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Abstract: The dung beetle optimization (DBO) algorithm, a swarm intelligence-based metaheuristic,
is renowned for its robust optimization capability and fast convergence speed. However, it also
suffers from low population diversity, susceptibility to local optima solutions, and unsatisfactory
convergence speed when facing complex optimization problems. In response, this paper proposes
the multi-strategy improved dung beetle optimization algorithm (MDBO). The core improvements
include using Latin hypercube sampling for better population initialization and the introduction
of a novel differential variation strategy, termed “Mean Differential Variation”, to enhance the algo-
rithm’s ability to evade local optima. Moreover, a strategy combining lens imaging reverse learning
and dimension-by-dimension optimization was proposed and applied to the current optimal solution.
Through comprehensive performance testing on standard benchmark functions from CEC2017 and
CEC2020, MDBO demonstrates superior performance in terms of optimization accuracy, stability,
and convergence speed compared with other classical metaheuristic optimization algorithms. Addi-
tionally, the efficacy of MDBO in addressing complex real-world engineering problems is validated
through three representative engineering application scenarios namely extension/compression spring
design problems, reducer design problems, and welded beam design problems.

Keywords: dung beetle optimization algorithm; Latin hypercube sampling; mean differential variation;
dimension-by-dimension optimization

1. Introduction

Optimization is everywhere, be it engineering design, industrial design, business plan-
ning, holiday planning, etc. We use optimization techniques to solve problems intelligently
by choosing the best from many available options [1]. At its core, it involves the quest for
an optimal set of parameter values within specified constraints, aimed at either maximizing
or minimizing system performance indicators [2]. Due to the involvement of many decision
variables, complex nonlinear constraints, and objective functions, efficient methods are
required for solving them. Traditional algorithms typically start from singularities and
rely on gradient information [3]. However, many real-world optimization problems are
often characterized as black-box problems, where specific expressions, gradient informa-
tion, and derivatives are unknown [4]. Metaheuristic algorithms (MAs) are computational
intelligence paradigms especially used for sophisticated solving optimization problems [5].
MAs present a promising avenue for tackling most real-world nonlinear and multimodal
optimization challenges by offering acceptable solutions through iterative trial and error [6].

These algorithms are classified into evolutionary-based [7], physics-based [8], and
swarm intelligence-based [9] categories. Evolutionary-based algorithms, rooted in natural
selection and genetics, include genetic algorithm (GA) [10] and differential evolution

Biomimetics 2024, 9, 291. https://doi.org/10.3390/biomimetics9050291 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9050291
https://doi.org/10.3390/biomimetics9050291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-8009-374X
https://orcid.org/0000-0001-5053-2564
https://doi.org/10.3390/biomimetics9050291
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9050291?type=check_update&version=2


Biomimetics 2024, 9, 291 2 of 30

(DE) [11]. GA evolves potential solutions by simulating natural selection and genetic
mechanisms like replication, crossover, and mutation operations, gradually converging
toward the optimal solution. DE mimics biological evolution to seek the optimal solution
by leveraging differences among individuals in the population to guide the search direction
and iteratively evolve towards the optimum. Physics-based algorithms allow each search
agent to interact and move in the search space according to certain physical rules, with
common algorithms, including simulated annealing (SA) [12], the gravitational search
algorithm (GSA) [13], and the sine cosine algorithm (SCA) [14]. The SA algorithm simulates
the physical annealing process, randomly exploring the solution space to find the global
optimum solution, and utilizes a probability jump mechanism to avoid local optima, thus
achieving global optimization. GSA is inspired by natural gravitational forces and object
movements, aiming to find the global optimum by adjusting the positions of objects in the
solution space for optimization search. Meanwhile, SCA utilizes the fluctuating properties
of sine and cosine functions to generate random candidate solutions and, through an
adaptive balance of exploration and exploitation stages, achieves global optimization
search. Swarm intelligence (SI) algorithms are inspired by collective behaviors of social
insects and animals [15]. Some classic swarm intelligence algorithms include particle
swarm optimization (PSO) [16], ant colony optimization (ACO) [17], artificial bee colony
(ABC) [18], grey wolf optimizer (GWO) [19], whale optimization algorithm (WOA) [20],
Harris hawks optimization (HHO) [21], sparrow search algorithm (SSA) [22], and the slime
mold algorithm (SMA) [23]. These algorithms exhibit characteristics of self-organization,
adaptation, and self-learning and are widely applied across various domains [24].

The dung beetle optimization (DBO) algorithm [25] is a swarm intelligence algorithm,
proposed in 2022, and has attracted considerable attention due to its well-optimized per-
formance and unique design inspiration among a plethora of metaheuristic algorithms.
DBO emulates various life behaviors of dung beetle populations, such as rolling balls,
dancing, foraging, stealing, and reproduction, thereby constructing a novel optimization
strategy. Experimental results demonstrate that DBO exhibits good performance in solving
some classical optimization problems. Nevertheless, achieving desirable results when
using the DBO algorithm to solve complex optimization problems remains a challenge.
Specifically, the drawbacks of DBO are primarily evident in the following aspects: Firstly,
during the initialization phase, the utilization of randomly generated populations may lead
to an uneven distribution within the solution space, consequently restricting exploration
and potentially trapping the algorithm in local optima. Secondly, the inclination toward
greediness of the algorithm throughout the search process may precipitate premature
convergence on local optima, disregarding the global optimum and resulting in subopti-
mal outcomes. Furthermore, akin to other swarm intelligence algorithms, when solving
multi-dimensional objective functions, neglecting the evolution of specific dimensions
due to inter-dimensional interference deteriorates convergence speed and compromises
solution quality. As asserted by the “No Free Lunch” (NFL) theorem [26], every algorithm
has its inherent limitations, and there is no one algorithm that can solve all optimization
problems. Therefore, many scholars are dedicated to proposing new algorithms or im-
proving existing ones to address various real-world optimization problems. This paper
addresses the deficiencies and limitations of the original DBO algorithm by proposing
a multi-strategy improved Dung Beetle Optimization algorithm (MDBO). The MDBO aims
to enhance the global optimization capability of the original DBO by introducing multiple
strategies, improving the convergence accuracy and speed of the algorithm. Then, the over-
all performance of the MDBO algorithm is validated through experiments across various
aspects. Overall, the main contributions of this paper are as follows:

• The Latin hypercube sampling (LHS) initialization strategy replaces the original random
initialization method of DBO to generate higher-quality initial candidate solutions.

• Introducing a mean difference mutation strategy enhances the capability of the algo-
rithm to escape local optimal solutions by mutating the population.
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• A strategy that combines lens imaging inverse learning with dimension-by-dimension
optimization is proposed and applied to the current optimal solution to enhance
its quality.

• The proposed MDBO algorithm is verified to outperform other classical metaheuristic
algorithms in terms of performance by comparing the solution accuracy, convergence
speed, and stability of the CEC2017 and CEC2020 functions, respectively.

• Further, MDBO was successfully applied to three real-world engineering optimization
problems, validating its superior capability in solving complex engineering problems.

This paper is organized as follows. The basic dung beetle optimization algorithm
is introduced in Section 2. The multi-strategy improved dung beetle optimization algo-
rithm (MDBO) is proposed in Section 3 to address the shortcomings of the dung beetle
optimization algorithm. In Section 4, the improved multi-strategy dung beetle optimization
algorithm is experimentally compared with other algorithms in various aspects to verify
the effectiveness of the improvement measures. Section 5 uses the improved algorithm
in real-world engineering applications to further explore the practical applicability of the
improved algorithm. Section 6 summarizes the full work.

2. The Basic Dung Beetle Optimization Algorithm (DBO)

The dung beetle optimization algorithm is inspired by the behaviors of dung beetles
such as rolling, dancing, foraging, stealing, and reproduction. Four population renewal
strategies are designed based on these behaviors.

2.1. Ball-Rolling Dung Beetles

Dung beetles constantly update their position in sunlight by sensing environmental
factors such as sunlight or wind direction, a behavior that can be accurately described by
the mathematical model described in Equation (1).

xi(t + 1) = xi(t) + α× k× xi(t− 1) + b×△x,
△x = |xi(t)− Xw|. (1)

t denotes the current iteration number, xi(t) denotes the position of the i-th dung beetle
at the t-th iteration, α denotes whether the dung beetle’s direction deviates or not, and its
value is set to 1 or −1 according to the probability, with 1 denoting no deviation and −1
denoting a deviation. k ∈ (0, 0.2] is a deflection coefficient, and b denotes a constant that
belongs to (0,1), and Xw is used to denote the global worst position, and △x is used to
simulate the change of light intensity. Rolling dung beetles have a certain probability of
encountering an obstacle, when the rolling dung beetle encounters an obstacle and cannot
proceed further, the dung beetle acquires a new direction by dancing, and the dancing
behavior is defined in Equation (2).

xi(t + 1) = xi(t) + tan(θ)|xi(t)− xi(t− 1)|. (2)

where θ ∈ [0, π], the position of the dung beetle will not be updated when the values of θ
are π/2 and π.

2.2. Breeding Dung Beetles

In order to provide a safe environment for the offspring, dung beetles will spawn in
a safe area, and a safe spawning area is defined as a boundary selection strategy as shown
in Equation (3).

R = 1− t/Tmax,
Lb∗ = max(X∗ × (1− R), Lb),
Ub∗ = min(X∗ × (1 + R), Ub).

(3)

where R denotes the convergence factor, Tmax denotes the maximum number of iterations,
X∗ denotes the local optimal position, Lb∗ and Ub∗ denote the lower and upper boundaries
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of the spawning area, respectively, and Lb and Ub denote the lower and upper bounds
of the objective function. As shown in Figure 1, the outermost large circle represents the
upper and lower boundaries of the optimization problem, and the inner circle represents
the area where the dung beetles breed. X∗ is denoted by the black ball, the red dots denote
the positions of the breeding balls, the blue dots denote the positions of the rolling dung
beetles, and the yellow dots denote the boundaries. When the spawning area is determined,
each female dung beetle lays an egg in the area of the spawning area in each iteration.

Lb Lb*
X* Ub*

Ub

Figure 1. Boundary selection strategy.

From Equation (3), it is found that the spawning area follows the value of R dynami-
cally, therefore, the location of the laid egg also changes dynamically, and the spawning
location is defined in Equation (4).

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)−Ub∗). (4)

In this context, Bi(t) denotes the location of the i-th breeding ball at the t-th iteration, b1 and
b2 denote 1×D independent random vectors, D denotes the dimension of the optimization
problem, and the symbol ‘×’ means two vectors conduct element-wise multiplication. The
position of the breeding ball is strictly limited to the spawning area.

2.3. Foraging Dung Beetles

When young dung beetles forage, they also need to establish the best foraging area to
guide them to forage, and the foraging area is defined in Equation (5).

Lbb = max(Xb × (1− R), Lb),
Ubb = min(Xb × (1 + R), Ub).

(5)

where the Lbb and Ubb sub-tables denote the lower and upper bounds of the best foraging
area and Xb denotes the global best position. The location update of the small dung beetle
is defined in Equation (6).

xi(t + 1) = xi(t) + C1 × (xi(t)− Lbb) + C2 × (xi(t)−Ubb). (6)

C1 is a random number obeying a normal distribution and C2 denotes a random vector
belonging to (0,1).
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2.4. Stealing Dung Beetles

The stealing behavior denotes stealing dung balls from other dung beetles. During
the iterative process, the location information update strategy of the thief dung beetle is
defined in Equation (7).

xi(t + 1) = Xb + S× g× (|xi(t)− X∗|+ |xi(t)− Xb|). (7)

where S denotes a constant and g is a random vector of size obeying a normal distribution.

2.5. The DBO Algorithm Implementation Steps

The distribution of the population in DBO is shown in Figure 2, where the number
of matrices indicates the number of dung beetles, and the blue, yellow, green, and red
matrices represent ball-rolling dung beetles, breeding dung beetles, foraging dung beetles,
and stealing dung beetles, respectively. The overall pseudo-code of the DBO algorithm is
shown in Algorithm 1.

Algorithm 1: The framework of the DBO algorithm.
Input: The maximum iteration Tmax, the population size N.
Output: Optimal position Xb and its fitness value fb.

1 Initialize the population i← 1, 2, 3, ...N and define its relevant parameters;
2 while t ≤ Tmax do
3 for i = 1, 2, ..., N do
4 if i == Ball-Rolling Dung Beetles then
5 δ = rand(1);
6 if δ < 0.9 then
7 Update Ball-Rolling Dung Beetles by Equation (1).
8 else
9 Update Ball-Rolling Dung Beetles by Equation (2).

10 end
11 end
12 The R-value is calculated by R = 1− t/Tmax;
13 if i == Breeding Dung Beetles then
14 Update Breeding Dung Beetles by Equations (3) and (4).
15 end
16 if i == Foraging Dung Beetles then
17 Update Foraging Dung Beetles by Equations (5) and (6).
18 end
19 if i == Stealing Dung Beetles then
20 Update Stealing Dung Beetles by Equation (7).
21 end
22 end
23 end
24 return Xb and its fitness value fb.

Ball-rolling 

dung beetles

Breeding 

dung beetles

Foraging 

dung beetles

Stealing 

dung beetles

Figure 2. Species distribution.
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3. Multi-Strategy Improved Dung Beetle Optimization Algorithm (MDBO)

The basic characteristics of the dung beetle optimization algorithm can be derived from
its principle. The ball-rolling behavior enhances the global search ability of the algorithm
across all phases, while reproduction and foraging behaviors facilitate exploration around
the optimal position of the individual. With each iteration, the dynamic boundary and
range of search decrease gradually. The stealing behavior entails a dynamic localized
search near the optimal individual. Despite the simplicity of the DBO algorithm and its
successful application in certain engineering design problems, it exhibits several drawbacks.
Striking a balance between global exploration and local exploitation poses challenges, and
algorithms are prone to falling into local optima [27]. To rectify these issues, this study
proposes enhancements in the ensuing sections.

3.1. Latin Hypercube Sampling to Initialize Populations

The DBO algorithm usually relies on a stochastic initialization strategy to generate the
initial population when solving complex optimization problems. This randomization helps
to explore different regions of the solution space, thus increasing the chance of finding
a globally optimal solution. However, random initialization also has an obvious drawback:
it cannot ensure the uniform distribution of the population in the solution space. Especially
in high-dimensional search spaces, it requires a large number of points to obtain a good
distribution, and these points may be close to each other or even overlap [28]. This may
result in the population being too concentrated in some regions and too sparse in others.
This uneven distribution is very detrimental to the early convergence of the algorithm.

To address this issue, this study introduces an initialization method called Latin
hypercube sampling (LHS) [29,30]. The fundamental concept of LHS involves partitioning
the sample space into multiple uniform and non-overlapping subspaces and selecting
a single data point from each subspace as a sampling point. This approach guarantees
a uniform distribution of sample points across the defined domain, thereby mitigating the
risk of over-concentration or sparse distribution of agents. Mathematically, the generated
sample is represented using Equation (8).

xi =
1
n

r +
i− 1

n
. (8)

where r is a uniform random number in (0,1), xi is the sample in the ith interval, and n is the
total number of samples. When the total number of samples is 10, the sample x1 = 1

10 r + 0
10

in the first interval has a range of [0,0.1], and similarly the sample in the second interval
has a range of [0.1,0.2], and so on to obtain all the sampling points of all LHSs.

Compared to random or stratified sampling methods, Latin hypercube sampling (LHS)
exhibits stronger spatial filling capability and convergence characteristics [31]. This attribute
has led to its widespread application in the initialization of populations in intelligent
algorithms. Figure 3 illustrates a two-dimensional comparison between the distributions of
10 randomly generated populations and populations generated using LHS. It is evident
from the figure that the population distribution generated by LHS is more uniform, with
no overlapping individuals. Therefore, this method can generate higher-quality initial
populations, laying a better foundation for subsequent algorithm optimization.



Biomimetics 2024, 9, 291 7 of 30

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(b)

Figure 3. Comparison of 10 point sets generated by LHS and 10 randomly generated point sets.
Where (a) denotes the 10 point sets generated by LHS and (b) denotes the 10 randomly generated
point sets.

As a metaheuristic algorithm based on swarm intelligence, the dung beetle opti-
mization algorithm is mathematically modeled in the same way at initialization as other
algorithms as shown in Equation (9). The set of points acquired through LHS can often be
mapped to the solution space of the objective function using an equation similar to the one
depicted in Equation (10).

X =



X1
...

Xi
...

XN

 =



x1,1 · · · x1,i · · · x1,D
...

. . .
...

. . .
...

xi,1 · · · xi,i · · · xi,D
...

. . .
...

. . .
...

xN,1 · · · xN,i · · · xN,D


N×D

(9)

Xi = lb + (ub− lb)× LHSi. (10)

Here, X is the population matrix, Xi is the ith DBO member (candidate solution), N is
the number of dung beetles, D is the number of decision variables, lb and ub represent
the upper and lower bounds of the problem to be optimized, LHSi denotes the ith vector
obtained using Latin Hypercube Sampling.

3.2. Mean Differential Variation

Throughout the iterative process, as the population gradually converges towards
optimal individuals, there is a tendency for decreased population diversity. To prevent
premature convergence of the algorithm caused by a reduction in population diversity
throughout the iteration process, this paper introduces the mean differential variation [32].
Depending on the stage of the iteration, this method can be categorized into two variants,
denoted as DE/mean-current/1 and DE/mean-current-best/1 respectively. Both variants
initially select two individuals, Xr1 and Xr2, randomly from the current population, and
calculate two new vectors, Xc1 and Xc2, according to Equation (11).

Xc1 = Xr1+Xr2
2 ,

Xc2 = Xr1+Xb

2 .
(11)

The first variation strategy, which proceeds according to Equation (12), is unique in
that it employs two fundamental vectors external to the current population. This strategy
not only helps to escape the problem of population stagnation but also effectively maintains
the diversity of the population, thus promoting the exploration capability of the algorithm.
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Consequently, the algorithm is able to search in a wider solution space, thereby augmenting
the likelihood of discovering a globally optimal solution.

Xi = Xc1 + F(Xc1 − Xi) + F(Xc2 − Xi). (12)

The second variation strategy is executed based on Equation (13), where the gener-
ation of new vectors incorporates information about the global optimal solution. This
improvement allows the algorithm to perform a more intensive search in the vicinity of
the optimal solution, thus finely exploring small variations in the solution space. In this
way, the algorithm is able to approximate the global optimal solution more accurately,
improving the accuracy and efficiency of the solution.

Xi = Xb + F(Xc1 − Xi) + F(Xc2 − Xi). (13)

In Equations (12) and (13), Xb represents the current best individual, Xi denotes the
individual currently undergoing mutation, and F is the scaling factor. In the first type of
mutation, F = 0.25, while in the second type of mutation, F = (1− 2× rand(1))× 0.5.
Both types of mutations are executed in a cooperative manner. In the first two-thirds of the
iterations, the first type of mutation is exclusively performed as it provides good search and
exploitation capabilities. In the last one-third of the iterations, the second type of mutation
is executed to conduct a more intensive search. Overall, as in Equation (14), we have
the following: 

{
F = 0.25

Xi = Xc1 + F(Xc1 − Xi) + F(Xc2 − Xi)
t < Tmax ∗ 2

3 ,{
F = (1− 2× rand(1))× 0.5

Xi = Xb + F(Xc1 − Xi) + F(Xc2 − Xi)
otherwise.

(14)

This strategy of searching near individuals in the early stages and exploring near the
global optimum in the later stages effectively helps the algorithm escape local optima,
thereby enhancing the algorithm’s global search capability and convergence speed.

3.3. Fusion Lens Imaging Backward Learning and Dimension-by-Dimension Optimization

The position of the current best individual is particularly important, but in the basic
dung beetle optimization (DBO) algorithm, the information contained in the current best
individual is not fully utilized, leading to a lack of exploitation of the best individual.
Therefore, this paper introduces the lens imaging reverse learning strategy [33,34] to
perturb the best individual to help the algorithm escape local optima. The idea is to
generate a reverse position based on the current coordinates to expand the search range,
which can effectively avoid local optima and broaden the search scope of the algorithm.
The principle of the lens imaging reverse learning strategy is depicted in Figure 4.

lb Xb O

P*

h* ub

f

h

P

b
nX

Convex lens

Figure 4. Lens imaging reverse learning.



Biomimetics 2024, 9, 291 9 of 30

Suppose within a certain space, the global optimal position Xb is obtained by projecting
an individual P with a height of h onto the x-axis. Here, lb and ub represent the lower and
upper limits of the coordinate axis. Placing a convex lens with a focal length f at the origin
O, a point P∗ with a height h∗ can be obtained through the convex lens. At this point, the
projection Xb

n of P∗ on the x-axis is the reverse solution. According to the principle of lens
imaging, Equation (15) can be derived.

lb+ub
2 − Xb

Xb
n − lb+ub

2

=
h
h∗

. (15)

Let h
h∗ = k, and by transformation, we obtain Equation (16).

Xb
n =

ub + lb
2

+
ub + lb

2 · k − Xb

k
. (16)

By adjusting the value of k in the lens imaging reverse learning, the dynamic reverse
solution can be obtained. A smaller k produces a larger range of inverse solutions, while a
larger k can produce a smaller inverse. This paper introduces an adaptive k as Equation (17).
As the number of iterations increases, the value of k will grow from small to large, to meet
the characteristics of a large-scale search in the early stage and a fine search in the late stage.

k = (1 + (
t

Tmax
)0.5)10. (17)

In dung beetle optimization (DBO), each agent represents a potential solution. When
updating each agent, updates are made across all dimensions, overlooking the changes
in dimensions within each agent. Suppose a dimension within an agent moves towards
a better solution, but degradation in other dimensions leads to a decrease in the overall
solution quality, resulting in the abandonment of that solution. This would waste evalu-
ation efforts and deteriorate convergence speed [35]. Based on a greedy per-dimension
update strategy, the evolutionary dimension of solutions will not be overlooked due to
degradation in other dimensions, allowing any update value that can improve the solution
to be accepted. Ensuring that the algorithm can utilize evolutionary information from
individual dimensions for better local search, thereby obtaining higher-quality solutions
and improving the convergence speed [36].

In this paper, a strategy combining lens imaging reverse learning and dimension-
by-dimension optimization. The core idea of this strategy lies in updating the best value
obtained through lens imaging reverse learning in a per-dimension manner, combined with
greedy rules to optimize the solution. Specifically, initially, a mutation operation is applied
to the best individual Xb as shown in Equation (16), resulting in a mutated individual Xb

n.
Subsequently, the fitness values of Xb and Xb

n are compared, and the individual with better
fitness is chosen as the benchmark position. Then, all dimensions of another position are
used to replace the corresponding dimensions of the benchmark position one by one. In the
process of per-dimension replacement, a greedy rule is adopted: If the overall fitness value
improves after replacing a dimension, the replaced value of that dimension is retained;
otherwise, the benchmark position remains unchanged. Through such per-dimension
optimization, the structure of the solution can be finely adjusted, further enhancing the
quality of the solution. Finally, the reference position after dimension replacement becomes
the new Xb of the next generation. This process integrates the idea of lens imaging reverse
learning and dimensional optimization, aiming to approach the global optimal solution
gradually through continuous iteration and optimization. The complete algorithm flow is
shown in Algorithm 2.
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Algorithm 2: Fusion lens imaging backward learning and dimension-by-
dimension optimization strategies.

Input: The objective function Fobj, the objective function dimension D.
Output: Optimal position Xb and its fitness value fb.

1 Calculate the inverse solution for lens imaging of Xb
n according to Equation (16);

2 if Fobj(Xb
n) < Fobj(Xb) then

3 benchmark = Xb;
4 another = Xb

n;
5 else
6 benchmark = Xb

n;
7 another = Xb;
8 end
9 benchmarkTemp = benchmark;

10 for i = 1, 2, ..., D do
11 benchmark(i) = another(i);
12 if Fobj(benchmark) > Fobj(benchmarkTemp) then
13 benchmark(i) = benchmarkTemp(i);
14 end
15 end
16 Xb = benchmark;
17 return Xb and its fitness value fb.

3.4. Complexity Analysis of MDBO

Assume that N represents the number of populations, D represents the dimension
of the optimization problem, and T represents the maximum number of iterations, DBO
exhibits an initialization phase complexity of t1 = O(N*D) and an iterative process com-
plexity of t2 = O(T*N*D), resulting in a total complexity of t1 + t2 = O(T*N*D). For MDBO,
the complexity of initializing the population using Latin hypercube is t3 = O(N*D), the
average differential variance complexity is t4 = O(N*T), the complexity of fusing lens imag-
ing reverse learning and dimension-by-dimension optimization is t5 = O(T*D), and the
complexity of the iterative process is the same as that of DBO as t2. Hence, the complexity
of MDBO is t2 + t3 + t4 + t5 = O(T*N*D ), equivalent to DBO, and its performance does not
depend on the higher complexity.

3.5. The MDBO Algorithm Implementation Steps

The basic framework of the MDBO algorithm is outlined in Algorithm 3. To provide
a clear visualization of the process, Figure 5 illustrates the flowchart of MDBO. This
algorithm aims to enhance search efficiency and convergence speed during optimization
by employing a combination of multiple strategies. Specifically, the MDBO algorithm
utilizes Latin hypercube sampling for improved population initialization and introduces
a novel differential variation strategy called “Mean Differential Variation” to enhance its
ability to evade local optima. Moreover, applying lens imaging reverse learning to the
current optimal solution to expand the algorithm’s search space, and combining it with
a dimension-by-dimension optimization strategy to improve the quality of the solution.
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Initializing populations using

LHS

Start

End

t<Tmax

Output the Xb and its fitness
i<N

Perform the mutation operation

according to Equation(14)
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the foraging
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i=i+1

Calculate the Xn
b

according to Equation(16)

Select the lower fitness of

Xb and Xn
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j<D

Replace the j-th dimension
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No

No
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Figure 5. The flowchart of MDBO.

Algorithm 3: The framework of the MDBO algorithm
Input: The maximum iteration Tmax, the population size N.
Output: Optimal position Xb and its fitness value fb.

1 Initialize the population i← 1, 2, 3, ...N and define its relevant parameters;
2 while t ≤ Tmax do
3 for i = 1, 2, ..., N do
4 if i == Ball-Rolling Dung Beetles then
5 δ =rand(1);
6 if δ < 0.9 then
7 Update Ball-Rolling Dung Beetles by Equation (1).
8 else
9 Update Ball-Rolling Dung Beetles by Equation (2).

10 end
11 end
12 The R-value is calculated by R = 1− t/Tmax;
13 if i == Breeding Dung Beetles then
14 Update Breeding Dung Beetles by Equations (3) and (4).
15 end
16 if i == Foraging Dung Beetles then
17 Update Foraging Dung Beetles by Equations (5) and (6).
18 end
19 if i == Stealing Dung Beetles then
20 Update Stealing Dung Beetles by Equation (7).
21 end
22 end
23 for i = 1, 2, ..., N do
24 Choose two vectors at random and compute new vectors by Equation (11);
25 Perform the mutation operation according to Equation (14);
26 end
27 The optimum is perturbed and optimized dimensionally using Algorithm 2;
28 end
29 return Xb and its fitness value fb.
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4. Experimental Results and Discussions

In order to evaluate the performance of the improved algorithm comprehensively,
this paper selects two sets of benchmark functions: CEC2017 [37] and CEC2020 [38]. The
details of the benchmark functions are shown in Table 1. In CEC2017, the original F2
function has been excluded due to loss of testing capability, thus leaving 29 single-objective
benchmark functions for testing. Among these, F1 and F2 are single-peaked functions with
only one global minimum, F3–F9 are simple multi-modal functions with local minima,
F10–F19 are mixed functions containing three or more CEC2017 benchmark functions
after rotation or displacement, and F20–F29 are composite functions formed by at least
three mixed functions or CEC2017 benchmark functions after rotation and displacement.
CEC2020 consists of one composite single-peaked function F1, three multi-peaked functions
F2–F4 after rotation and displacement, three mixed functions F5–F7, and three composite
functions F8–F10.

Table 1. CEC2017 and CEC 2020 functions.

Type Function Dimension Minimum CEC Type

Shifted and Rotated Bent Cigar Function 30D, 100D 100 CEC 2017 F1
Shifted and Rotated Zakharov Function 30D, 100D 200 CEC 2017 F2Unimodal functions
Shifted and Rotated Bent Cigar Function 20D 100 CEC 2020 F1

Shifted and Rotated Rosenbrock’s Function 30D, 100D 300 CEC 2017 F3
Shifted and Rotated Rastrigin’s Function 30D, 100D 400 CEC 2017 F4
Shifted and Rotated Expanded Scaffer’s F6 Function 30D, 100D 500 CEC 2017 F5
Shifted and Rotated Lunacek Bi_Rastrigin Function 30D, 100D 600 CEC 2017 F6
Shifted and Rotated Non-Continuous Rastrigin’s Function 30D, 100D 700 CEC 2017 F7
Shifted and Rotated Lecy Function 30D, 100D 800 CEC 2017 F8

Simple multimodal

Shifted and Rotated Schwefel’s Function 30D, 100D 900 CEC 2017 F9

Shifted and Rotated Schwefel’s Function 20D 700 CEC 2020 F2
Shifted and Rotated Lunacek Bi_Rastrigin Function 20D 1900 CEC 2020 F3Basic functions
Expanded Rosenbrock’s plus Griewangk’s Function 20D 1700 CEC 2020 F4

Hybrid Function 1 (N = 3) 30D, 100D 1000 CEC 2017 F10
Hybrid Function 2 (N = 3) 30D, 100D 1100 CEC 2017 F11
Hybrid Function 3 (N = 3) 30D, 100D 1200 CEC 2017 F12
Hybrid Function 4 (N = 4) 30D, 100D 1300 CEC 2017 F13
Hybrid Function 5 (N = 4) 30D, 100D 1400 CEC 2017 F14
Hybrid Function 6 (N = 4) 30D, 100D 1500 CEC 2017 F15
Hybrid Function 6 (N = 5) 30D, 100D 1600 CEC 2017 F16
Hybrid Function 6 (N = 5) 30D, 100D 1700 CEC 2017 F17
Hybrid Function 6 (N = 5) 30D, 100D 1800 CEC 2017 F18
Hybrid Function 6 (N = 6) 30D, 100D 1900 CEC 2017 F19
Hybrid Function 1 (N = 3) 20D 1700 CEC 2020 F5
Hybrid Function 2 (N = 4) 20D 1600 CEC 2020 F6

Hybrid functions

Hybrid Function 3 (N = 5) 20D 2100 CEC 2020 F7

Composition Function 1 (N = 3) 30D, 100D 2000 CEC 2017 F20
Composition Function 2 (N = 3) 30D, 100D 2100 CEC 2017 F21
Composition Function 3 (N = 4) 30D, 100D 2200 CEC 2017 F22
Composition Function 4 (N = 4) 30D, 100D 2300 CEC 2017 F23
Composition Function 5 (N = 5) 30D, 100D 2400 CEC 2017 F24
Composition Function 6 (N = 5) 30D, 100D 2500 CEC 2017 F25
Composition Function 7 (N = 6) 30D, 100D 2600 CEC 2017 F26
Composition Function 7 (N = 6) 30D, 100D 2700 CEC 2017 F27
Composition Function 9 (N = 3) 30D, 100D 2800 CEC 2017 F28
Composition Function 10 (N = 3) 30D, 100D 2900 CEC 2017 F29
Composition Function 1 (N = 3) 20D 2200 CEC 2020 F8
Composition Function 2 (N = 4) 20D 2400 CEC 2020 F9

Composition functions

Composition Function 3 (N = 5) 20D 2500 CEC 2020 F10
Search range: [−100,100]D
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The comparison algorithms encompass DBO [25], WOA [20], GWO [19], SCA [14], SSA [22],
HHO [21]. To ensure the fairness of the experiments, the initial population size for all algorithms
is set to 30, and the maximum number of iterations is set to 500. To eliminate the influence
of randomness in the experiments, each algorithm is independently executed 30 times to
statistically analyze its results. MATLAB R2020b is utilized for software implementation.

4.1. CEC2017 Test Function Results and Analysis
4.1.1. Analysis of CEC2017 Statistical Results

The statistical outcomes for the CEC2017 test function in 30 and 100 dimensions were
meticulously documented. These include the minimum (min), mean, and standard deviation
(std) of each algorithm’s independent execution conducted 30 times. The best average result
for each test function is accentuated in bold font. The last row “Total” indicates the number of
times each algorithm achieved the best result among all test functions. The statistical results
for 30 and 100 dimensions are presented in Tables 2 and 3, respectively.

Table 2. CEC2017 dimension for 30 test results.

MDBO DBO WOA GWO SCA SSA HHO

min 2.83E+02 8.37E+07 2.64E+09 4.48E+08 1.22E+10 1.70E+02 1.43E+08
F1 mean 1.57E+04 3.42E+08 5.36E+09 2.46E+09 2.04E+10 6.43E+03 4.77E+08

std 3.61E+04 2.67E+08 2.11E+09 1.53E+09 3.95E+09 6.19E+03 2.79E+08
min 1.89E+04 6.92E+04 1.21E+05 4.69E+04 5.35E+04 3.33E+04 4.11E+04

F2 mean 3.22E+04 9.73E+04 2.84E+05 6.55E+04 8.74E+04 5.06E+04 5.64E+04
std 7.14E+03 4.07E+04 7.69E+04 1.22E+04 1.73E+04 7.85E+03 7.67E+03
min 4.70E+02 5.31E+02 6.74E+02 5.10E+02 1.61E+03 4.30E+02 5.52E+02

F3 mean 5.01E+02 6.71E+02 1.53E+03 6.40E+02 2.93E+03 5.06E+02 7.58E+02
std 1.58E+01 1.52E+02 6.60E+02 1.39E+02 7.80E+02 2.49E+01 1.43E+02
min 5.57E+02 6.48E+02 7.35E+02 5.77E+02 7.80E+02 6.46E+02 6.93E+02

F4 mean 6.00E+02 7.52E+02 8.56E+02 6.24E+02 8.20E+02 7.46E+02 7.76E+02
std 2.73E+01 5.55E+01 4.77E+01 3.58E+01 2.24E+01 5.58E+01 3.35E+01
min 6.10E+02 6.31E+02 6.59E+02 6.04E+02 6.47E+02 6.22E+02 6.54E+02

F5 mean 6.17E+02 6.50E+02 6.76E+02 6.12E+02 6.65E+02 6.48E+02 6.67E+02
std 4.68E+00 9.32E+00 1.01E+01 4.11E+00 8.43E+00 1.08E+01 6.26E+00
min 8.01E+02 8.86E+02 1.12E+03 8.14E+02 1.18E+03 1.04E+03 1.14E+03

F6 mean 8.85E+02 1.00E+03 1.30E+03 9.01E+02 1.26E+03 1.23E+03 1.32E+03
std 4.30E+01 6.51E+01 9.88E+01 5.93E+01 6.29E+01 8.59E+01 6.01E+01
min 8.48E+02 9.25E+02 9.66E+02 8.60E+02 1.05E+03 9.06E+02 9.48E+02

F7 mean 8.90E+02 1.03E+03 1.09E+03 9.00E+02 1.10E+03 9.77E+02 9.93E+02
std 2.66E+01 4.78E+01 6.51E+01 2.47E+01 2.62E+01 2.59E+01 2.38E+01
min 1.14E+03 3.10E+03 5.54E+03 1.24E+03 6.24E+03 3.92E+03 6.34E+03

F8 mean 1.79E+03 6.85E+03 1.20E+04 2.86E+03 8.65E+03 5.31E+03 8.56E+03
std 3.76E+02 2.49E+03 3.31E+03 1.10E+03 1.75E+03 3.93E+02 1.16E+03
min 3.54E+03 4.64E+03 6.40E+03 3.51E+03 7.83E+03 4.29E+03 4.79E+03

F9 mean 5.07E+03 6.53E+03 7.34E+03 5.14E+03 8.97E+03 5.30E+03 5.99E+03
std 6.92E+02 1.13E+03 6.15E+02 1.30E+03 3.27E+02 5.14E+02 7.47E+02
min 1.16E+03 1.35E+03 4.94E+03 1.36E+03 2.84E+03 1.20E+03 1.28E+03

F10 mean 1.21E+03 1.97E+03 1.06E+04 2.57E+03 4.46E+03 1.33E+03 1.60E+03
std 3.34E+01 7.72E+02 4.43E+03 1.13E+03 1.22E+03 7.98E+01 1.59E+02
min 1.85E+05 5.49E+06 6.25E+07 1.13E+07 1.31E+09 1.73E+05 9.26E+06

F11 mean 2.47E+06 6.00E+07 5.05E+08 1.14E+08 2.59E+09 1.40E+06 8.78E+07
std 2.89E+06 7.06E+07 3.63E+08 9.79E+07 7.54E+08 1.15E+06 8.97E+07
min 1.65E+03 2.28E+04 1.42E+06 4.75E+04 4.67E+08 5.48E+03 4.53E+05

F12 mean 6.09E+05 9.81E+06 1.48E+07 2.13E+07 1.22E+09 1.76E+05 2.07E+06
std 1.53E+06 1.97E+07 1.71E+07 6.03E+07 7.62E+08 8.08E+05 4.18E+06
min 2.92E+03 8.75E+03 5.49E+04 2.36E+04 7.79E+04 3.65E+03 1.66E+04

F13 mean 4.47E+04 4.14E+05 2.56E+06 7.38E+05 7.67E+05 5.23E+04 1.29E+06
std 4.56E+04 6.55E+05 2.51E+06 8.95E+05 5.65E+05 4.35E+04 1.22E+06
min 1.71E+03 3.38E+03 2.19E+05 2.22E+04 5.46E+06 2.12E+03 2.53E+04

F14 mean 1.36E+04 1.17E+05 5.22E+06 3.88E+06 5.59E+07 1.46E+04 1.54E+05
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Table 2. Cont.

MDBO DBO WOA GWO SCA SSA HHO

std 1.00E+04 1.96E+05 8.26E+06 1.37E+07 4.20E+07 1.39E+04 6.03E+04
min 2.09E+03 2.37E+03 2.99E+03 2.32E+03 3.57E+03 2.16E+03 3.01E+03

F15 mean 2.68E+03 3.25E+03 4.46E+03 2.71E+03 4.16E+03 2.89E+03 3.71E+03
std 3.14E+02 4.60E+02 6.61E+02 3.62E+02 2.72E+02 4.21E+02 4.90E+02
min 1.80E+03 2.19E+03 2.09E+03 1.80E+03 2.43E+03 1.99E+03 2.12E+03

F16 mean 2.10E+03 2.72E+03 2.74E+03 2.11E+03 2.84E+03 2.55E+03 2.66E+03
std 1.90E+02 2.58E+02 3.18E+02 1.81E+02 2.13E+02 2.79E+02 3.61E+02
min 1.06E+05 1.19E+05 2.64E+05 7.38E+04 3.43E+06 1.02E+05 1.56E+05

F17 mean 4.92E+05 3.91E+06 1.49E+07 2.49E+06 1.74E+07 6.74E+05 2.96E+06
std 3.49E+05 5.61E+06 1.30E+07 2.79E+06 1.24E+07 7.25E+05 2.78E+06
min 1.98E+03 2.57E+03 3.63E+05 1.80E+04 2.12E+07 2.05E+03 8.69E+04

F18 mean 1.41E+04 7.24E+06 2.60E+07 1.45E+06 1.10E+08 1.13E+04 1.79E+06
std 1.50E+04 1.34E+07 2.53E+07 2.65E+06 9.34E+07 1.36E+04 1.68E+06
min 2.14E+03 2.37E+03 2.40E+03 2.19E+03 2.61E+03 2.37E+03 2.41E+03

F19 mean 2.43E+03 2.76E+03 2.91E+03 2.51E+03 2.94E+03 2.74E+03 2.83E+03
std 2.20E+02 2.14E+02 2.38E+02 1.79E+02 1.51E+02 2.39E+02 2.13E+02
min 2.34E+03 2.46E+03 2.55E+03 2.36E+03 2.54E+03 2.44E+03 2.51E+03

F20 mean 2.38E+03 2.57E+03 2.64E+03 2.41E+03 2.61E+03 2.50E+03 2.59E+03
std 2.14E+01 6.16E+01 5.41E+01 4.02E+01 3.01E+01 4.79E+01 5.17E+01
min 2.30E+03 2.35E+03 3.20E+03 2.52E+03 4.55E+03 2.30E+03 5.14E+03

F21 mean 2.30E+03 4.62E+03 7.68E+03 4.94E+03 9.71E+03 5.46E+03 7.59E+03
std 6.67E+00 2.50E+03 2.12E+03 1.98E+03 1.77E+03 2.49E+03 8.72E+02
min 2.70E+03 2.87E+03 2.98E+03 2.73E+03 3.01E+03 2.77E+03 3.07E+03

F22 mean 2.76E+03 3.03E+03 3.15E+03 2.79E+03 3.08E+03 2.93E+03 3.29E+03
std 3.29E+01 9.46E+01 9.99E+01 5.10E+01 4.57E+01 7.21E+01 1.30E+02
min 2.87E+03 3.00E+03 3.07E+03 2.86E+03 3.17E+03 2.94E+03 3.25E+03

F23 mean 2.92E+03 3.19E+03 3.30E+03 2.99E+03 3.25E+03 3.08E+03 3.54E+03
std 3.76E+01 1.00E+02 1.08E+02 7.86E+01 3.51E+01 8.70E+01 1.38E+02
min 2.88E+03 2.91E+03 3.12E+03 2.93E+03 3.28E+03 2.88E+03 2.95E+03

F24 mean 2.91E+03 2.99E+03 3.26E+03 3.02E+03 3.58E+03 2.89E+03 3.01E+03
std 2.10E+01 6.62E+01 9.69E+01 8.49E+01 2.44E+02 1.46E+01 4.24E+01
min 2.90E+03 5.44E+03 5.40E+03 4.41E+03 7.08E+03 2.80E+03 6.65E+03

F25 mean 4.71E+03 7.05E+03 8.38E+03 5.07E+03 7.92E+03 5.59E+03 8.44E+03
std 6.29E+02 8.53E+02 1.22E+03 5.34E+02 4.42E+02 1.41E+03 1.15E+03
min 3.21E+03 3.25E+03 3.28E+03 3.23E+03 3.38E+03 3.22E+03 3.32E+03

F26 mean 3.26E+03 3.33E+03 3.45E+03 3.27E+03 3.58E+03 3.26E+03 3.65E+03
std 2.69E+01 6.40E+01 1.02E+02 2.69E+01 8.63E+01 3.42E+01 2.13E+02
min 3.21E+03 3.30E+03 3.45E+03 3.30E+03 4.17E+03 3.20E+03 3.34E+03

F27 mean 3.24E+03 3.62E+03 3.89E+03 3.51E+03 4.55E+03 3.23E+03 3.47E+03
std 1.99E+01 6.90E+02 2.32E+02 1.42E+02 3.38E+02 2.00E+01 9.65E+01
min 3.54E+03 3.75E+03 4.35E+03 3.51E+03 4.71E+03 3.79E+03 4.24E+03

F28 mean 3.87E+03 4.46E+03 5.49E+03 3.83E+03 5.24E+03 4.23E+03 5.09E+03
std 2.01E+02 4.13E+02 7.93E+02 1.86E+02 3.20E+02 2.82E+02 4.76E+02
min 7.10E+03 2.52E+04 9.58E+06 8.65E+05 9.55E+07 6.78E+03 7.14E+05

F29 mean 2.53E+04 2.45E+06 5.94E+07 1.27E+07 1.99E+08 3.53E+04 1.54E+07
std 3.50E+04 3.97E+06 4.60E+07 9.80E+06 8.05E+07 8.69E+04 1.65E+07
Total 21 0 0 2 0 6 0

Table 3. CEC2017 dimensions for 100 test results.

MDBO DBO WOA GWO SCA SSA HHO

min 4.26E+09 2.03E+10 8.72E+10 2.78E+10 1.84E+11 2.33E+08 3.78E+10
F1 mean 1.49E+10 8.51E+10 1.12E+11 5.39E+10 2.12E+11 4.03E+08 5.09E+10

std 7.78E+09 7.00E+10 1.18E+10 9.82E+09 1.36E+10 1.21E+08 6.18E+09
min 3.01E+05 3.40E+05 4.29E+05 4.11E+05 4.70E+05 3.25E+05 3.23E+05

F2 mean 3.55E+05 6.33E+05 8.93E+05 5.24E+05 5.96E+05 7.68E+05 3.60E+05
std 3.56E+04 2.54E+05 1.50E+05 7.56E+04 7.93E+04 1.94E+05 8.43E+04
min 1.12E+03 3.56E+03 1.38E+04 2.83E+03 3.66E+04 9.27E+02 6.35E+03
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Table 3. Cont.

MDBO DBO WOA GWO SCA SSA HHO

F3 mean 1.87E+03 1.97E+04 2.09E+04 5.98E+03 5.36E+04 1.03E+03 9.23E+03
std 4.41E+02 2.01E+04 4.82E+03 1.82E+03 7.81E+03 5.63E+01 1.62E+03
min 1.12E+03 1.32E+03 1.72E+03 1.08E+03 1.93E+03 1.30E+03 1.56E+03

F4 mean 1.31E+03 1.70E+03 1.98E+03 1.26E+03 2.07E+03 1.37E+03 1.68E+03
std 8.34E+01 2.27E+02 1.17E+02 1.40E+02 5.63E+01 4.06E+01 5.20E+01
min 6.38E+02 6.61E+02 6.88E+02 6.41E+02 6.95E+02 6.61E+02 6.85E+02

F5 mean 6.52E+02 6.77E+02 7.07E+02 6.46E+02 7.05E+02 6.65E+02 6.92E+02
std 6.09E+00 1.07E+01 9.51E+00 3.61E+00 5.19E+00 2.25E+00 3.94E+00
min 2.03E+03 2.31E+03 3.58E+03 1.98E+03 3.73E+03 2.67E+03 3.48E+03

F6 mean 2.40E+03 2.91E+03 3.82E+03 2.23E+03 4.18E+03 3.21E+03 3.77E+03
std 1.60E+02 3.43E+02 1.42E+02 1.50E+02 2.78E+02 1.42E+02 1.15E+02
min 1.43E+03 1.76E+03 2.21E+03 1.42E+03 2.26E+03 1.71E+03 2.01E+03

F7 mean 1.58E+03 2.21E+03 2.41E+03 1.56E+03 2.43E+03 1.84E+03 2.14E+03
std 7.67E+01 2.24E+02 1.11E+02 6.95E+01 6.49E+01 4.97E+01 6.22E+01
min 1.84E+04 6.06E+04 5.53E+04 2.24E+04 7.34E+04 2.45E+04 6.23E+04

F8 mean 2.65E+04 7.70E+04 7.87E+04 4.52E+04 9.21E+04 2.55E+04 6.97E+04
std 4.32E+03 6.40E+03 1.58E+04 1.24E+04 1.21E+04 6.55E+02 4.42E+03
min 1.71E+04 1.82E+04 2.65E+04 1.63E+04 3.19E+04 1.45E+04 2.24E+04

F9 mean 2.00E+04 2.81E+04 2.93E+04 2.06E+04 3.32E+04 1.72E+04 2.47E+04
std 1.33E+03 4.97E+03 1.30E+03 5.22E+03 4.93E+02 1.46E+03 1.68E+03
min 2.10E+04 1.46E+05 1.81E+05 6.84E+04 1.15E+05 5.45E+04 9.18E+04

F10 mean 4.63E+04 2.35E+05 3.20E+05 9.27E+04 1.74E+05 8.95E+04 1.47E+05
std 1.17E+04 4.46E+04 1.35E+05 1.41E+04 3.58E+04 1.95E+04 3.37E+04
min 1.02E+08 2.69E+09 1.60E+10 5.03E+09 7.31E+10 7.31E+07 6.63E+09

F11 mean 4.76E+08 7.29E+09 3.12E+10 1.23E+10 9.98E+10 1.66E+08 1.12E+10
std 5.16E+08 2.71E+09 8.34E+09 5.65E+09 1.09E+10 4.93E+07 2.63E+09
min 9.06E+03 4.18E+05 1.09E+09 8.02E+07 9.89E+09 2.71E+04 4.97E+07

F12 mean 2.59E+04 3.84E+08 3.22E+09 1.79E+09 1.77E+10 1.83E+05 3.18E+08
std 2.11E+04 3.07E+08 1.71E+09 1.45E+09 3.29E+09 6.86E+05 2.19E+08
min 1.11E+06 2.97E+06 9.74E+06 1.82E+06 1.57E+07 6.54E+05 2.80E+06

F13 mean 3.20E+06 2.07E+07 2.44E+07 1.07E+07 6.54E+07 2.30E+06 9.48E+06
std 1.71E+06 1.15E+07 1.09E+07 6.29E+06 3.18E+07 1.06E+06 3.17E+06
min 2.98E+03 1.65E+05 1.89E+08 3.47E+07 3.05E+09 7.07E+03 5.57E+06

F14 mean 6.39E+03 9.12E+07 5.10E+08 2.62E+08 6.06E+09 2.03E+04 2.05E+07
std 4.23E+03 1.57E+08 2.40E+08 4.00E+08 1.64E+09 1.19E+04 2.43E+07
min 4.16E+03 6.91E+03 1.12E+04 4.97E+03 1.29E+04 5.39E+03 8.92E+03

F15 mean 6.32E+03 9.50E+03 1.72E+04 6.66E+03 1.50E+04 6.56E+03 1.08E+04
std 8.81E+02 1.67E+03 3.13E+03 7.15E+02 1.13E+03 6.33E+02 1.24E+03
min 3.88E+03 6.38E+03 8.49E+03 4.26E+03 1.63E+04 5.06E+03 6.77E+03

F16 mean 5.13E+03 9.53E+03 2.00E+04 5.49E+03 8.59E+04 5.99E+03 8.26E+03
std 6.58E+02 1.90E+03 1.73E+04 6.94E+02 1.15E+05 5.89E+02 1.27E+03
min 1.43E+06 6.33E+06 5.21E+06 2.90E+06 5.36E+07 1.07E+06 2.30E+06

F17 mean 4.26E+06 2.75E+07 2.04E+07 1.10E+07 1.29E+08 3.11E+06 9.50E+06
std 1.77E+06 1.59E+07 1.10E+07 8.00E+06 5.14E+07 1.45E+06 4.69E+06
min 2.20E+03 1.04E+07 1.78E+08 1.48E+07 2.61E+09 3.03E+03 9.49E+06

F18 mean 7.28E+03 8.54E+07 6.26E+08 2.17E+08 5.23E+09 1.76E+04 5.00E+07
std 6.35E+03 6.48E+07 3.80E+08 2.33E+08 1.26E+09 2.29E+04 3.15E+07
min 3.97E+03 5.91E+03 6.23E+03 3.87E+03 7.25E+03 4.04E+03 5.09E+03

F19 mean 5.08E+03 7.15E+03 7.16E+03 5.47E+03 8.04E+03 5.90E+03 6.16E+03
std 4.13E+02 7.67E+02 5.49E+02 1.04E+03 3.44E+02 6.93E+02 4.77E+02
min 2.90E+03 3.57E+03 4.02E+03 2.97E+03 3.97E+03 3.37E+03 3.97E+03

F20 mean 3.00E+03 4.05E+03 4.50E+03 3.11E+03 4.20E+03 3.65E+03 4.40E+03
std 7.73E+01 1.97E+02 1.97E+02 1.19E+02 8.33E+01 1.86E+02 2.37E+02
min 2.13E+04 2.12E+04 2.89E+04 1.94E+04 3.40E+04 1.71E+04 2.42E+04

F21 mean 2.42E+04 2.90E+04 3.17E+04 2.42E+04 3.53E+04 2.01E+04 2.76E+04
std 1.18E+03 4.78E+03 1.35E+03 5.30E+03 6.19E+02 1.60E+03 1.79E+03
min 3.32E+03 4.28E+03 4.75E+03 3.51E+03 4.92E+03 3.93E+03 5.45E+03

F22 mean 3.49E+03 4.91E+03 5.34E+03 3.72E+03 5.21E+03 4.21E+03 5.86E+03
std 8.56E+01 2.45E+02 2.28E+02 9.79E+01 1.40E+02 2.00E+02 3.09E+02



Biomimetics 2024, 9, 291 16 of 30

Table 3. Cont.

MDBO DBO WOA GWO SCA SSA HHO

min 3.74E+03 5.39E+03 6.10E+03 4.20E+03 6.47E+03 4.55E+03 7.00E+03
F23 mean 3.94E+03 6.09E+03 6.73E+03 4.49E+03 7.36E+03 5.20E+03 8.53E+03

std 9.16E+01 4.65E+02 3.57E+02 1.84E+02 3.96E+02 3.69E+02 6.93E+02
min 4.10E+03 5.19E+03 9.05E+03 5.66E+03 1.76E+04 3.45E+03 5.89E+03

F24 mean 4.72E+03 8.45E+03 1.10E+04 7.15E+03 2.25E+04 3.68E+03 6.79E+03
std 4.59E+02 4.95E+03 1.05E+03 8.97E+02 2.87E+03 7.96E+01 5.15E+02
min 1.17E+04 2.04E+04 3.21E+04 1.43E+04 3.60E+04 5.01E+03 2.90E+04

F25 mean 1.33E+04 2.63E+04 3.80E+04 1.77E+04 4.17E+04 2.14E+04 3.12E+04
std 1.88E+03 3.57E+03 3.13E+03 1.42E+03 2.79E+03 6.56E+03 1.34E+03
min 3.54E+03 4.03E+03 4.74E+03 3.80E+03 7.68E+03 3.60E+03 5.33E+03

F26 mean 3.77E+03 4.56E+03 6.01E+03 4.34E+03 8.53E+03 3.84E+03 7.16E+03
std 1.63E+02 2.99E+02 8.97E+02 2.67E+02 4.51E+02 1.86E+02 1.24E+03
min 3.82E+03 7.73E+03 1.18E+04 6.84E+03 2.36E+04 3.71E+03 7.49E+03

F27 mean 4.70E+03 1.88E+04 1.47E+04 9.14E+03 2.71E+04 3.83E+03 9.48E+03
std 5.94E+02 5.81E+03 1.38E+03 1.31E+03 2.29E+03 6.75E+01 8.93E+02
min 6.61E+03 8.16E+03 1.56E+04 7.53E+03 2.23E+04 6.58E+03 1.07E+04

F28 mean 7.73E+03 1.21E+04 2.21E+04 9.37E+03 3.54E+04 7.78E+03 1.33E+04
std 5.39E+02 5.76E+03 5.72E+03 1.02E+03 1.00E+04 5.67E+02 1.40E+03
min 5.89E+04 3.60E+07 1.01E+09 7.84E+07 9.50E+09 2.36E+05 3.05E+08

F29 mean 4.79E+05 2.73E+08 2.72E+09 1.38E+09 1.34E+10 7.52E+05 7.27E+08
std 2.68E+05 1.66E+08 1.24E+09 1.10E+09 2.88E+09 3.87E+05 3.59E+08
Total 15 0 0 4 0 10 0

From Tables 2 and 3, the comprehensive analysis reveals that, overall, for the
30-dimensional case, MDBO obtained the optimal solution in 21 out of 29 test functions.
For the remaining 8 test functions, MDBO achieved the second-best result, while GWO
obtained 2 optimal values and SSA obtained 6 optimal values. However, in the case of
100 dimensions, MDBO only attained the best solution in 15 out of 29 test functions, yielding
suboptimal outcomes in the remaining 14 test functions. A detailed examination reveals
the following:

• MDBO did not achieve the best performance among all algorithms on the unimodal
function F1, whether in the 30-dimensional or 100-dimensional case. It demonstrated
superior performance compared to other algorithms but fell short of SSA. Notably,
MDBO excelled in the unimodal function F2, outperforming all algorithms in both
30 and 100 dimensions.

• In the simple multimodal problems F3–F9, MDBO achieved the best average fitness
value in 6 out of 7 test functions in the 30-dimensional scenario, except for F5, where
it trailed slightly behind GWO. However, in the 100-dimensional scenario, MDBO
exhibited weaker performance compared to GWO on functions F4, F5, F6, and F7, and
weaker than SSA on functions F3, F8, and F9. Nevertheless, an improvement was
observed in all benchmark functions compared to the basic DBO.

• For the hybrid functions F10–F19, in the 30-dimensional scenario, MDBO obtained the
minimum values on all 7 test functions compared to the other algorithms. It ranked second
after SSA in functions F11, F12, and F18. In the 100-dimensional scenario, MDBO secured
minimum values in 7 out of 10 test functions, excluding F11, F13, and F17.

• In the case of composite functions F20–F29, when the dimension is 30, MDBO only
did not achieve the best results on F24, F27, and F28 but secured the top position
in the remaining 7 functions. When the dimension is 100, MDBO exhibited weaker
performance compared to SSA in functions F21, F24, and F27 but obtained the best
results in the remaining 7 functions.

To comprehensively evaluate the performance of all algorithms, this study conducted
Friedman tests on the average results of 30 independent optimization runs for 30 test
functions for each algorithm. The average rankings of all algorithms on the test functions
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were calculated, where a lower average ranking indicates better algorithm performance.
The Friedman test results for dimensions 30 and 100 are shown in Figure 6. From the results,
it is evident that the average rankings for dimensions 30 and 100 maintain similar trends,
with MDBO achieving the lowest average ranking, followed by SSA, GWO, DBO, HHO,
WOA, and SCA, respectively. This suggests that, compared to other algorithms, MDBO
generally exhibits superior performance.
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Figure 6. CEC2017 average rank.

4.1.2. CEC2017 Convergence Curve Analysis

In order to assess both the accuracy and convergence speed of the algorithms, conver-
gence curves were plotted for MDBO and other algorithms at dimension 30, as illustrated in
Figure 7. It is worth noting that in each subplot, the horizontal axis represents the number
of iterations, while the vertical axis represents the average convergence curve over 30 runs.
From the figure, the following can be observed:

• For the unimodal problem F1, initially, the convergence speed of MDBO was slower
than SSA. However, after approximately two-thirds of the iterations, its convergence
speed accelerated and gradually caught up with SSA, achieving results close to SSA. As
for unimodal problem F2, the convergence speed of MDBO was comparable to other
comparative algorithms. However, owing to its superior exploration capability, MDBO
converged to a better solution.

• For the simple multimodal functions F3, MDBO, and SSA exhibited comparable
convergence speed and accuracy, outperforming all other comparative algorithms.
Concerning F4, F7, F7, and F9, initially, only the convergence speeds of GWO and
SSA were similar to MDBO. However, after around two-thirds of the iterations, the
convergence speeds of SSA and GWO slowed down, while the convergence speed of
MDBO accelerated, rapidly converging to better positions. Regarding F5 and F6, the
convergence speed of MDBO was on par with GWO and superior to other algorithms.

• In the case of hybrid functions F10–F19, MDBO demonstrated decent convergence speed,
particularly excelling in F15 and F19, maintaining a leading position consistently. Con-
cerning F10, F11, F13, F14, F17, and F18, MDBO exhibited similar convergence speed and
accuracy to SSA. Regarding F12, MDBO’s performance was inferior to SSA but significantly
outperformed other comparative algorithms, showing a substantial improvement over
DBO. As for F16, the results obtained by all algorithms were similar, with minor differences.

• In the case of composite functions F20, F21, F22, F23, and F25, MDBO consistently
demonstrated the fastest convergence speed and accuracy, outperforming all other
comparative algorithms, especially evident in F21, where it significantly surpassed other
algorithms. Regarding F24, F26, F27, and F28, MDBO’s performance was comparable to
other algorithms, slightly superior in certain benchmark functions. Concerning F29, the
results are shown in Figure 8, which can be found that the convergence speed of SSA
and MDBO was similar, but MDBO had a slight edge.
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Figure 7. The CEC2017 iteration curve when the dimension is 30.
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Figure 8. F29 convergence curve.

4.2. CEC2020 Test Function Results and Analysis
4.2.1. Analysis of CEC2020 Statistical Results

The experimental statistical findings for the CEC2020 test function with a dimension
of 20 are depicted in Table 4. This table meticulously records the minimum (min), mean,
and standard deviation (std) values resulting from 30 independent runs for each algorithm.
Notably, the best average result among all algorithms is marked in bold. Furthermore,
the concluding row of the table provides a tally of occurrences wherein each algorithm
attained the optimal value across all test functions. From Table 4, it becomes apparent that
MDBO outperformed its counterparts in nine test functions, with only a marginal deviation
observed in comparison to GWO in the F3 test function.

Table 4. CEC2020 dimension for 20 test results.

MDBO DBO WOA GWO SCA SSA HHO

min 1.28E+02 9.95E+03 5.11E+08 4.62E+05 5.64E+09 1.17E+02 8.36E+06
F1 mean 2.84E+03 3.00E+07 1.37E+09 1.10E+09 8.84E+09 3.46E+03 3.44E+07

std 3.21E+03 2.51E+07 6.48E+08 1.12E+09 1.95E+09 3.92E+03 2.88E+07
min 1.58E+03 2.48E+03 3.37E+03 2.03E+03 4.85E+03 1.84E+03 2.68E+03

F2 mean 2.65E+03 3.62E+03 4.29E+03 2.90E+03 5.43E+03 2.97E+03 3.55E+03
std 4.94E+02 6.04E+02 4.96E+02 4.55E+02 2.64E+02 4.56E+02 4.31E+02
min 7.58E+02 7.81E+02 9.03E+02 7.53E+02 8.92E+02 7.94E+02 8.76E+02

F3 mean 8.08E+02 8.40E+02 9.72E+02 7.80E+02 9.49E+02 8.93E+02 9.39E+02
std 2.96E+01 4.22E+01 4.13E+01 2.00E+01 2.50E+01 4.92E+01 3.37E+01
min 1.90E+03 1.91E+03 1.95E+03 1.90E+03 2.57E+03 1.90E+03 1.92E+03

F4 mean 1.91E+03 1.94E+03 2.91E+03 2.05E+03 4.91E+03 1.91E+03 1.93E+03
std 4.44E+00 5.39E+01 1.64E+03 4.75E+02 1.92E+03 4.26E+00 1.05E+01
min 1.91E+04 1.60E+05 5.76E+05 5.33E+04 7.43E+05 6.47E+04 3.02E+04

F5 mean 1.58E+05 1.06E+06 2.93E+06 1.13E+06 2.54E+06 2.06E+05 8.70E+05
std 1.18E+05 1.16E+06 1.66E+06 1.03E+06 1.33E+06 1.00E+05 6.93E+05
min 1.61E+03 1.67E+03 2.06E+03 1.68E+03 2.17E+03 1.60E+03 1.95E+03

F6 mean 1.75E+03 2.26E+03 2.63E+03 2.07E+03 2.51E+03 1.98E+03 2.29E+03
std 1.25E+02 2.99E+02 3.13E+02 2.25E+02 1.90E+02 2.30E+02 1.95E+02
min 1.21E+04 1.38E+04 1.79E+05 1.05E+04 1.98E+05 9.53E+03 5.51E+04

F7 mean 8.84E+04 4.44E+05 2.33E+06 1.29E+05 9.11E+05 1.88E+05 5.01E+05
std 8.12E+04 6.09E+05 2.76E+06 9.69E+04 6.53E+05 2.04E+05 4.42E+05
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Table 4. Cont.

MDBO DBO WOA GWO SCA SSA HHO

min 2.30E+03 2.31E+03 2.39E+03 2.31E+03 2.95E+03 2.30E+03 2.32E+03
F8 mean 2.30E+03 2.67E+03 4.60E+03 3.22E+03 5.45E+03 3.64E+03 3.50E+03

std 1.00E+00 8.82E+02 1.82E+03 1.04E+03 1.87E+03 1.61E+03 1.54E+03
min 2.82E+03 2.90E+03 2.89E+03 2.83E+03 2.99E+03 2.84E+03 3.01E+03

F9 mean 2.86E+03 2.99E+03 3.04E+03 2.87E+03 3.03E+03 2.94E+03 3.21E+03
std 2.20E+01 4.89E+01 7.28E+01 4.47E+01 2.10E+01 7.26E+01 1.31E+02
min 2.91E+03 2.91E+03 3.01E+03 2.92E+03 3.11E+03 2.90E+03 2.96E+03

F10 mean 2.95E+03 2.98E+03 3.13E+03 3.00E+03 3.29E+03 2.97E+03 3.02E+03
std 3.52E+01 5.58E+01 7.10E+01 6.65E+01 1.54E+02 3.23E+01 2.50E+01
Total 9 0 0 1 0 0 0

In employing Friedman’s test, an assessment of the average rank for each algorithm
across all test function outcomes was undertaken. As delineated in Figure 9, a discernible
tendency is found: MDBO achieves the lowest rank, followed by SSA, GWO, DBO, HHO,
WOA, and SCA. This unequivocally underscores the pronounced superiority of MDBO
over its algorithmic counterparts.
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Figure 9. CEC2020 average rank.

4.2.2. CEC2020 Convergence Curve Analysis

Similarly, the average convergence curves for CEC2020 in 20 dimensions were plotted
as shown in Figure 10. It can be observed that in the unimodal function F1, SSA initially
exhibited faster convergence compared to MDBO. However, as iterations progressed,
SSA became trapped in local optima, while MDBO demonstrated superior exploration
capability, eventually discovering better solutions. In F2, MDBO initially exhibits slower
convergence compared to DBO and SSA. Nevertheless, as DBO and SSA fall into local
optima, MDBO maintains a decent convergence rate. In F6, F7, and F8, MDBO significantly
outperforms other comparative algorithms in terms of convergence speed, precision, and
stability. Moreover, MDBO demonstrates varying degrees of superiority in the remaining
test functions. This robustly validates the effectiveness of MDBO in addressing complex
optimization problems.
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Figure 10. CEC2020 iteration curve when the dimension is 20.

4.3. Wilcoxon Rank Sum Test

The Wilcoxon rank-sum test [39,40] is a non-parametric statistical test used to further
determine whether the differences between the improved algorithm and the comparative
algorithms are significant. In this study, the results of running the six comparative algo-
rithms and MDBO 30 times were used as samples. The Wilcoxon rank-sum test was applied
at a significance level of 0.05. When the test result’s p-value is less than 0.05, it indicates
a significant difference between the two compared algorithms; otherwise, it suggests that
the results of the two algorithms are comparable.

p-values of the Wilcoxon rank-sum test for CEC2017 at dimensions 30 and 100 are
displayed in Tables 5 and 6, respectively. The p-values of the Wilcoxon rank-sum test for
CEC2020 at dimension 20 are shown in Table 7. Values with p-values greater than 0.05
are highlighted in bold. The last row of each table summarizes the number of times all
comparative algorithms had p-values less than 0.05 across all test functions.

Based on the results in Table 5, it is evident that at a dimension of 30 in CEC2017,
MDBO exhibits significant disparities when compared to both WOA and SCA across all
test functions. In contrast, when juxtaposed with DBO and HHO, MDBO shows significant
differences in all 28 test functions. Moreover, in comparison with GWO and SSA, MDBO
demonstrates significant disparities in 18 and 21 test functions, respectively. Further
scrutiny of Table 6 reveals that as the dimension increases to 100, MDBO exhibits significant
differences compared to DBO, WOA, and SCA across all functions. When compared to
GWO, SSA, and HHO, only a minority of functions show similar results, with significant
differences apparent in the majority of cases.
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Table 5. CEC2017 dimension for the 30 Wilcoxon rank sum test.

DBO WOA GWO SCA SSA HHO

F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.28E-01 3.02E-11
F2 1.01E-08 3.02E-11 1.19E-01 2.03E-09 1.64E-05 1.91E-01
F3 8.99E-11 3.02E-11 2.87E-10 3.02E-11 7.73E-01 3.69E-11
F4 3.69E-11 3.02E-11 4.23E-03 3.02E-11 4.08E-11 3.02E-11
F5 7.39E-11 3.02E-11 4.06E-02 3.02E-11 6.70E-11 3.02E-11
F6 3.83E-06 3.02E-11 2.28E-01 3.02E-11 1.96E-10 3.02E-11
F7 4.50E-11 3.02E-11 1.26E-01 3.02E-11 1.33E-10 3.02E-11
F8 3.69E-11 3.02E-11 2.75E-03 3.02E-11 3.02E-11 3.02E-11
F9 9.51E-06 6.07E-11 1.67E-01 3.02E-11 8.24E-02 8.29E-06
F10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.60E-07 3.02E-11
F11 4.98E-11 3.02E-11 3.34E-11 3.02E-11 3.79E-01 4.08E-11
F12 5.07E-10 4.62E-10 3.47E-10 3.02E-11 3.34E-03 5.57E-10
F13 4.64E-05 6.12E-10 6.05E-07 2.87E-10 9.00E-01 1.29E-09
F14 2.20E-07 3.02E-11 6.07E-11 3.02E-11 8.30E-01 5.49E-11
F15 1.31E-08 3.02E-11 9.59E-01 3.02E-11 1.63E-02 3.02E-11
F16 4.57E-09 3.82E-10 8.53E-01 4.08E-11 5.09E-06 6.53E-08
F17 5.37E-02 6.52E-09 3.11E-01 6.12E-10 2.42E-02 9.21E-05
F18 1.70E-08 3.02E-11 5.49E-11 3.02E-11 6.10E-01 3.02E-11
F19 3.99E-04 1.85E-08 6.10E-01 1.55E-09 9.51E-06 8.48E-09
F20 3.69E-11 3.02E-11 4.21E-02 3.02E-11 2.61E-10 3.69E-11
F21 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.32E-02 3.02E-11
F22 5.49E-11 3.02E-11 4.51E-02 3.02E-11 3.16E-10 3.02E-11
F23 9.92E-11 3.02E-11 2.42E-02 3.02E-11 5.97E-09 3.02E-11
F24 7.38E-10 3.02E-11 3.02E-11 3.02E-11 3.03E-02 3.02E-11
F25 3.82E-10 3.02E-11 5.37E-02 3.02E-11 1.25E-05 3.02E-11
F26 3.09E-06 1.21E-10 6.10E-01 3.02E-11 1.27E-02 3.34E-11
F27 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.08E-05 3.02E-11
F28 6.12E-10 3.02E-11 1.12E-01 3.02E-11 3.83E-06 4.98E-11
F29 1.09E-10 3.02E-11 3.02E-11 3.02E-11 6.73E-01 3.02E-11
Total 28 29 18 29 21 28

Table 6. CEC2017 dimension for 100 Wilcoxon rank sum test.

DBO WOA GWO SCA SSA HHO

F1 2.15E-10 3.02E-11 4.50E-11 3.02E-11 3.02E-11 3.02E-11
F2 1.56E-08 3.34E-11 8.99E-11 3.02E-11 3.47E-10 7.51E-01
F3 3.02E-11 3.02E-11 3.34E-11 3.02E-11 3.34E-11 3.02E-11
F4 3.82E-10 3.02E-11 1.44E-03 3.02E-11 1.32E-04 3.02E-11
F5 6.70E-11 3.02E-11 2.60E-05 3.02E-11 1.69E-09 3.02E-11
F6 6.52E-09 3.02E-11 8.15E-05 3.02E-11 3.69E-11 3.02E-11
F7 3.02E-11 3.02E-11 2.71E-01 3.02E-11 3.69E-11 3.02E-11
F8 3.02E-11 3.02E-11 4.69E-08 3.02E-11 2.84E-01 3.02E-11
F9 1.73E-07 3.02E-11 3.03E-02 3.02E-11 1.85E-08 3.69E-11
F10 3.02E-11 3.02E-11 3.34E-11 3.02E-11 8.99E-11 3.02E-11
F11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.17E-05 3.02E-11
F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.01E-08 3.02E-11
F13 2.87E-10 3.02E-11 1.60E-07 3.02E-11 4.84E-02 8.89E-10
F14 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.31E-08 3.02E-11
F15 1.61E-10 3.02E-11 1.41E-01 3.02E-11 4.38E-01 3.02E-11
F16 3.34E-11 3.02E-11 7.48E-02 3.02E-11 5.46E-06 3.02E-11
F17 4.50E-11 8.99E-11 3.65E-08 3.02E-11 1.03E-02 7.60E-07
F18 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.18E-03 3.02E-11
F19 3.02E-11 3.02E-11 2.34E-01 3.02E-11 1.86E-06 9.76E-10
F20 3.02E-11 3.02E-11 2.28E-05 3.02E-11 3.02E-11 3.02E-11
F21 1.34E-05 3.02E-11 1.44E-03 3.02E-11 9.92E-11 1.07E-09
F22 3.02E-11 3.02E-11 1.41E-09 3.02E-11 3.02E-11 3.02E-11
F23 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
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Table 6. Cont.

DBO WOA GWO SCA SSA HHO

F24 1.46E-10 3.02E-11 3.69E-11 3.02E-11 3.02E-11 3.02E-11
F25 5.49E-11 3.02E-11 1.07E-09 3.02E-11 1.73E-06 3.02E-11
F26 6.07E-11 3.02E-11 5.07E-10 3.02E-11 5.19E-02 3.02E-11
F27 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.37E-10 3.02E-11
F28 5.49E-11 3.02E-11 7.12E-09 3.02E-11 9.47E-01 3.02E-11
F29 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.03E-03 3.02E-11
Total 29 29 25 29 26 28

Table 7. CEC2020 dimension for 20 Wilcoxon rank sum test.

DBO WOA GWO SCA SSA HHO

F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.96E-01 3.02E-11
F2 1.87E-07 1.33E-10 1.91E-02 3.02E-11 5.32E-03 4.31E-08
F3 3.38E-04 9.17E-08 6.92E-07 6.80E-08 6.92E-07 6.80E-08
F4 6.67E-06 6.80E-08 7.90E-08 6.80E-08 8.60E-01 2.56E-07
F5 1.56E-08 3.02E-11 2.15E-06 3.02E-11 3.39E-02 2.38E-07
F6 2.06E-06 7.90E-08 9.17E-08 6.80E-08 1.61E-04 1.66E-07
F7 2.25E-04 8.15E-11 8.77E-02 6.70E-11 5.55E-02 1.07E-07
F8 6.01E-07 6.80E-08 6.80E-08 6.80E-08 3.65E-01 6.80E-08
F9 4.50E-11 4.08E-11 9.47E-01 3.02E-11 1.11E-06 3.02E-11
F10 6.10E-03 3.02E-11 5.97E-05 3.02E-11 7.98E-02 1.17E-09
Total 10 10 8 10 5 10

Furthermore, according to Table 7, among the ten benchmark functions of CEC2020, it
is evident that MDBO exhibits comparable performance with GWO in functions F7 and
F9, whereas, in the remaining test functions, MDBO demonstrates a significant advantage.
Conversely, when compared to SSA, significant differences are observed in only 5 test
functions. However, when compared to DBO, WOA, SCA, and HHO, MDBO consistently
demonstrates absolute superiority across all test functions.

4.4. Summary of Experiments

Upon scrutinizing the statistical results and convergence curves derived from CEC2017
at 30 dimensions, it becomes evident that MDBO exhibits superior optimization capabilities
characterized by enhanced seeking ability, greater stability, accelerated convergence speed,
and heightened convergence accuracy compared to its algorithmic counterparts. This
trend persists even when the dimensionality is increased to 100, as MDBO continues
to demonstrate commendable performance in tackling high-dimensional optimization
challenges. To further validate the efficacy of MDBO in addressing complex problem
landscapes, additional experimentation was conducted using CEC2020, which reaffirmed
MDBO’s consistent and robust performance in handling intricate optimization scenarios,
underscoring its adaptability and reliability in real-world applications.

In order to verify the difference between MDBO and other algorithms, the p-values of
CEC2017 at 30 dimensions, 100 dimensions, and CEC2020 at 20 dimensions were calculated
using the Wilcoxon rank sum test. The results show that MDBO is significantly different
from other algorithms and has obvious advantages.

Through performance testing of the MDBO algorithm from multiple aspects, it is
evident that MDBO exhibits noteworthy competitiveness in terms of convergence speed, ac-
curacy, stability, and robustness when juxtaposed against contemporary algorithms. More-
over, its performance remains steadfast even amidst the complexities of high-dimensional
optimization challenges, affirming the efficacy and relevance of MDBO in modern opti-
mization contexts.
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5. Engineering Application Design Issues

To further validate the reliability of MDBO in practical engineering applications,
three typical engineering design problems are employed to assess its optimization perfor-
mance across various practical scenarios. These problems include extension/compression
spring design problems [41], reducer design problems [42], and welded beam design
problems [43].

The engineering design optimization problem is classified as a constrained optimiza-
tion problem involving variables, necessitating dealing with constraints [44]. Three primary
methods are commonly employed for constraint processing: The penalty function method,
feasibility rule, and multi-objective method. In this study, the external penalty function
method is adopted, whereby constraints are transformed into penalty functions, thus in-
tegrating them with the objective function. This integration results in a new objective
function, defined in Equation (18).

F(x⃗) = f (x⃗) + w · (
m

∑
i=1

(max(0, gi(x⃗))))2, (18)

F(x⃗) represents the fitness function value, while f (x⃗) and gi(x⃗) represent the objective
function value and the constraint function, respectively. w is the penalty parameter of the
penalty function, which is set to 10e100 in this article. w makes the violation of constraints
in the optimization process will be punished, so as to find the optimal solution satisfying
the constraints.

In the experimental comparison of algorithms for design problems in engineering
applications, the comparison algorithms are DBO [25], WOA [20], GWO [19], SCA [14],
SSA [22], HHO [21], and for all algorithms, the population size is set to 30 and the maximum
number of iterations is 500. In practical engineering scenarios, the reliability of optimization
algorithms is crucial. While high average trial run values may initially indicate promising
performance, large standard deviations can signal instability and unreliability, particularly
in computationally expensive real-world problems where multiple trial runs may not be
feasible due to limited computational resources. Therefore, to ensure robustness and re-
liability, this study conducts 30 independent runs of each algorithm and computes both
the mean and standard deviation of their performance metrics. This approach provides
a comprehensive evaluation, accounting for both average performance and stability, essen-
tial for assessing algorithm suitability in real-world engineering applications.

5.1. Extension/Compression Spring Design Issues

The extension/compression spring design problem, illustrated in Figure 11, seeks to
minimize spring weight by optimizing parameters such as wire diameter (d), average coil
diameter (D), and the number of active coils (N). The optimization variables are defined by
Equation (19), while the objective function is abstracted as in Equation (20). Constraints
are formulated in Equation (21), and upper and lower boundaries are set by Equation (22).
This problem endeavors to identify the optimal parameter combination to achieve desired
performance while simultaneously minimizing spring weight, thereby facilitating efficient
and lightweight spring design for diverse applications.



Biomimetics 2024, 9, 291 25 of 30

N

d

D

Figure 11. Extension/compression spring design issues.

Consider:
x⃗ = [x1, x2, x3] = [d, D, N], (19)

Minimize:
f (x⃗) = (x3 + 2)x2x2

1, (20)

Subject to:

g1(x⃗) = 1− x3
2x3

71785x4
1
≤ 0

g2(x⃗) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
≤ 0

g3(x⃗) = 1− 140.45x1
x2

2x3
≤ 0

g4(x⃗) = x1+x2
1.5 − 1 ≤ 0


(21)

Parameters range:
0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15. (22)

The experiment counted the average and standard deviation 30 times solving the
results of each algorithm in this problem, and randomly selected the optimal results and
optimal parameters of a certain time to show the results, the results are shown in Table 8.
It is evident that MDBO achieves the lowest manufacturing cost in solving this problem.
Furthermore, the consistency of this result is supported by the mean and standard deviation
of the outcomes, indicating its stability and reliability.

Table 8. Extension/compression spring design issues.

Algorithm d D N Cost Mean Std

MDBO 0.05205627 0.365616261 10.78572664 0.012667678 0.012912098 0.000699969
DBO 0.05 0.317155606 14.07383987 0.012744771 0.013790323 0.001855465
WOA 0.059038565 0.560664184 4.948552659 0.01357903 0.013545488 0.000955076
GWO 0.050283697 0.323556018 13.57137641 0.012738869 0.012806882 0.00016799
SCA 0.05 0.314732431 14.56303889 0.013032314 0.013108942 0.000402296
SSA 0.05 0.317425416 14.02776975 0.012719054 0.013607165 0.001516753

HHO 0.061301593 0.635100129 3.957255992 0.014217786 0.013792769 0.001029114

5.2. Reducer Design Issues

The schematic diagram of the speed reducer design problem is depicted in Figure 12.
The problem involves seven design variables, which are end face width (x1), number of
tooth modules (x2), number of teeth in the pinion (x3), length of the first shaft between the
bearings (x4), length of the second shaft between the bearings (x5), diameter of the first
shaft (x6), and diameter of the second shaft (x7). The objective of the problem is to minimize
the total weight of the gearbox by optimizing seven variables. The objective function is
represented by Equation (23), while the constraints are described by Equation (24). The
upper and lower bounds for each variable are defined by Equation (25).
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Figure 12. Reducer design issues.

Minimize:

f (x⃗) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7) (23)

Subject to:
g1(x⃗) = 27

x1x2
2x3
− 1 ≤ 0,

g2(x⃗) = 397.5
x1x2

2x2
3
− 1 ≤ 0,

g3(x⃗) = 1.93x3
4

x2x3x4
6
− 1 ≤ 0,

g4(x⃗) = 1.93x3
5

x2x3x4
7
− 1 ≤ 0,

g5(x⃗) =

√
(

745x4
x2x3

)
2
+16.9×106

110.0x3
6

− 1 ≤ 0,

g6(x⃗) =

√
(

745x4
x2x3

)
2
+157.5×106

85.0x3
6

− 1 ≤ 0,

g7(x⃗) = x2x3
40 − 1 ≤ 0,

g8(x⃗) = 5x2
x1
− 1 ≤ 0,

g9(x⃗) = x1
12x2
− 1 ≤ 0,

g10(x⃗) = 1.5x6+1.9
x4

− 1 ≤ 0,
g11(x⃗) = 1.1x7+1.9

x5
− 1 ≤ 0,



(24)

Parameters range:
2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5,


(25)

The experimental results of the reducer design problem are presented in Table 9. From
the average value, MDBO exhibits slightly superior performance compared to SSA and
significantly outperforms other algorithms, underscoring its efficacy in achieving high
solution accuracy for this problem. Additionally, considering the standard deviation,
MDBO showcases the lowest value, indicating its exceptional stability and robustness in
producing consistent results across multiple runs.
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Table 9. Reducer design issues.

Algorithm x1 x2 X3 x4 x5 X6 x7 Cost Mean Std

MDBO 3.5000 0.7 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3482 2996.3482 0.0000
DBO 3.5000 0.7 17.0000 8.3000 8.3000 3.3522 5.2869 3016.7704 3031.6754 59.1161
WOA 3.6000 0.7 18.4408 7.5166 8.2579 3.3495 5.4936 3450.3018 3427.3548 612.9289
GWO 3.5067 0.7 17.0000 8.2896 8.0026 3.3603 5.2898 3016.8089 3010.8418 4.3596
SCA 3.6000 0.7 17.0000 7.7987 8.3000 3.5246 5.2967 3104.4867 3127.8248 43.4361
SSA 3.5000 0.7 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3482 2996.6593 1.7041

HHO 3.5121 0.7 20.6747 7.3000 8.0287 3.3480 5.2905 3705.9316 3536.5022 454.2663

5.3. Welded Beam Design Issues

The objective of the welded beam design problem is to minimize the cost of the welded
beam. As shown in Figure 13, the welded beam design problem exists with four parametric
variables: Weld thickness (h), length of the connected portion of the bar (l), height of the
bar (t), and thickness of the reinforcement bar (b) as in Equation (26). The objective function
is defined in Equation (27), and its minimization process is bounded by the constraints
of shear stresses (τ), bending stresses in the beam (θ), flexural loads on the bar (Pc), and
end disturbances in the beam (δ) as in Equation (28). The four variable parameters are
bounded as in Equation (29), and the values of certain parameters and their solutions are
as Equation (30).

l

l

b

t

h

P

Figure 13. Welded beam design issues.

Consider:
x̃ =[x1, x2, x3, x4] = [h, l, t, b], (26)

Minimize:
f (x⃗) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2), (27)
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Subject to:
g1(x⃗) = τ(x⃗)− τmax ≤ 0
g2(x⃗) = σ(x⃗)− τmax ≤ 0
g3(x⃗) = δ(x⃗)− τmax ≤ 0
g4(x⃗) = x1 − x4 ≤ 0
g5(x⃗) = P− Pc(x⃗) ≤ 0
g6(x⃗) = 0.125− x1 ≤ 0
g7(x⃗) = 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0


(28)

Parameters range:
0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10, (29)

where
τ(x⃗) =

√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′)2,
τ′ = P√

2x1x2
, τ′′ = MR

J ,
M = P(L + x2

2 ),

R =

√
x2

2
4 + ( x1+x3

2 )
2
,

J = 2(
√

2x1x2(
x2

2
12 + ( x1+x3

2 )2)),
σ(x⃗) = 6PL

x4x2
3
, δ(x) = 4PL3

Ex3
3x4

,

Pc(x) =
4.013E

√
x2

3x6
4

36
L2 (1− x3

2L

√
E

4G ),
P = 6000lb, L = 14in, δmax = 0.25in,
E = 30× 106 psi, G = 12× 106 psi,
τmax = 13600psi, σmax = 30000psi.



(30)

The optimization results for the welded beam design problem are displayed in Table 10.
It is evident that MDBO achieves the lowest average manufacturing cost, with a value
of 1.692769435 when the optimization result of MDBO is x = [0.205729953, 3.234915914,
9.036617034, 0.205729953]. When compared with other algorithms, MDBO demonstrates
competitive performance, highlighting its effectiveness in this particular optimization task.

Table 10. Welded beam design issues.

Algorithm h l t d Cost Mean Std

MDBO 0.205729953 3.234915914 9.036617034 0.205729953 1.692769435 1.6961213 0.0127085
DBO 0.141565272 5.499670887 9.045400709 0.206123404 1.870870809 1.7496565 0.0424308
WOA 0.361675817 1.717131037 8.511619427 0.36198865 2.577921166 2.4658900 0.6156943
GWO 0.204259434 3.270735273 9.043281341 0.205752865 1.696780922 1.6983641 0.0030933
SCA 0.181314963 3.549003446 10 0.202491425 1.838490606 1.8835081 0.0628893
SSA 0.205729523 3.234915257 9.03663848 0.205729567 1.692769481 1.7833399 0.2636062

HHO 0.194218543 3.601102558 8.836192097 0.215168645 1.760035931 1.9306548 0.1725821

6. Conclusions

In this paper, based on the deficiencies of the DBO algorithm, the multi-strategy im-
proved DBO algorithm (MDBO) is proposed. Firstly, Latin hypercube sampling is used
to initialize the population to improve the diversity of the population and reduce the
possibility of the algorithm falling into local optimal solutions. Second, mean difference
variation is introduced to the population individuals to balance the local and global ex-
ploration of the algorithm and improve the algorithm’s ability to escape from the local
optimum. Finally, fusion lens imaging back learning and dimension-by-dimension op-
timization are performed on the global optimal solution to make full use of the optimal
solution information while improving the quality of the optimal solution and promoting
the convergence of the algorithm. To verify the performance of the MDBO, this paper
evaluates the performance of the algorithm from several aspects using the CEC2017 and
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CEC2020 test functions. Finally, the proposed MDBO algorithm is successfully applied to
three real-world engineering application problems.

Through a large number of experimental results in several aspects, the proposed
MDBO algorithm exhibits stronger optimization ability, faster convergence speed, higher
convergence accuracy, and better robustness than other classical meta-heuristic algorithms,
and it also demonstrates better performance in some engineering practical applications.
However, MDBO still faces challenges in obtaining the theoretical optimum when solving
some complex problems in a short time. In future work, on the one hand, some other
novel algorithms can be combined to improve the efficiency and optimization ability of the
algorithm; on the other hand, the optimized algorithm can be used to solve more complex
optimization problems in reality, such as the UAV path planning, polling system [45,46],
and the NP-hard problem.
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