Ros-Control packages.

The simulation in Gazebo is reconstructed based on the CAR-Arena of the UPM
to have parity in the concordance of environments. Both environments are shown in
Figure 4a,b, respectively. In the same way, outdoor environments are reconstructed for this
testing phase according to those used later, shown in Figure 4c,d.

(a) (b)

(c) (d)

Figure 4. Real and simulated test environments. Source: authors. (a) Real scenario (CAR robotics
arena) with different instances for testing; (b) indoor simulated scenario in Gazebo for test execution;
(c) outdoor real scenario; (d) outdoor simulated scenario with the robot model.
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The indoor environment (Figure 4a,b) consists of different facilities with four types
of floors. The first (A), located when crossing the door, has small stone-type rubble that
does not exceed 1–3 cm. The second (B), located in the rear-left area, relies on larger rubble
pieces (5–9) cm. In the next room, an area (C) with branch-type rubble and an area with
unevenness (D) are mainly distinguished.

3.3.2. Type of Tests

A series of tests were carried out in each different type of terrain, analyzing the time
required to complete each one of the routes, the stability that the robot shows while facing
different obstacles and the maximum distance.

The best gait patterns for each type of scenario and their most appropriate parameters
were extracted, and predefined as functions for their extrapolation to the real scenario
testing phase.

Tests in real environments are started by identifying the environment and charac-
terizing the debris in terms of size, relative position and distance. Based on these data,
the adaptive algorithm for the compensation of the trajectory of the movement of the leg is
adjusted for the advance through the terrain. Different kinematic parameters have been
analyzed to evaluate the success of each test.

3.4. Convolutional Neural Networks for Identification and Characterization of the Environment

The YOLOv8 convolutional neural network was used to develop this work since it
shows several advantages over its predecessors in addition to classification and detection.
The main innovative element in this version of CNN is the segmentation layer on the
detected objects that it incorporates, which allows extracting more precise information,
mainly the centroid, based on the distribution of the specific area of the object.

3.4.1. Datasets and Network Training

The training of the neural network starts with generating a dataset of images captured
in outdoor terrain (grass, gravel, and dirt road) with different conditions and various
obstacles. The dataset comprises more than 1700 images in the authors’ Github repository
(Appendix A).

The labeling phase was carried out using the following labels to identify the terrain
and the variety of obstacles existing in it: gravel, dirt road, grass, obstacle—surmountable
and obstacle—not surmountable.

The dataset was divided into three groups according to the following percentages:
training (82%), validation (12%) and testing (6%).

The training phase was carried out on a high-performance computer in the Anaconda
environment. The number of epochs required for training was 145. Once the model
was obtained, its effectiveness was evaluated in terms of precision, recall and accuracy
according to Equations (4)–(6). The components of the true positive (TP), false positive
(FP), false negative (FN) and false positive (FP) equations are derived from the inferences
in the network detection. These metrics enable the authors to establish curves and analyze
elements of the effectiveness of the network, such as the confusion matrix.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)
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3.4.2. Automatic Adjustment of Patterns Based on the Neural Network Processing

Figure 5 shows in detail each subsystem of the implementation developed for this
work. After the simulation phase, some basic gait patterns able to work in irregular terrain
are defined that can work for irregular terrain. The next stage corresponds to adjusting
these patterns based on the changing environment.

Figure 5. Schematic diagram of the implemented system. Source: authors.

The cyclical process begins with the image captured by the robot. It is processed
with the trained model and characteristics of the environment (terrain ID and obstacle
characterization) are extracted, which feed the pattern-matching system. The new adjusted
values are sent to the predefined dynamic controller of the robot. The computational
frequency required for processing all subsystems is 10 Hz.

The parameters provided by the network are, on the one hand, the type of terrain
(used to define the basic walking pattern in the Central Pattern Generator—CPG) and,
on the other hand, the obstacle list (Obst). The centroid (relative to the central position of
the camera), radio (Radio) and distance (dist) are obtained concerning the frame where the
robot camera is allocated—in this case, in front of the robot.

Since the number of objects detected could be different for each iteration, and they
could be false detections or wrong estimates for the type of terrain, incremental dynamic
matrices are used to generate greater confidence in the updating values obtained.

These parameters are used in Equations (7)–(11) to adjust the gait patterns by varying
the amplitude and/or its step length according to the dynamic stiffness of the joints.
Equations (7) and (9) provide the new values of the marching pattern (Atemp, htemp), and
Equations (8) and (10) adjust these values in a complementary way to the base pattern due
to the identified terrain, together with Equations (1)–(3). Finally, Equation (11) is used to
define the stiffness of joint articulations. Algorithm 1 details the functional structure of the
process used for the proposed method.

(Atemp, kp1) =
∑n

i=1

[
Obstcentroid→x + RadioObst→Major

]
∗ distObst

n
(7)

f (A) = Ade f + (Atempde f ) (8)

(htemp, kp2) =
∑n

i=1[Obstcentroid→x + RadioObst→Minor] ∗ distObst
n

(9)
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f (h) = hde f + (htempde f ) (10)

Kp = kp1 + kp2 (11)

Algorithm 1 Quadruped Robots Gait Pattern Regulation

1: Data:
2: imRGB ← RGB image [640x480]
3: RobotJoints−pose ← q[1−12]
4: RobotJoints−vel ← q̇[1−12]
5: Robotpose(xyz)−orient(rpy) ← IMUestimation
6: Result:
7: [qd[1−12]

, q̇d[1−12]
, τ[1−12]]

8: function TERRAIN_PROCESSING(im) . CNN vision-based terrain processing
9: CNNbased−algorithm ← im

10: return [TerrainID, Obstaclesclass,size,pose]
11: end function
12: function GAIT_PATTERN(TerrainDetected) . Gait base pattern generator
13: [qd[1−12]

, q̇d[1−12]
, τ[1−12]]← IK_Solverterrain/exp−based

14: return [GaitPattern[q,q̇,τ]]
15: end function
16: while imRGB and start do . Main Loop
17: Robot← stand_position
18: eval(TERRAIN_PROCESSING← im[RGB])
19: if Terrain− ID not null then
20: eval (GAIT_PATTERN ← Terrain− ID)
21: if Obstacles in terrain not null then
22: eval_adjusted_pattern([ f (A), f (h), Kp]← Obstacles[number,pose,size])

23: update_control_variables([qd[1−12]
, q̇d[1−12]

, τ[1−12]]← [ f (A), f (h), Kp])

24: RobotController ← [qd[1−12]
, q̇d[1−12]

, τ[1−12]]

25: else
26: RobotController ← [qd[1−12]

, q̇d[1−12]
, τ[1−12]]

27: end if
28: else
29: Robot← stand_position
30: end if
31: end while

A PD (proportional-derivative) controller with gravity compensation is used for each
joint. One of the most responsive parameters is the constant Kp or stiffness constant since
the behavior of the entire leg in front of an obstacle depends on the magnitude. Thus,
if high Kp values are set, a small margin to generate adaptability in the face of the obstacle is
obtained. Due to this, Kp values are specified for each joint at every step in order to obtain
adequate adaptability. These values are directly proportional to the number of obstacles
and environment.

4. Results
4.1. Simulation Analysis

In the first part of validating the implemented method, the three types of gait pat-
tern are evaluated on the different scars (Simulator Common Architecture Requirements
Standards) in simulation to define the best initial set-up as the basis for transfer learning.
Figure 6 shows the results of the simulations, where the robot model can be seen moving
in the different scenarios. The hoof trajectory corresponding to each gait pattern is shown
in blue.
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(a) (b) (c)

(d) (e)

Figure 6. Tests executed in simulation. The trajectory described by the end of the robot’s leg is shown
in blue. Source: authors. (a) Conf: 2-2 Debris: small. (b) Conf: 1-3 Debris: medium. (c) Conf: 2-2
Debris: branches. (d) Conf: 1-3 Unevenness. (e) Conf: 1-3 Unevenness.

Figure 6a shows the Gazebo simulation on terrain with small prismatic and spherical
obstacles, corresponding to the type of soil (A) detailed in Section 3.3.2. It is found that the
most favorable gait pattern for this soil is 2-2. The average time for the robot to reach the
goal in this scenario is 14.2 s.

Figure 6b–e show the rest of the tests carried out. Table 2 summarizes the results of
the tests carried out in terms of time, percentage progress and distance covered.

Table 2. Gazebo simulation results.

Simulation Results

Scenario: A. B. C. D.

Gait Patterns Repetitions: 30 30 30 30

1-3
av. time (s) 18.2 21.1 17.7 48.3
% advance 98.3 90.2 66.3 75.3

av. distance (m) 3.4 1.9 2.9 3.9

2-2 alternate
av. time (s) 14.2 10.2 16.3 17.4
% advance 98.4 98.1 73.2 81.5

av. distance (m) 3.3 2.1 2.41 4.41

2-2 gallop
av. time (s) 25.1 9.2 14.6 13.6
% advance 81.4 54.4 64.1 75.5

av. distance (m) 2.3 2.1 2.41 3.41

The most appropriate gait mode is the so-called alternate 2-2. When following a 1-3
pattern, the robot is able to advance but cannot fully overcome the obstacles. Moreover,
the 2-2 gallop mode turned out to not be the most suitable for this type of scenario.
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Accordingly, the alternate 2-2 mode is used as a base pattern for the tests carried out
with the real robot; the adjustment of this pattern will be simultaneously executed based
on the perceptible environment of the robot.

4.2. Evaluation of Detection and Autonomous Characterization of Real Terrain
4.2.1. Analysis of the Convolutional Neural Network Efficiency

Figure 7a shows the confusion matrix for the trained model of the neural network.
The main diagonal shows high values close to one, indicating a high confidence level for
detecting each class.

(a) (b)

Figure 7. Evaluation of the trained neural network model. Source: authors. (a) Confusion matrix for
the trained model. (b) Precision–recall curve for the trained model.

The best identification rate was obtained for the terrain with gravel. In the same way,
the obstacles that cannot be overcome are well identified (95&), a significant factor that
acknowledges that due to the geometric restrictions of the robot or the arrangement of the
obstacle in the environment, it cannot be overcome, and reactive movements are generated
to avoid it.

On the other hand, Figure 7b shows the precision–recall curve, which shows the trend
of stability in detection precision and its subsequent decline. The values obtained for all
the classes are uniform and over 90%, except for the class of surmountable obstacles, which
provides a value of 88%.

4.2.2. Evaluation of the Environment Characterization

The evaluation results for the outdoor scenarios are illustrated in Figure 8. This
figure shows the different overlapping layers on the analyzed image, the bounding boxes,
the classes and the precision percentages for each detected obstacle.

Figure 8a shows a first environment with grassy soil, segmented in green with different
obstacles. Those that can be overcome are shown in pink, and those that cannot be overcome
due to their size or instability in red. The areas detected for both environment and obstacles
have a high efficiency. This is mainly because the environment is quite structured, similar
to the one in Figure 8b (gravel).

On the other hand, Figure 8c–e correspond to terrains with rough conditions, where
both terrain and obstacles are marked as layers of colors. In these cases, the percentage
of success in detection and characterization also obtains a high confidence index in the
implemented method.
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(a) (b)

(c) (d) (e)

Figure 8. Analysis of the terrain characterization through the trained neural network. Source: authors.
(a) Outdoor scenario analysis—grass with obstacles. (b) Outdoor scenario analysis—gravel with
obstacles. (c) Outdoor scenario analysis—dirt road with obstacles. (d) Outdoor scenario analysis—
gravel with obstacles. (e) Outdoor scenario analysis—dirt road obstacles.

4.2.3. Analysis of the Vision Method Regarding the State of the Art

The most important benchmarks that contain images of outdoor environments and se-
mantic segmentation of the terrain are MSeg [52], TAS-NIR [53], TAS500 [54], TimberSeg [55]
and RELLIS-3D [56].

Most of these benchmarks directly catalog the terrain as “roads”, “sidewalks” or “veg-
etation” but do not go into detail about the type of terrain or what it is, or more specific
characteristics that it may contain, such as obstacles. The rest of the tags generalize urban
environments in a certain way, such as traffic light, traffic sign, vegetation, terrain, sky,
person, rider, car, etc.

For the development of this approach, different external scenarios corresponding to
the [54,55] benchmarks are evaluated using the introduced neural network model to verify
its effectiveness. The main results obtained are related to both the terrain detected and
the presence of obstacles, as well as the percentage of terrain segmentation concerning
the benchmark.

Figure 9 shows the result of detecting terrain type and semantic segmentation. How-
ever, elements such as the sky, people or cars are not detected. It should be noted that the
model is not focused on that type of element, only on the ground and possible obstacles.
Figure 9a,b shows the correct identification of the soil (grass) with an average precision of
0.88% and 0.94% of the total segmented area concerning the original benchmark.

On the other hand, Figure 9c,d shows the recognition of the soil, identified as gravel,
and in the first case, an obstacle identified as surmountable. In the second case, the bushes
are identified as obstacles. However, these are outside the identified terrain, so they are not
part of the displacement environment. In both cases, the average percentage of detection of
the segmented space concerning the benchmark is 93%.
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(a) (b)

(c) (d)

Figure 9. Evaluation of the trained neural network model over datasets [54,55] for terrain and obsta-
cle detection. Source: authors. (a) Evaluation of terrain with the proposed detection model on the
dataset [54]. (b) Evaluation of terrain with the proposed detection model on the dataset [54]. (c) Eval-
uation of terrain and obstacles with the proposed detection model on the dataset [55]. (d) Evaluation
of terrain and obstacles with the proposed detection model on the dataset [55].

On the other hand, a comparison is established, based on different metrics of the
proposed method against those existing in the state-of-the-art vision system for land
characterization. This approach is shown in detail in Table 3 and shows the strengths of the
proposed method.

Table 3. Comparison of the proposed method for terrain identification characterization concerning
state-of-the-art methods. Meets: X. Fails: X.

Work Terrain
ID

Obstacle
ID

Benchmark
Test Sensor Tested

on Robots
Semantic

Segmentation

[? ] X X X RGB X X
[14] X X X RGB-D X X
[34] X X X RGB X X
[36] X X X RGB X X
[15] X X X RGB-D X X
[46] X X X RGB X X
[16] X X X RGB X X
[37] X X X RGB-D X X
[57] X X X RGB X X
[25] X X X stereo camera X X
[38] X X X RGB X X

Authors X X X RGB-D X X

As the first result of this comparison, it can be established that most of the previously
developed works were focused on the characterization of the terrain, either with a sub-
sequent step of semantic segmentation or not. Moreover, there is a lack of systems for
characterizing components such as debris, information that is valuable for decision making
in the field of outdoor robotics.
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Other conventional methods for environment identification based on point clouds
generally use traversability maps [58,59]. However, this method lacks relevant environmen-
tal information, such as the stability of areas and obstacles. Identifying terrains using the
proposed method provides a better perception of the environment and its stability. Using
traversability maps, the environment is considered compact, and pass/no-pass zones are
established to generate planning routes based on different heights or slopes.

4.3. Analysis of Results Working with the Real Robot

Tests were carried out mainly in outdoor environments to validate the joint operation
of the proposed method. Figure 10 shows three scenarios where the tests were carried out.
For the quantitative evaluation, an advance of two meters is considered. The initial points
are marked with the number one, the intermediate steps as two and the final point as three.

(a)

(b)

(c)

Figure 10. Evaluation of the robot’s performance in overcoming different types of terrain. Source:
authors. (a) Overcoming of external terrain, type dirt road. (b) Overcoming of external terrain with
obstacles. (c) Overcoming of external terrain, type gravel.

Figure 10a corresponds to a dirt-road-type terrain. Figure 10b shows a scenario with
several obstacles to overcome, while Figure 10a corresponds to a terrain with gravel.
In the three scenarios, different superimposed frames of the robot moving along the path
are shown.
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Tables 4 and 5 show the results corresponding to a series of tests carried out on different
terrains, both with and without obstacles, respectively. It can be seen (as preliminary
conclusions from these results) that the influence of terrain with obstacles increases the time
required to complete the mission since the speed of the robot decreases. On the other hand,
the pattern adjustment algorithm increases the mean values of the gait pattern to overcome
these detected obstacles. Although the percentage of success decreases, the average pass
rate for these areas is over 90.5%. This demonstrates the proposed method’s effectiveness
in addressing unstructured terrain in this first approximation.

Table 4. Test results for a two-meter course on terrain with obstacles.

Scenery Dirt Road Compact Soil Gravel Grass

Number of Tests 15 12 12 12
Mean speed 0.09 m/s 0.11 m/s 0.11 m/s 0.12 m/s
Mean time 20.1 s 17.1 s 17.7 s 16.3 s
Average body height 23.1 cm 23.2 cm 22.1 cm 22.9 cm
Average step height (A) 14.7 cm 13.2 cm 14.7 cm 12.6 cm
Average step length (h) 6.5 cm 7.0 cm 7.1 cm 6.8 cm
Completion success rate 89% 91% 89% 93%

Table 5. Test results for a two-meter run on unstructured terrain.

Scenery Dirt Road Compact Soil Gravel Grass

Number of tests 15 15 15 10
Mean speed 0.19 m/s 0.23 m/s 0.2 m/s 0.19 m/s
Mean time 10.2 s 8.5 s 9.7 s 10.2 s
Average body height 25.6 cm 25.3 cm 23.1 cm 24.4 cm
Average step height (A) 10.7 cm 8.4 cm 10.7 cm 9.3 cm
Average step length (h) 7.3 cm 8.1 cm 9.1 cm 7.9 cm
Completion success rate 94% 100% 93% 100%

Comparison of Gait Pattern Adjustment Methods in the State of the Art

The developed comparison is shown in Table 6. The previously developed works
focused on adjusting the gait patterns of different types of robots, not only quadrupedal
ones. Those referring to quadruped robots mostly use the adjustment of patterns using
contact sensors with the floor to evaluate the stability in an all/nothing way. Some other
works already integrate RGB-D image processing to characterize the spatial depth in
each step to adjust the march.

Table 6. Comparison of gait pattern adjustment methods. Meets: X. Fails: X.

Work Robot Visual Terr. Det. Visual Obst Det. Pattern Test Real/Sim

[40] Quadruped X X 2-2/3-1 Real
[45] Hexapod X X alternate tripod Sim
[47] Quadruped X X 2-2 Study
[15] Spider X X alternate pairs Real
[46] Spider X X tripod Real
[12] Hexapod X X tripod Real
[48] - X X pattern extraction Real
[49] wheel-legged X X hybrid Real
[50] Quadruped X X 2-2 Sim
[43] Quadruped X X 2-2 Real

Authors Quadruped X X 2-2/3-1 Real/Sim

On the other hand, several works based on hexapod and spider robots are able to
regulate their gait patterns (mostly alternate tripod) depending on the type of terrain
using RGB sensors. However, a development similar to the proposed by the authors for
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regulating gait patterns based on visual processing and characterizing the environment has
not been found in a specific way.

4.4. Joint Behavior

Figure 11 shows the results of the joint behavior (angular position, velocity and torque)
during the initial 10 seconds of displacement across the terrain test with obstacles in
Figure 10. The units and nomenclature are described as position (Pos) (rad) (blue), velocity
(Vel) (rad/s) (orange− scale ∗ 0.1) and torque (Trq) (N.m) (green− scale ∗ 0.01) of the joints.

Figure 11. Joint behavior compared to the 2-2 configuration gait pattern with high amplitude (14 cm)
and medium footprint (5 cm), for a dirt-road-type environment with obstacles for time t = 10 s.

The graphs show the behavior of each of the three joints, corresponding to the four
limbs, according to the nomenclature in Table 7.

Table 7. Robot joint nomenclature.

Joint Nomenclature

1. F Front 2. R Right 3. H Hip

3. T Thigh

1. R Rear 2. L Left 3. C Calf

The oscillatory movement of the position can be highlighted especially in the thigh
and calf joints, which generate progress according to the gait pattern. In contrast, the joint
behavior of the hip position is more uniform. In the same way, the velocity graphs have
similar oscillatory behavior in the same type of position.

There are notable variations, especially in the 6–8 s for the front legs. These variations
are due to the obstacles in the environment, which prevent reaching the movement’s
referential positions. The hip joint’s movement stands out, which acts in a reactive manner
to adapt to the variability of the terrain.

5. Conclusions

In this article, a method is presented and validated to overcome unstructured terrain
using a quadruped robot. This method uses robot-modeled gait patterns and automatic
identification–characterization of the environment to adjust these gait patterns automatically.
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The study of bio-inspired locomotion systems in quadruped animals has allowed their
imitation by real robots. These movements and gait patterns have been combined with
intelligent systems to adjust movement in unstructured environments. This knowledge is
used for the initial training of neural networks, which has allowed carrying out successful
displacement in unstructured terrain with the robot.

The simulation phase has allowed validating the imitation of the gait patterns of
dogs and analyzing their effectiveness in different types of terrain with obstacles. In this
way, the 2-2 alternate type of gait pattern is revealed as the most adequate to overcome
environments with debris. This pattern is considered to feed into the central gait pattern
generator, which serves as the basis for forward movements.

The autonomous visual identification of the terrain and the characterization of the
obstacles using convolutional neural networks has shown high efficiency, with a high
percentage of precision (>90%) in the location of obstacles in real dynamic environments.
This method is compared with similar state-of-the-art and relevant benchmarks, obtaining
optimal functionality results.

The proposed method offers an enhanced understanding of the environment and
its stability for terrain identification by utilizing RGB images. In contrast, conventional
approaches relying on point clouds often require traversability maps. Nevertheless, these
maps suffer from a lack of environmental details, including area stability and obsta-
cle information.

The proposed method based on vision has shown operation efficiency outdoors. It
could be extrapolated to other robotic systems and autonomous navigation vehicles. Future
lines of research and subsequent developments based on sensory fusion with lidar systems
to obtain more precise measurements of the characterized environment could be delivered
from it.
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Appendix A

The dataset used in Neural Network Training can be found through the following link:
https://github.com/ChristyanCruz11/Terrains (accessed on 1 June 2023).
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