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Abstract: The research described in this paper focuses on the development of an innovative unmanned
aerial vehicle (UAV) tailored for a specific mission: detecting the acoustic signature emitted by
chainsaws, identifying deforestation, and reporting its location for legality assessment. Various
calculations were conducted to determine the optimal solution, resulting in the choice of a fixed-wing
UAV. A comparative analysis between tri-rotor and quadcopter systems was performed, leading
to the selection of the tri-rotor configuration. The primary objective of this study is to design an
innovative hybrid UAV concept with key features including a fixed-wing design and integrated
VTOL (vertical takeoff and landing) capability in the experimental model. The aircraft has been
constructed using advanced materials such as fiber-reinforced polymer composites, manufactured
using both conventional and advanced techniques like continuous fiber additive manufacturing and
the use of a polymer matrix. Additionally, the aerodynamic configuration is optimized to achieve
a cruise speed of approximately 50 km/h and a flight autonomy exceeding 3 h. The UAV has been
equipped with payloads for mounting sensors to collect meteorological data, and crucially, the VTOL
system has been optimized to vectorize thrust for improved performance during the transition from
hover to cruise flight. This paper details the entire manufacturing and assembly process of the
drone, covering both the structural framework and associated electrical installations. A dedicated
sound detection system is incorporated into the drone to identify chainsaw noise, with the aim of
preventing deforestation.

Keywords: UAV; VTOL; hybrid; tiltrotor; concept; manufacture

1. Introduction

Recent advancements in microcontrollers and sensor technologies have resulted in
a substantial reduction in drone costs, rendering them more economically accessible. Un-
manned aerial vehicles (UAVs) have garnered widespread recognition for their diverse
applications across sectors, including surveillance, agriculture, healthcare, traffic manage-
ment, inspections, and public safety [1,2]. They are extensively utilized in commercial
ventures such as aerial surveys, photography, and cinematography.

UAVs are typically equipped with onboard sensors, facilitating the collection of geospa-
tial data about their surroundings, and are remotely operated from a ground-based control
station. Drones have demonstrated effectiveness in topographical mapping of volcanic ter-
rains and detecting volcanic activities. Thiele et al. employed drones with thermal cameras,
gas sensors, and other instrumentation to measure parameters related to volcanic activity,
providing valuable data for predicting eruptions, executing rescue missions, conducting
photogrammetry, monitoring infrastructure, and supporting delivery services [3].
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UAVs also play a crucial role in geological exploration around volcanoes, enhancing
operational efficiency, precision, and safety while reducing costs by minimizing the need
for human intervention in hazardous areas [3]. This technology also facilitates mission
planning and oversight from a control station. In both civil and industrial sectors, drones
have proven instrumental in process optimization and executing missions in challenging
environments, some of which may be entirely inaccessible to humans [4,5].

Consider the agricultural sector, where farmers face various challenges affecting crop
quality. Drones offer an efficient and cost-effective means of collecting data on ecosystems
and their variations due to factors like climate change, soil erosion, water availability, and
extreme weather events. Drones are also deployed for activities such as crop spraying,
saving time and optimizing yields [6].

In a study detailed in [7], the efficiency of drones in precision agriculture is demon-
strated, with collected data used to generate 3D cartographic representations of agricultural
plots for better analysis of vegetation density and soil heterogeneity.

Drones find diverse applications in the healthcare sector, including the delivery of
medical supplies to remote or hard-to-reach areas and the transportation of blood samples
and lab results [8].

In transportation, drones are used for tasks such as package delivery [9], traffic moni-
toring [10], and infrastructure inspections [11].

Drones also find application in various scientific disciplines, including agriculture (e.g.,
monitoring crops [12], disease detection [13], mapping fields for optimized fertilization and
irrigation [14,15]), environmental science (e.g., wildlife monitoring [16,17], assessment of
forest health [18], water quality monitoring [19], air quality monitoring [20]), oceanography
(e.g., monitoring marine life [21], tracking ocean currents and tides [22]), archaeology (e.g.,
detailed site mapping [23], identification of hidden structures [24]), and disaster response
(e.g., assessing damages [25], identifying victims [26], delineating boundaries [27], rapid
extent mapping [28]).

In accordance with [29], UAVs can be categorized based on various parameters. These
classifications provide a framework for organizing UAVs and comprehending their capa-
bilities, limitations, and potential applications. The continuous progress and evolution of
UAV technology have given rise to new classifications, blurring the traditional boundaries
between them.

For instance, multi-rotor UAVs offer vertical takeoff and landing capabilities, enabling
operation in complex terrain, albeit with limitations in battery capacity.

In contrast, traditional fixed-wing UAVs require dedicated runways for deployment.
Hence, the tilt-rotor UAV (TRUAV) has emerged as a solution that combines the advantages
of both UAV forms, offering flexible takeoff/landing capabilities and extended operational
endurance [30,31]. To enhance the capabilities for which drones are designed, the use
of AI has become a widely employed technique in current times [32–34]. Consequently,
several studies employ AI on drones across various domains. Based on the missions and
classifications outlined above, as well as the advantages associated with AI utilization, this
paper aims to propose the design of an innovative hybrid-wing UAV concept equipped
with an AI system for the detection of chainsaw sounds in forests to combat deforestation.

Regarding the use of drones in forest management, rotary-wing aircraft like helicopters
and multicopters (e.g., quadcopters, octocopters) may not be optimal in large community
forests as they have limited range and endurance due to their high power demand relative to
battery capacity. However, they may be preferable to fixed-wing drones in situations where
vertical ascent and descent are required but no landing strip is available. In contrast, fixed-
wing aircraft possess gliding capabilities that enable longer flight endurance compared to
rotary-wing aircraft, allowing them to operate effectively over larger distances. Regarding
the use of drones in forest surveillance and environmental monitoring, there are several
studies that employ various types and configurations of UAVs [35–37]. For example,
source [38] presents a combined weightless neural network architecture for deforestation
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surveillance and visual navigation of unmanned aerial vehicles (UAVs); this was achieved
using a fixed-wing UAV model Echar which does not have VTOL.

This novel concept possesses the following features: It incorporates a fixed-wing
design. It includes a VTOL (vertical takeoff and landing) system that will be integrated
into the experimental model. The aircraft will be constructed from advanced materials,
specifically polymer composites reinforced with fibers, manufactured using both conven-
tional and advanced technologies, including continuous fiber additive manufacturing and
polymer matrices. Furthermore, it focuses on optimizing the aerodynamic configuration to
achieve a cruising speed of approximately 50 km/h and an endurance exceeding 3 h. The
UAV is designed to accommodate various payloads, such as meteorological data capture
noise sensors, and most importantly, the optimization of the VTOL system to vectorize
thrust for improved performance during the transition from hovering to cruising flight.

2. Materials and Methods
2.1. UAV Performance and Design

In order to define the most optimal configuration, a comparative study was conducted
between a tri-rotor UAV and a quadcopter, aiming to further develop the optimal solution.
Table 1 presents the comparisons between the requirements of the 3- and 4-rotor systems.

Table 1. Comparisons between the requirements of the 3- and 4-rotor systems.

Tri-Rotor System Quad-Rotor System

• Does not require an additional frame for attaching the
motors, considering that the third rotor is integrated into
the tail of the aircraft.

• The system can be integrated into the UAV structure,
minimizing the negative impact on aerodynamics.

• Estimated UAV mass: 15 Kg.

• Requires an additional frame for at least 2 rotors.
• The negative effect of increased drag is significantly higher

compared to the tri-rotor due to the additional support
frame required for rotor attachment.

• An estimated additional mass of 3 Kg compared to the
tri-rotor system (motor, propeller, ESC (electronic speed
controller), structural supports, etc.).

• Estimated UAV mass: 18 Kg.

Therefore, with these two proposed VTOL configurations, a study was conducted to
determine which multi-rotor configuration is optimal for the experimental model in the
project, the optimal version in terms of flight autonomy. For this performance study, a theo-
retical flight simulator was created in the Matlab program, which studied the flight of the
experimental model in both takeoff and cruising flight scenarios. Both VTOL configurations
were tested on this route to ultimately compare overall performance.

The following inputs were considered for this performance study: UAV tri-rotor mass:
15 kg, UAV quad-rotor mass: 18 kg, moments of inertia, surfaces and dimensions of the
model, and aerodynamic coefficients of the conceptual model.

For this study, a primitive conceptual model of the UAV was created. The primitive
conceptual model was created using the XFLR5 v6.55 program and is shown in Figure 1.

A 4 m wingspan wing was considered, with winglets mounted at the ends. The
winglets have a length of 200 mm and are positioned at 90◦ perpendicular to the wing. The
chord length of the airfoil profile in the center of the wing is 500 mm, decreasing towards
the tips to a size of 176 mm, and the tip of the winglets has a chord of 63 mm. The airfoil
profile is constant along the entire length of the wing and is MH45. This conceptual model
resulted in a wing area of 1.352 m2. The aspect ratio has a value of 13.831 in this case, and
the trapezoidality ratio is 0.126. The aspect ratio value ensures a high flight autonomy,
being close to the value of glider-type aircraft.
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Figure 1. Primitive conceptual model of the UAV.

Within the XFLR5 program, this conceptual wing model was simulated, and two
vectors containing the lift coefficient and drag coefficient as functions of the wing incidence
angle were extracted. The simulated forward speed was set to 20 m/s. To use these vectors
in the simulation program created in Matlab, it was necessary to create a polynomial
equation describing the curve from the points obtained in the XFLR5 program. These
points were taken at intervals of 0.5◦, resulting in 32 points from 0 to 16 degrees.

For the input data, the motor performance was also introduced. For this conceptual
model, the MN805-S KV170 motor with a carbon fiber propeller with a 26-inch diameter and
an 8.5-inch pitch was chosen. Data were collected from the manufacturer’s performance
table, and a polynomial equation was created to match the curve passing through the
experimental points. The relevant data include the thrust generated by each motor coupled
with this propeller and the respective power consumption.

The flight simulator within the Matlab program calculates certain data, presenting
both the UAV platform with 3 rotors and the UAV platform with 4 rotors in takeoff from
the ground to 100 m and then a fixed-wing flight over a distance of 10 km. During this
time, all forces are calculated using the flight equations, and parameters such as speed and
consumption are extracted for further analysis to compare the two categories of UAVs.

If we consider that in cruising flight, two motors generate equal thrust, and the
onboard energy of the aircraft is 16 Ah, then for the aircraft to have a flight autonomy of
3 h, the energy consumption per motor must be 2.66 A.

Assuming a forward speed of 100 km/h, dimensional parameters of the experimental
model, and a force balance along the forward direction using the motor specifications,
it follows that the drag coefficient must be less than 0.245 for the flight autonomy to be
achieved. The conceptual model has a drag force value of 0.08 at an incidence angle of 16◦,
thus comfortably meeting the autonomy objective.

The calculation algorithm behind the simulator developed in the Matlab program uses
motion and balance equations. In both takeoff and cruising flight, a PID (proportional–integral–
derivative) control system has been implemented to provide greater result accuracy [39].

Transitioning to the calculation algorithm of the theoretical simulator, a quadcopter-
type multi-rotor has 4 commands used for all flight maneuvers. For a cascaded PID
controller to be used in such a control case, a motor control matrix was created. The follow-
ing figure illustrates the diagram of a quadcopter with the 4 labeled motors, with motors
M1 and M4 having a clockwise rotation and motors M2 and M3 having a counterclockwise
rotation, as shown in Figure 2a.

The same calculation and algorithm were designed for the tri-rotor version, where the
M1 engine has a clockwise rotation, while the M2 and M3 engines have a counterclockwise
rotation, as shown in Figure 2b.
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Similarly, based on the moments provided by the thrust forces, angular accelerations
were calculated to determine the aircraft’s rotational speeds. With all these equations, a
system was implemented that takes the input parameters of the discussed conceptual model
and uses these equations to elevate the aircraft to an altitude of 100 m and then translate it
in a direction for 10 km. During this entire time, an energy consumption calculation was
performed to make a comparison between the tri-rotor and quad-rotor.

For both the quad-rotor and tri-rotor, the theoretical trajectory is as follows:

• Takeoff to an altitude of 100 m;
• Maintaining an altitude of 100 m for 20 s;
• Imposing a pitch angle of 60◦;
• Movement while maintaining altitude for a distance of 10 km;
• Changing the pitch angle to 85◦ when the wing provides the necessary lift for the aircraft.

2.2. Manufacturing the Structure of the Experimental Model

To create the structural components and other elements of the hybrid UAV experi-
mental model, the use of fiber-reinforced polymer composite materials (either in the form
of fabrics or short fibers) and thermoplastic materials, either reinforced or unreinforced,
was considered. Two categories of manufacturing technologies were targeted from the
beginning of the project: conventional technologies for composite material structures and
advanced technologies, such as additive manufacturing technology using specific methods
that utilize polymer materials as raw materials.

Therefore, for the fabrication of the experimental model, fiber-reinforced composite
materials manufactured through conventional methods will be used. In the case of the
airframe, representing the central part of the drone composed of the fuselage, frontal part,
and rear part of the fuselage, areas requiring strength will be made from a combination of
CFRP (carbon-fiber-reinforced polymer) and GFRP (glass-fiber-reinforced polymer); more
properties can be found in sources [40,41]. CFRP will be used to reinforce the structural
resistance, while GFRP will be employed in areas where very high mechanical strength is
not necessary.

Considering that electronic equipment will be installed inside the fuselage and will not
be subjected to significant mechanical stress, glass fiber (GFRP) was chosen as the material.
The primary reason for choosing this material is its ability to block electromagnetic fields
and radiofrequency radiation, creating an electromagnetically isolated environment inside
the fuselage.
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As the most significant forces are concentrated on the wing, carbon fiber (CFRP) with
superior mechanical properties was chosen for its construction. Molds were created for
the manufacturing of the central part of the drone, including the fuselage, frontal part, rear
part, wing, and winglets.

2.3. Drone’s Electrical System

The developed UAV platform has been equipped with electrical systems that are
categorized as follows:

• Propulsion system;
• Command and control system;
• Transmission system;
• Control system for control surfaces;
• Auxiliary systems.

The propulsion system consists of 3 MN805-S KV170 motors and 3 FLAME 100A 14S
ESCs from an electronic perspective. The vectorization of these 3 motors around the Y-axis
is achievable with the help of a BLS 5404H servo motor corresponding to each motor.

The chosen command and control system consists of an Orange Cube flight computer
using Ardupilot software for flight control. It is connected to the Herelink v1.1 transmis-
sion system, and the control system for control surfaces is implemented using HV 5101
servo motors.

Auxiliary systems include the video camera system, acoustic system, and meteorologi-
cal system. The video camera is powered by a UBEC (Ultimate Battery Eliminator Circuit)
system and connected to the Herelink system. The acoustic system and the meteorological
system are powered by a Raspberry Pi 4 computer and controlled by it.

The power supply voltage is 12S (50.4 V), and the energy source consists of 2 LiPo 6S
16,000 mAh batteries connected in series. The power source directly supplies power to the
3 ESCs and simultaneously to the UBEC and power modules.

3. Results
3.1. Performance and Design of the UAV

In Figure 3, the two coefficients are depicted as functions of the wing angle of at-
tack. It can be observed that the lift coefficient reaches its maximum value at an angle of
approximately 15◦, while the drag coefficient increases with the angle of attack.
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Therefore, using this simulator built in Matlab, it was determined that the maximum
climb speed for the quad-rotor is 24.29 km/h, and the maximum forward speed reached
78.43 km/h. An angle of attack for the wing of approximately 4–5◦ was considered, and
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the pitch angle is not for the entire aircraft but is formed by the motor vectorization angle
around the Y-axis. Additionally, motor control was limited to prevent excessive G-force
from affecting the structure.

Altitude as a function of time for the tri-rotor and quad-rotor and the vectorization
angle as a function of time for the tri-rotor and quad-rotor are very similar in the graphs,
and the altitude is achieved and stabilized after approximately 200 s.

The parameters of interest are the thrust generated by each motor with the propeller
and their respective power consumption. Figure 4 illustrates the curves of these two pa-
rameters.
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The maximum climbing speed of the tri-rotor was 24.55 km/h, and the maximum
forward speed reached a value of 71.6 km/h, a lower value than in the case of the quad-
rotor. It is noticeable that the thrust is lower for the tri-rotor, mainly due to its lower
mass. A vectorization angle of 85◦ was imposed when reaching the required forward speed
to ensure lift entirely from the wing to maintain stability control from the motors. The
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simulator did not include control systems for aileron, elevator, and rudder necessary for
airplane-mode flight.

As final overall results, we have the following, presented in Table 2. Due to the
weaker thrust, the completion time for the route is longer for the tri-rotor, but overall, the
consumption is lower for the tri-rotor, even though the flight time is longer by over 1 min.

Table 2. Comparative performance for the tri-rotor and quad-rotor models.

Tri-Rotor System Quad-Rotor System

Route Completion Time: 18.28 min
Energy Consumption Ah: 1.6582′′

Route Completion Time: 17.17 min
Energy Consumption Ah: 1.8272′′

Therefore, in line with the project’s objectives to optimize the aerodynamics of the
experimental model for achieving a flight autonomy of over 3 h and based on the results
obtained from the calculations, the decision was made to opt for a tri-rotor system for the
experimental model.

The design of the experimental model continued from this choice, with the focus on
designing the structure that forms the wing, considering it as the most crucial aspect since
it is a VTOL fixed-wing UAV. The XFLR5 program was used for wing design. In essence,
the wing presented and used in the flight simulator developed in Matlab was retained, but
now it has been optimized. The estimated final mass of the UAV is 15 kg.

The optimization involved dividing the wing into several sections where the MH45
airfoil profile was distributed, as seen in Table 3.

Table 3. Procedure optimization of the wing.

Distant Y [mm] Chord Length [mm] Offset [mm] Dihedral Angle [◦] Twist Angle [◦]

0 615.5 0 0 0

250 500 115.5 0 0

1143 390 430 0 −0.5

1950 200 815 30 −1

1990 180 860 60 −1

2030 160 910 90 0

2280 60 1067.5 2

The wing is symmetric left–right, and the Y = 0 point represents the center of the
wing. The offset represents the distance from the leading edge of the airfoil profile at the
center of the wing to the leading edge of the next airfoil profile. The global parameters of
the wing are as follows: wingspan: 4 m, wing area: 1.569 m2, mean aerodynamic chord:
409.26 mm, aspect ratio: 12.729, taper ratio: 0.097; it is noted that the winglet is included in
the calculations.

Following the simulation from 0◦ to 16◦ (angle of attack), the aerodynamic coefficient
performances shown in Figure 6 were obtained.

Figure 7 shows the displacement speeds based on the angle of attack.
In accordance with the project objective, the experimental model needed to achieve

a cruising speed of approximately 50 km/h. Thus, as shown in the table presenting the
wing simulation results, at an angle of attack of 6.5◦, the required displacement speed to
sustain flight for a mass of 15 kg is 50.32 km/h. Therefore, the designed wing ensures the
aerodynamics for meeting the project objective. The lift coefficient at this angle is 0.784.
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Figure 6. Lift coefficient and drag coefficient as a function of the angle of attack before and after optimization.
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The drag at this angle is 0.027, meaning that the required thrust is 0.7043 N. Conse-
quently, the MN805-S motor (T-Motor, Zhongshan, China) would have a consumption of
0.8335 A at a voltage of 12 S (50.4 V), equivalent to an electrical power consumption of 42 W.
Thus, the energy required for this wing to achieve 3 h of autonomy is 2.65 Ah according to
Equation (1).

Flighttime =
Capacityenergy

Intensitycurrent
(1)

where flight time—the duration of the flight [h]; energy capacity—the energy capacity from
the batteries [Ah]; current intensity—the intensity of the consumed electric current [A].

A tailless aircraft configuration was chosen to achieve higher flight efficiency. The
wing has a span of 3923 mm, the winglet size is 118 mm, and the fuselage length is 1264 mm.
The selected tri-rotor VTOL system brings a distance of 3094.6 mm between the front motor
axes, and the distance between the front motor axes and the M3 motor axis is 776.27 mm.
Front motors are equipped with propellers 660 mm (26 inches) in diameter, while the M3
motor has a propeller 508 mm (20 inches) in diameter. Figure 8 illustrates the experimental
model with component descriptions.
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The experimental model is also equipped with winglets designed to reduce drag
(by minimizing vortex intensity), thereby increasing flight autonomy. The fuselage of
the experimental model is aerodynamically integrated with the fixed wing. Due to the
VTOL system, a fixed landing gear was implemented, without wheels specifically for
VTOL takeoff/landing, consisting of three components highlighted in Figure 8. As this is a
tailless aircraft, there are no ailerons at the wingtips but elevons. These control surfaces are
responsible for the roll and pitch movements of the aircraft. The elevon is divided into two
components due to the mounting of the VTOL structure. The total control surface area of
the elevon is 508.11 cm2 (measured on the upper surface).

The experimental model represents a category of hybrid fixed-wing UAV, meaning
it incorporates both fixed-wing mechanics and a VTOL system that allows vertical take-
off/landing as well as slow-speed flight (below the necessary lift threshold) and hovering.
This VTOL system offers the advantage of eliminating the ground infrastructure required
for aircraft takeoff/landing. Figure 9 illustrates the chosen solutions for the propulsion
system vectorization.

In the takeoff/landing phase, during slow-speed flight or hovering, the tri-rotor system
is in the position shown in the figure below. For flight mechanics and balance, motor M1
rotates clockwise, and motor M2 rotates counterclockwise. Motors M1 and M2 are of the
same type and will essentially operate at the same speeds, so the reactive torque of motor
M1 is canceled out by the reactive torque of motor M2. However, being a tri-rotor system,
motor M3 with clockwise rotation will generate a reactive torque counterclockwise, a torque
that is not canceled out. Thus, the experimental model will have a counterclockwise yaw
moment. The classical solution for a tri-rotor to cancel this reactive moment generated
by the third motor is to vectorize motor 3 around the X-axis. However, in the case of this
experimental model, an alternative solution will be chosen to cancel this reactive moment.
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Thus, the cancellation of the reactive moment generated by motor M3 will be achieved
by vectorizing motor M2. The yaw balance is determined by the following equations:

MR1 − MR2 = 0 (2)

MR3 − F2 × cos(θ2)×
3094.6

2
= 0 (3)

where MRi—reactive moment of motor i [Nm]; F2—thrust generated by motor M2 [N];
θ2—tilt angle of motor M2 [◦].

The distance of 3094.6 mm represents the separation between the axes of the front
motors, and its half represents the moment arm generated by the vectorized component of
motor M2. The consequence of using this method is that the elevons will have to counteract
the moment given by the vectorization of this motor M2 (if the speed of movement is zero
or very small, roll stabilization is done from the speed of motor M1), a roll moment, but
this moment has a small value.

Using this VTOL vectorization system, a uniform and aerodynamically optimized
transition from hover flight to cruise flight will be made by easy, gradual, and controlled
vectorization of all three motors around the Y-axis. When cruise flight is achieved, then
only motor M3 will be used, which will have the following position shown in Figure 11.

The flight equations that will yield the two accelerations on the X and Z axes are
as follows:

F1 × cos(θ1) + F2 × cos(θ2) + F3 × cos(θ3)− Rx = max (4)

F1 × sin(θ1) + F2 × sin(θ2) + F3 × sin(θ3)− Rz + 0.5 × CL × A × V2
x × ρ = maz (5)

F1 × cos(θ1) + F2 × cos(θ2) + F3 × cos(θ3) = max (6)

where Fi—thrust of the i-th motor [N]; θ_i—tilt angle of the i-th motor [◦]; m—total mass of
the aircraft [kg]; ax—acceleration in the X direction of the aircraft [m/s2]; az—acceleration
in the Z direction of the aircraft [m/s2]; Rx—drag in the X direction [N]; Rz—drag in the Z
direction [N]; CL—aerodynamic coefficient of the wing; ρ—air density [kg/m3]; A—wing
area [m2]; Vx—speed in the X direction [m/s].
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It should be noted that during takeoff/landing, the tilt angles of the motors are 90◦

(parallel to the Z-axis of the aircraft), except for motor M2, which has a small tilt angle
to cancel the reactive moment of motor M3. In the transition or at low speeds (below the
required lift limit), the wing maintains its pitch angle, but the motors begin to be vectorized
to decompose the thrust and thus have forward motion. When the wing provides the
necessary lift for the aircraft, motors M1 and M2 are stopped, and motor M3 operates with
a tilt angle of 0◦. All control is performed by motor speeds and vectoring angles when the
speed is zero or the wing does not provide the necessary lift, and when the lift is entirely
provided by the wing, stability control is entirely handled by control surfaces, namely
elevons. The drone was not designed to fly in rain or strong winds.

3.2. Results of Manufacturing the Experimental Model Structure

To create the central body structure of the drone, the process began with the creation
of molds for the matrices. The mold for the central body of the drone was made using
milling on computer numerical control (CNC) machines.

To achieve such a mold and its related structure, the following steps are followed: the
mold is machined from easily milled materials HDF (high-density fiberboard); the finished
surface is treated (in the case where the mold is made of wood, lacquer is applied to its
surface); the mold is finished; a release agent is applied; gelcoat is applied (epoxy paint,
polyurethane paint, etc.); the part is laminated (reinforcing materials and the polymeric
matrix—a mixture of resin and hardener—are placed); after the polymer matrix has cured,
the part is extracted from the mold.

After the milling of the model is complete, the areas are analyzed and manually
finished using abrasive strips of appropriate fineness, as shown in Figure 12.
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The molds for the aerostructure were created using the manual lay-up method at
room temperature with the aid of a brush/roller [42]. As a result of the process, Figure 13
illustrates the completion of the fuselage mold. In this way, the molds that will facilitate
the creation of the complex aerodynamic shapes of the fuselage and other components
constituting the aerostructure were produced.
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Further, in Figure 14, the creation of molds for the frontal and posterior components
of the aerostructure is presented.
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The next step is to create the load-bearing structure consisting of ribs, stringers, and
other internal structural elements inside the fuselage and wing. These were made from
lightweight plywood, as shown in Figure 15.
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Figure 15. Cutting out the elements that will constitute the interior structure.

After the cutouts were complete, the assembly stage followed; it was accomplished by
joining the pieces according to Figure 16 and permanently bonding them using an adhesive.
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Figure 16. (a) Three-dimensional model; (b) physical model for the interior structure; (c) fuselage and
assembly of the structure envelope.

The final step to complete the fuselage, as shown in Figure 17, is to cover the internal
structure with adhesive and then proceed with the other half of the covering.
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The same construction process will be used for the other components, such as the
central wing and the wingtip, as well as the winglet. The manufacturing process for these
involves the “lay-up” method assisted by a vacuum.

The next step is to create molds for the sections that will constitute the wings of the
experimental UAV model. Three molds were made for the wings according to the design:
the main part of the wing, its extremity, and the winglet, as shown in Figure 18.
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The manufacturing process for the three parts of the wings is presented further, as
shown in Figure 19.
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Figure 20 depicts the three main parts of the wing in their final configuration before assembly.
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The next step is to assemble the three components of the wing, couple them with the
fuselage, and attach the propulsion systems to the wings. The assembly process begins
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with the central part—the fuselage—to which the main part of the wing is attached, as
shown in Figure 21.
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propulsion system is demonstrated. In Figure 22, the assembly of the wingtip with the
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The assembly of the winglet is carried out using two pins for guidance and alignment
with the outer plane of the wingtip. Fixation is achieved with the help of a neodymium
magnet, as illustrated in Figure 23.
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3.3. Results of Manufacturing the Experimental Model Structure

In order to analyze the electrical installation, the electrical components are presented
in Table 4, accompanied by brief descriptions and their respective masses.
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Table 4. Electrical components of the UAV.

Equipment Type Description Mass [g]

MN805-S KV170 Voltage: 6-12S, maximum power: 4000 W 625

FLAME 100A 14S Continuous maximum current: 100 A; voltage: 6-14S 139

Servo motor BLS-5404H Voltage: 4.8–8.4 V; torque at 8.4 V: 50.9 kg·cm; speed at 8.4 V:
0.11 s/60◦; current: 9.1 A at 8.4 V 77.5

Servo motor HV-5101 Voltage: 4.8–8.4 V; torque at 8.4 V: 6.8 kg·cm; speed at 8.4 V:
0.10 s/60◦; current: 0.645 A at 8.4 V 18

Orange Cube Autopilot 73

Herelink v1.1 Encrypted transmission system; range: 20 km; resolution: full
HD; frequency: 2.4 GH 95

Hobbywing UBEC 25A Input: 3S–18S; output: 5.2/6/7.4/8.4 V; current: 25 A. 74

HOLYBRO Power Module-PM06 V2-14S Power Module Output: 5 V; input: 2S–14S; current: 60 A 24

Raspberry Pi 4 For acoustic system control and reading meteorological sensor

BME680 Meteorological sensor for temperature, humidity, barometric
pressure, and VOC (volatile organic compound) gas 3

ZR10 Video camera
Voltage: 3–4 S; 10× optical zoom (30× hybrid zoom);

resolution: 2 k; control: S.bus/PPM/UART/UDP; video output:
Ethernet; power consumption: 3 W with 3-axis GIMBAL

381

HERE3+ GPS Antenna For GPS signal 51.8

The electrical system of the drone is depicted in Figure 24, illustrating the schematic
diagram of the UAV’s electrical configuration.
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Figure 24. Electrical diagram of the UAV.

The three ESCs are directly powered by the batteries, while other components require
a lower voltage supply. Therefore, voltage step-up/step-down modules were employed.
The S-S (left vectorization), D-D (right vectorization), and T (tail motor vectorization) servo
motors are powered at 8.4 V through a UBEC module capable of delivering up to 25 A. The
flight computer along with the GPS antenna is supplied at 5.2 V from the power module,
and the servo motors controlling the control surfaces are also powered at 8.4 V, but from a
different UBEC module. To power the video camera, which requires 12 V, a voltage booster
module is placed between the camera and UBEC 2, raising the voltage from 8.4 V to 12 V.
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The acoustic system along with the meteorological sensor needs to be powered at 5V,
a voltage obtained by reducing the voltage from UBEC 2 from 8.4 V to 5 V using a voltage
step-down module.

Figure 25 illustrates the positioning of electronic components in the UAV system. In
this figure, the arrangement of the motors and their notation can be observed. UAV control
is carried out through three methods, depending on the flight mode.
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• In VTOL flight mode (hovering): UAV control is achieved by adjusting the speed of the
three motors, and roll stability is maintained through vectorization of the front motors.

• In cruise mode: UAV control is performed by manipulating control surfaces and
adjusting the speed of motor T.

• In transition mode from VTOL to cruise: Control is managed through the speed of the
three motors and their vectorization.

Figure 26 depicts the positioning of the D-D, D-2, and D-1 servo motors, as well
as the D ESC. It is evident that all servo motors are placed near the control systems to
minimize travel. Servo motors D-1, D-2, S-1, and S-2 control the elevons on the wings,
while servo motors D-D, S-S, and T control the vectorization angle of each motor in the
propulsion system.
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Figure 26. Placement of equipment at the wingtip.

In Figure 27, the fuselage is transparent to allow for a view of the positioning of central
electronic components. Battery 1 is mounted in the frontal area of the fuselage, while
battery 2 is positioned dorsally. Through their placement, the desired center of gravity
of the UAV is adjusted. The Orange Cube flight computer and the Airunit transmission
system are mounted side by side in the central area of the fuselage, with the flight computer
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being rigidly attached to the fuselage. Servo motor T and ESC T are also highlighted in
the figure.
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3.4. Acoustic System of the Drone

To fulfill the project’s objective, the UAV must be equipped with an acoustic system
for the automatic detection and localization of the noise source (chainsaw) to verify the
legality of tree cutting when the UAV flies over forests. Additionally, the UAV’s payload
must include a meteorological sensor. Figure 29 presents the microphone positions.

The acoustic system, along with the meteorological sensor, is arranged according to
the following electrical scheme in Figure 30.

The chosen data processing computer is a Raspberry Pi 4 powered by the UAV’s power
circuit. It supplies power to and controls the sensors, namely the four microphones and
the meteorological sensor. In the first stage, the Hifiberry measurement microphone, a
measurement microphone, is designed with only one goal: linear frequency response [43].
The chosen meteorological sensor is the BME680. The meteorological sensor can record
data about temperature, humidity, barometric pressure, and gases with volatile organic
compounds (VOCs).

The connection between the acoustic computer and the flight computer is made
according to the scheme, to establish UART communication between the two computers
and send a Mavlink command to change the flight direction according to the calculated
direction of the noise source within the acoustic system.
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Figure 29. Placement of microphones on the UAV and the microphone.
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The developed software is divided into two equally important parts. The first part
involves training an artificial intelligence using mel-frequency cepstral coefficients (MFCCs).
The initial segment of the software reads a number of audio files, which are of two types.
The first type of audio file encompasses various sounds, excluding specific sounds such
as electric/thermal saws and chainsaws. To enhance the accuracy of artificial intelligence
for diverse sounds, a sound resembling a power drill was chosen because its frequency
spectrum closely resembles that of a chainsaw.

The second type of audio file pertains to specific sounds, such as those produced by
saws and chainsaws. After reading these files, the results are transmitted to the MFCC
feature. This initiates data pre-processing by enhancing the signal through a filter that em-
phasizes high frequencies. The resulting signal is then divided into a series of overlapping
short frames. Each frame has an average duration of 30 ms and is analyzed individually.
The next applied process is the fast Fourier transform, which converts the signal from the
time domain to the frequency domain. The final result is represented by a set of coefficients
that depict the short-term power spectrum of the sound in different frequency bands. In
conclusion, MFCCs are popular in such applications because they capture the essential
features of the audio signal while eliminating unnecessary details. The logical flow of this
first part of the software is illustrated in Figure 31.
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After the first part of the AI software is complete, the AI is fully trained and capable
of recognizing the sound of tools used in illegal deforestation. The software proceeds
to the second part. If the first part can be considered an education phase for the AI, the
second part involves using the fully trained AI to recognize the specific sound at various
instances and then instructing the autopilot to change the drone’s direction towards the
detected sound.

The operational principle is as follows: The four microphones, positioned as shown
in Figure 29 (0◦, 90◦, 180◦, 270◦ relative to the front of the drone), record the surrounding
sound and transmit it to the database where the sounds are classified by the trained AI.
Once classified, the sounds can be of two types: diverse sounds or specific sounds. After
identifying the type of sound, if it is diverse, the drone continues on its predefined path.
If the sound is classified as specific, the microphone that recorded the sound is identified,
and with the use of a mathematical algorithm, the angle from which the specific sound
source is generated is calculated. With the help of a Mavlink command, the drone changes
its flight direction towards the specific source. The logical flow is presented in Figure 32.

At the completion of the electronic components’ installation, the developed UAV
appears as shown in Figure 33.

After the components were fabricated, they were weighed to estimate the total mass
of the UAV (Table 5).
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Table 5. Component mass.

Name Mass [g] Number Total Mass [g]

Winglet + semi-wing 368.5 2 737

Wing 1351 2 2702

Fuselage 2247.3 1 2247.3

Landing gear 27.2 3 81.6

Electronics 1000 1 1000

Motor 625 3 1875

Propeller 110 3 330

ESC 139 3 417

Vectorization servo 77 3 231

Control surface servo 18 4 72

Video camera 381 1 381

Acoustic system 500 1 500

Flight controller (FC) 73 1 73

Airunit 95 1 95

Front motor mounting system 334.6 1 334.6

Dorsal motor mounting system 194 1 194

Battery 2200 2 4400

Total 15,670.5

It can be observed that the total mass of the UAV is approximately 15 kg, as shown in
Table 5, including the batteries, which aligns with the calculations from the UAV design.

In order to validate the acoustic system, the first step involved mitigating any potential
errors; the training code for artificial intelligence analyzed over 20 h of chainsaw sounds
and imposed the condition that any sound with an amplitude within 90% of that of the
chainsaws be deemed false and labeled as nonspecific noise. Following the acoustic analysis
of the UAV engines, an average amplitude of 44.24 was obtained, which corresponds to
85% of the minimum amplitude of the chainsaws.

The ground tests were conducted as described in Figure 34. The chainsaw, i.e., a
commercial chainsaw with a sound power level of 116 dB, was placed at a different angle.
Once the sound from the chainsaw was captured by the microphones, four wav files were
saved in the Raspberry PI4, and then the AI analyzed the files based on the logical scheme
shown in Figure 35.



Inventions 2024, 9, 39 22 of 25Inventions 2024, 9, x FOR PEER REVIEW 24 of 27 
 

 
Figure 34. The ground tests. 

 
Figure 35. Logical scheme for ground tests. 

The AI analyzes the sounds recorded by the microphones. As a result of the analysis, 
the sounds are classified as specific sounds (from a chainsaw) or not specific (from other 
sound sources). Once the sound is classified as an SS (specific sound), the algorithm moves 
forward with the calculation of the sound angle; otherwise, the algorithm ends with “No 
SS found”. 

4. Conclusions 
Following the research, an investigation and development of a fixed-wing VTOL 

UAV were conducted with the mission of identifying and locating a specific noise 
generated by a chainsaw to combat illegal logging. The experimental model, developed 
through its configuration, ensures a large flight autonomy and the capability of vertical 
takeoff and landing, eliminating the need for ground infrastructure for these operations. 
The UAV is equipped with an acoustic system that allows the identification of the 
chainsaw sound using AI on board a companion computer within the UAV, which 

Figure 34. The ground tests.

Inventions 2024, 9, x FOR PEER REVIEW 24 of 27 
 

 
Figure 34. The ground tests. 

 
Figure 35. Logical scheme for ground tests. 

The AI analyzes the sounds recorded by the microphones. As a result of the analysis, 
the sounds are classified as specific sounds (from a chainsaw) or not specific (from other 
sound sources). Once the sound is classified as an SS (specific sound), the algorithm moves 
forward with the calculation of the sound angle; otherwise, the algorithm ends with “No 
SS found”. 

4. Conclusions 
Following the research, an investigation and development of a fixed-wing VTOL 

UAV were conducted with the mission of identifying and locating a specific noise 
generated by a chainsaw to combat illegal logging. The experimental model, developed 
through its configuration, ensures a large flight autonomy and the capability of vertical 
takeoff and landing, eliminating the need for ground infrastructure for these operations. 
The UAV is equipped with an acoustic system that allows the identification of the 
chainsaw sound using AI on board a companion computer within the UAV, which 

Figure 35. Logical scheme for ground tests.

The AI analyzes the sounds recorded by the microphones. As a result of the analysis,
the sounds are classified as specific sounds (from a chainsaw) or not specific (from other
sound sources). Once the sound is classified as an SS (specific sound), the algorithm moves
forward with the calculation of the sound angle; otherwise, the algorithm ends with “No
SS found”.

4. Conclusions

Following the research, an investigation and development of a fixed-wing VTOL UAV
were conducted with the mission of identifying and locating a specific noise generated
by a chainsaw to combat illegal logging. The experimental model, developed through its
configuration, ensures a large flight autonomy and the capability of vertical takeoff and
landing, eliminating the need for ground infrastructure for these operations. The UAV is
equipped with an acoustic system that allows the identification of the chainsaw sound
using AI on board a companion computer within the UAV, which automatically performs
the identification using a prepared database. Subsequently, the direction from which the



Inventions 2024, 9, 39 23 of 25

specific sound originates is identified, and a MAVLINK command is sent to change the
direction to the flight computer.

Therefore, this paper presents the research and development of a UAV designed to
combat illegal tree cutting, ensuring a large flight autonomy, good maneuverability, and
ease of operation due to the innovative VTOL system. Additionally, an algorithm of the
acoustic system, together with the presented hardware system, can identify and locate
specific chainsaw sounds. The UAV then automatically moves above the noise source and
takes pictures, and these visual pieces of information are verified by the relevant authorities.

As future directions for development, optimizing the acoustic system for improved preci-
sion and conducting UAV testing with the identification system over forests are recommended.
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