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Abstract: Energy transformation powers change in the universe. In physical systems, maximal
power (rate of energy input or output) may occur only at submaximal efficiency (output/input),
or conversely, maximal efficiency may occur only at submaximal power. My review of power and
efficiency in living systems at various levels of biological organization reveals that (1) trade-offs
(negative correlations) between power and efficiency, as expected in physical systems, chiefly occur
for resource-supply systems; (2) synergy (positive correlations) between power and efficiency chiefly
occurs for resource use systems, which may result from (a) increasing energy allocation to production
versus maintenance as production rate increases and (b) natural selection eliminating organisms that
exceed a maximal power limit because of deleterious speed-related effects; (3) productive power
indicates species-wide ‘fitness’, whereas efficiency of resource acquisition for production indicates
local ‘adaptiveness’, as viewed along a body size spectrum and within clades of related species; (4) co-
variation of the power and efficiency of living systems occurs across space and time at many scales;
(5) the energetic power/efficiency of living systems relates to the rates and efficiencies/effectiveness
of nutrient/water uptake/use, the functional performance of various activities, and information ac-
quisition/processing; and (6) a power/efficiency approach has many useful theoretical and practical
applications deserving more study.

Keywords: power; efficiency; production; resource acquisition; fitness; adaptation; body size; geo-
graphical range size; niche breadth; habitat stability

1. Introduction

Activity of any physical system (i.e., changes in its properties, including its spatial
position and that of its parts, its shape or spatial configuration, its physical/energetic
composition, and its capture or emittance of energy or materials) involves the uptake and
transformation of energy. The fundamental concepts of ‘power’ and ‘efficiency’ describe
the rate of energy uptake and transformation driving various kinds of physical activity
and the proportional transfer or conversion of energy into work or useful forms of energy,
respectively. In short, ‘power’ and ‘efficiency’ refer to the ‘rates’ and ‘ratios’ of energy input
and output. Mathematically, physicists describe ‘power’ (P) as being W/t or U/t, where
W is work (force x distance), U is the amount of useful energy acquired/produced minus
unused heat loss, and t is time [1]. The concept of ‘efficiency’ (E) is described as W/T or
U/T, where T is the total energy input. These concepts are based on the first and second
laws of thermodynamics (energy cannot be created or destroyed, but only transformed into
another form; and no energy transformation is 100% efficient, respectively [2]). Thus, the
concepts of power and efficiency are fundamental for understanding the dynamics and
energy transformation of all physical systems, both living and non-living (see, e.g., [3–8]).

Given the wide-ranging importance of power and efficiency in living systems, I am
unable to provide a comprehensive, detailed review of all the diverse theoretical, empirical,
and practical applications of these concepts. Instead, I primarily focus on two of the
most significant approaches that biologists have used to analyze living systems from a
power/efficiency perspective. First, I focus on studies that have examined how power and
efficiency covary in various biological and ecological systems. In doing so, I consider the
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influential view promoted by Odum and Pinkerton over 60 years ago [5] and still advocated
today (e.g., [8]) that living systems generally show a trade-off between power and efficiency,
like some non-living physical systems under equilibrium conditions (Section 2). According
to their “maximum power principle”, maximal power is achieved at submaximal efficiency.
Conversely, I also highlight another insufficiently appreciated view that maximal efficiency
is achieved at submaximal power, which I call the “maximum efficiency principle”. Both
principles, which are derived from observations of non-living physical systems, predict that
power and efficiency should covary negatively in living systems (Section 2). As will be seen,
however, there are many exceptions to this prediction. In fact, many living systems show a
positive correlation between power and efficiency (Section 3). To help explain both negative
and positive relationships observed between power and efficiency in living systems, I
hypothesize that resource supply systems should usually show negative covariation (trade-
offs) between power and efficiency, whereas resource use systems should usually show
positive covariation (synergy) between power and efficiency. These predictions are justified
mechanistically and supported by abundant empirical evidence in Section 3 and other
sections of my review. My discussion of the covariation of power and efficiency in living
systems bears on our understanding of many biological patterns and processes, including
the thermodynamics of cell metabolism, the energetics and body size scaling of rates of
metabolism, growth, reproduction, and locomotion in organisms, of growth and production
in populations, and of energy flow in ecosystems (Sections 3 and 4).

Second, I focus on studies that use the concepts of power and efficiency as measures
or indicators of evolutionary fitness or adaptation (Sections 5–7). Several biologists have
suggested that maximal power (rate of resource use) for production (including specifically
reproduction) is a useful energetic index of evolutionary fitness (Section 5 [3,7,9–13]).
Furthermore, J. H. Brown and colleagues [14] have argued that the universal action of
natural selection favoring maximal power per generation has resulted in species of all sizes
having essentially equivalent energetic fitness, a view called the “equal fitness paradigm”
(also see [15,16]). By contrast, other scientists have considered energetic or functional
efficiency as an appropriate measure, indicator, or result of adaptation (Section 6 [9,17–19]).
In Section 7, I further discuss how power and efficiency relate to fitness and adaptiveness
and how they covary in various organismal and ecological systems over space and time,
thereby linking the two major approaches that are emphasized in my review. Specifically,
I propose and justify a hypothetical scheme showing how power (fitness) and efficiency
(adaptiveness) at the level of species should scale inversely with body size, thus offering
a fundamentally different viewpoint than the “equal fitness paradigm” proposed by J.
H. Brown and colleagues [14–16]. I also show how species-wide power (fitness) and
efficiency (adaptiveness) may vary inversely with niche breadth, population stability, and
geographical range size within clades of related species. I hypothesize that these patterns
are driven, at least in part, by mortality rates that depend on body size and relative habitat
stability. In addition, I describe how the power and efficiency of living systems vary in
space (geography) and time at various scales (daily, seasonally, ontogenetically, ecologically,
and geologically). I thereby provide more evidence of how power and efficiency covary
in living systems, as well as new perspectives concerning (1) daily/seasonal variation of
the power/efficiency of living systems, (2) ontogenetic shifts in power/efficiency and their
possible implications for the evolution of life histories, and (3) macroevolutionary trends in
power/efficiency, including the geologically recent origin of high-powered endothermic
birds and mammals, all of which deserve further exploration.

In Section 8, I discuss some applications of a power (rate) versus efficiency (effec-
tiveness) perspective to nutrient/water uptake/use, performance of various functional
activities, and information acquisition/processing. I hope that this section will stimulate fu-
ture development of synthetic theory that links rates and efficiencies of the uptake and use
of energy, water, nutrients, and information in living systems. In Section 9, I briefly mention
some potential practical benefits of a power/efficiency perspective, including maximizing
production in fisheries, agriculture, forestry, and human economic systems, as well as im-
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proving the effectiveness of microbial bioremediation strategies and bioenergy production.
Finally, in Section 10, I summarize the major conclusions of my review. I hope that my
analyses and conjectures will stimulate others to further explore the relevance of power and
efficiency and their covariation in a variety of living systems at various hierarchical levels
of organization, from cells to ecosystems, and over different time scales, from physiological
to geological. This subject is of fundamental importance for understanding the dynamics of
both living and non-living systems and thus deserves more attention than it has received,
including the development of new theory that recognizes the existence of both positive and
negative relationships between power and efficiency. I outline some ways that this could
be done, including incorporating novel distinctions between negative power/efficiency
covariation in resource supply systems versus positive power/efficiency covariation in
resource use systems and between power-enhancing fitness versus efficiency-enhancing
adaptation. Maximal power theory that has been advocated for decades is insufficient for
fully explaining the diverse relationships between power and efficiency that have been
observed in living systems.

2. Covariation between Power and Efficiency in Physical Systems

The ecologist Howard T. Odum and physicist Richard Pinkerton [5] described how
the maximal power output of Atwood’s machine (a gravity-powered pulley system of
opposite falling and rising weights) occurs when the efficiency of energy conversion is
less than maximal (apparently not 50% as they say, but 61.8% according to [7]). Thus,
maximal power is reached at the expense of submaximal efficiency. They further argued
that this trade-off between power and efficiency seen in a simple machine applies to many
other kinds of physical energy-transforming systems. They mathematically derived this
trade-off for closed thermodynamic systems and claimed that it applies to various kinds
of human-made mechanical, electrical, and thermal systems with coupled components.
Odum and Pinkerton’s “maximum power principle” (MPP) has been applied to many other
kinds of natural physical systems as well [8,20].

However, to be clear, the MPP is a “maximum power at intermediate efficiency
principle”. Physical systems may also show a “maximum efficiency at intermediate power
principle”, or, for short, a “maximum efficiency principle” (MEP) (Figure 1a). The MEP is
exemplified by automobiles and other vehicles of transportation whose fuel use efficiency
is maximized at intermediate travel speeds (power) ([4,21], also see Section 3.1). When
stopped but engaged, their travel power and efficiency are zero, with all fuel being used for
an idling engine (standby costs). As an automobile begins to move and increase its speed,
proportionally more fuel is used for movement relative to standby costs, thus increasing
both travel power and efficiency. This increase is asymptotic, and eventually, as travel
speed increases further, fuel use efficiency declines because of increasing energy-draining,
frictional costs (heat loss) apparently associated with the rapid movement of engine parts,
air resistance, and resistance of the travel surface to rolling tires.

As noted by Hall and McWhirter [8], the MPP has been inadequately tested (including
by Odum himself). Moreover, some reported examples of the MPP are really examples of
the MEP, a confusion that should be avoided (see Section 3).
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Figure 1. Covariation between power and efficiency as dictated by a “maximum efficiency principle”
(MEP; see text). (a) As power output (Watts = J/s) of a physical system increases, efficiency of
conversion of input energy into power output (%) increases and then decreases in a curvilinear
(concave downward) way. (b) In biological systems involving growth, reproduction, and locomotion,
a limit on maximal power production (dashed vertical line) may cause gross production efficiency
(including maintenance costs) to increase positively with increasing production rate in a decelerating
(asymptotic) way, as often observed [4]. Compare to Figures 6 and 7.

3. Covariation between Power and Efficiency in Living Systems
3.1. Empirical Patterns

Odum and Pinkerton [5] claimed that trade-offs between power and efficiency should
apply to living energy-transforming systems, including organismal metabolism, photo-
synthesis, food capture for maintenance, production in an ecological community, and
growth and maintenance of a human civilization. However, only a few unequivocal ex-
amples of power–efficiency trade-offs in living systems have been described. For example,
Gnaiger [22] claimed that biochemical pathways involved in hypoxic metabolism show
an inverse correlation between power and efficiency, but this view has been disputed
(see exchange between [19] and [23] and references cited therein). Richman [24] reported
an inverse correlation between rates and efficiencies of food assimilation in water fleas
(Daphnia), which also occurs in other animals (see Section 3.3). Many vertebrate animals
exhibit minimal energy use per minute or distance traveled (and thus maximal efficiency)
at intermediate travel speeds [25,26], as do automobiles, airplanes, and helicopters [4,20,26],
but these examples follow the “maximum efficiency principle” (MEP), rather than the
“maximum power principle” (MPP) of [5,8,20]. Smith [7] suggested that rates and effi-
ciencies of production vary inversely in plants representing different stages of ecological
succession, but this hypothesis still requires rigorous testing (also see Section 7.6.4). Harris
and colleagues [13] described how the power of net photosynthesis (minus respiratory
energy losses) was maximal at intermediate efficiencies ([net primary production]/[gross
primary production]) along an elevational gradient in the Luquillo forest of Puerto Rico.
Odum [27] also noted that a comparison of experimental phytoplankton communities
exposed to different light intensities revealed a humped relationship between the rate
and efficiency of primary production, as predicted by the MPP. Lastly, trophic transfer
efficiencies (TTEs) from phytoplankton production to zooplankton production tend to be
inversely related to the productivity and nutrient loading of freshwater lakes ([28,29]; but
see [30]). Similarly, limited data on four freshwater spring ecosystems suggest that TTE
from producers to primary consumers (herbivores) tends to decrease, at least approximately,
with increasing primary productivity and water temperature (Figure 2). Since increasing
temperature increases metabolic rates, this pattern seems to show negative relationships
between power (rate of energy use) and efficiency, though temperature effects on TTE may
be complicated by different upper temperature tolerances of autotrophs and heterotrophs
and increasing dominance of microbial autotrophs that do not provide a sufficient diet for
large animals at higher temperatures [31] (also see Section 3.2).



Sci 2024, 6, 28 5 of 56
Sci 2024, 6, x FOR PEER REVIEW 5 of 55 
 

 

Freshwater springs

Net primary production (1000 kcal/m2/yr)

2 4 6 8 10 12

Tr
op

hi
c 

tr
an

sf
er

 e
ffi

ci
en

cy
 (%

)

0

5

10

15

20

25

9.5 12.6 23.0 38.7

 
Figure 2. Trophic transfer efficiencies, defined as (net primary consumer production)/(net producer 
production), in relation to net primary productivity and water temperature for four freshwater 
springs (data from [32–35]). Each red dot represents an individual spring system. Water tempera-
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Figure 2. Trophic transfer efficiencies, defined as (net primary consumer production)/(net producer
production), in relation to net primary productivity and water temperature for four freshwater
springs (data from [32–35]). Each red dot represents an individual spring system. Water temperatures
(◦C) are given above the X-axis line.

By contrast, many energetic studies at the levels of cells, organisms, populations,
and communities have reported positive correlations between power and efficiency. At
the cellular level, mitochondrial coupling efficiencies (ATP/O) increase with increas-
ing metabolic rates [36–38]. In addition, many kinds of microbes, including bacteria,
yeasts, and protists, exhibit positive associations between rates and efficiencies of cellular
growth [4,39–41].

Animal scientists have frequently demonstrated that the rates and efficiencies of pro-
duction (somatic growth and egg/milk production) and muscular work covary positively in
humans and various domestic animals [4,42]. Positive correlations between the speed and
efficiency of growth or reproduction have also been described in many other animal species,
including hydra [43], nematodes [44], rotifers [45], cladocerans [24], oysters [46], snails [47],
echinoderms [48], insects [49,50], fishes [51–54], birds [55], and laboratory mice [56] (also
see Section 7.2). Similar results have been found in a comparison of offspring growth
rates and efficiencies during lactation of five species of white-footed mice (Peromyscus and
Podomys) and more broadly among 11 rodent species [57]. In addition, increasing light
intensity or nutrient levels enhances both the rate and efficiency of tree growth [58] (also
see Sections 3.3, 7.2 and 7.6 for other examples of positive covariation of productive power
and efficiency in individual organisms).

Additional examples of positive (or non-negative) correlations between power and
efficiency occur at the population and community/ecosystem levels. Citing [59], Smith [7]
claimed that animals feeding on concentrated food resources both grow faster and have
higher production efficiencies relative to species feeding on dispersed food resources. In
fact, using log10-transformed data from [59], I calculated a significantly positive relationship
between the rate and efficiency of secondary production among 20 animal populations
(Figure 3; but see [60]). In aquatic ecosystems, bacterial growth (production) efficiency
covaries positively with bacterial growth rate and primary production, increasing from
nutrient-poor to nutrient-rich conditions [39]. Photosynthetic efficiency (PE) also correlates
positively or non-significantly with the annual net primary production of various terrestrial
plant communities, depending on whether PE is based on the total incoming solar radiation
striking the landscape or only the solar radiation intercepted by the vegetation, respectively
(Figure 4). In either case, no trade-off between power and efficiency is seen. Similarly, net
primary production (minus energy costs of respiration) varies in a constant proportion
with gross primary production across various forest ecosystems [61–64], thus revealing no
relationship between the rate and efficiency of forest production.
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Figure 4. Positive correlation between photosynthetic efficiency [PE = %NPP/PAR] and net primary 
production (NPP: g/m2/yr) across 16 terrestrial plant communities (PAR = photosynthetically active 
solar radiation, which varied over 2-fold among sites from 1.5 to 3.6 × 106 kJ/m2/yr). Pearson Corre-
lation Coefficients (r) and significance levels (p) are shown. The relationship between PE and NPP 
is also significant for the 12 forest communities taken alone (r = 0.961; p < 0.00001 for dashed line). 
Also shown is PE/FSC in relation to NPP (red symbols), where FSC = the foliage standing crop 
(g/m2). Data from [61]. Note that PE represents the photosynthetic efficiency based on the total in-
coming solar radiation to the landscape, whereas PE/PSC is based approximately (and more realis-
tically) on the solar radiation intercepted by vegetation [61]. 
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Figure 4. Positive correlation between photosynthetic efficiency [PE = %NPP/PAR] and net primary
production (NPP: g/m2/yr) across 16 terrestrial plant communities (PAR = photosynthetically active
solar radiation, which varied over 2-fold among sites from 1.5 to 3.6 × 106 kJ/m2/yr). Pearson
Correlation Coefficients (r) and significance levels (p) are shown. The relationship between PE and
NPP is also significant for the 12 forest communities taken alone (r = 0.961; p < 0.00001 for dashed
line). Also shown is PE/FSC in relation to NPP (red symbols), where FSC = the foliage standing
crop (g/m2). Data from [61]. Note that PE represents the photosynthetic efficiency based on the
total incoming solar radiation to the landscape, whereas PE/PSC is based approximately (and more
realistically) on the solar radiation intercepted by vegetation [61].

Furthermore, a broad comparison of aquatic and terrestrial ecosystems reveals that
power and efficiency are positively correlated for energy flow across trophic levels [65].
Ecosystems with rapid mass-specific energy flow from producers to animal consumers (e.g.,
aquatic plankton communities) exhibit higher trophic transfer efficiencies than do those
with low mass-specific energy flow (e.g., terrestrial forest communities). Trophic transfer
efficiencies from producers to animal consumers also positively correlate with primary
productivity along a latitudinal gradient in the Atlantic Ocean [66] and within each of two
groups of terrestrial ecosystems: relatively mesic forest biomes and relatively arid non-
forest biomes (Figure 5; note that these positive patterns are obscured when heterogenous
aquatic and terrestrial ecosystems having a variety of plant/phytoplankton forms with
different levels of palatability are analyzed together; see, e.g., Cebrian [67], who showed a
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triangular relationship between net primary production (NPP) and the proportion of NPP
consumed by herbivores).
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temperate evergreen forest; 9: tropical seasonal forest; 10: tropical rain forest.

3.2. Theoretical Explanations

Clearly, relationships between power and efficiency need not be negative, as predicted
by the MPP [5] or MEP (Figure 1a). Why is this so? Watt [19] argued that non-equilibrium
living systems cannot be understood simply in terms of equilibrium physical systems (e.g.,
Atwood’s machine and thermodynamic systems following Carnot’s efficiency theorem).
In far-from-equilibrium, open living systems, as the power of an energy transformation
process increases, its efficiency may not decrease and may even increase (also see [69,70]).
Indeed, natural selection may increase both (see examples in [19]). According to Watt [19],
the speed and efficiency of biosynthesis are expected to correlate positively, because they
are both promoted by similar changes in biochemical kinetics. In addition, Ho [70] has
argued that coherent activities (coupled cyclic flows) in organisms may foster both speed
and efficiency of energy mobilization. The same may occur in ecosystems [71].

Also consider that positive associations observed for growth and reproduction in many
kinds of animals are often based on whole-body “gross efficiencies” that include costs of
maintenance [4]. As production rates increase, proportionately more assimilated food
energy is allocated to production versus maintenance, thus increasing production efficiency
(also see [24,57]). This pattern resembles the ascending side of the humped relationship of
fuel use efficiency versus travel speed observed in automobiles (see Section 2 and Figure 1a).
In living systems, somatic maintenance costs are analogous to the standby fuel costs of
idling engines. Moreover, when maintenance costs are subtracted, the “net efficiency” of
muscular work (minus maintenance costs) shows a humped relationship with climbing
speed (data of [72] presented in Figure 24.3 of [4]), bicycling speed [73], and other muscular
movements in humans [25,74,75], as predicted by the MEP. Similarly, net growth efficiency
shows a humped relationship with rates of growth and food intake in the minnow Phoxinus
phoxinus [76]. By contrast, both net and gross efficiencies of offspring growth are positively
related to offspring growth rates among rodent species [57]. In this case, the net growth
efficiency was calculated by subtracting the maintenance costs of the lactating mother who
supplies milk energy to the offspring, but not that of the offspring themselves.
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Furthermore, positive correlations between power and efficiency may only be seen in
some living systems because the maximization of productive power has been prevented
by various intrinsic and extrinsic limiting factors (also see Section 5.2). If so, only the
left-hand positive rise of the hump-shaped curve predicted by the MEP may be observed
(Figure 1b). Many examples of the efficiency of the conversion of food energy into growth,
reproduction, and locomotion showing a positive decelerating relationship with increasing
resource input and power output (e.g., [4,39,47,48,50,77–80]), sometimes with moderate to
substantial declines at the highest rations [76,81–85]), support this hypothesis (Figure 6).
Therefore, the “principle of diminishing returns” (or “increments”) [4,86] may be consistent
with the MEP if it is modified with a maximal power limit. Smith [7] describes further
biological and ecological factors that may prevent trade-offs between power and efficiency
being observed. In any case, positive or absent correlations between power and efficiency
may be as common, or more so, than negative correlations, thus showing that trade-offs
between power and efficiency should not be considered a general rule.
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Figure 6. Schematic representation of positive curvilinear relationships (blue line) between the power
(rate) and gross efficiency of somatic growth, muscular work, and production of eggs and milk
(includes energy costs of maintenance) in various domestic animals, illustrating the “principle of
diminishing returns” (or “increments”) (based on data in [4]). Compare with Figure 1b.

3.3. Covariation of Power and Efficiency in Biological Processes Involving Resource (Energy)
Uptake versus Use

To increase an understanding of the diverse patterns of covariation between power and
efficiency in living systems, I suggest that biological processes involving resource (energy)
uptake should be distinguished from those involving the use of assimilated resources
for various biological activities (Figure 7). I contend that biological processes involving
resource (energy) uptake should often show negative correlations between power and
efficiency for resources of the same type and quality, but positive correlations for resources
of different quality. In addition, biological processes involving the use of assimilated
resources (energy) should often show positive correlations between power and efficiency.
Therefore, covariation between power and efficiency should depend on the resource type
and the nature of the biological process being examined.

Biological resource uptake across surfaces may become overloaded as resource supply
increases. For example, as food intake increases, the assimilation rate (power) across gut
surfaces should increase, but assimilation (digestive/absorption) efficiency should decrease,
as observed in many kinds of animals (e.g., [4,24,50,82,85,87–90]). This trade-off between
power and efficiency may result from increasing proportions of larger food masses having
reduced contact with digestive enzymes and uptake surfaces, thus increasing the relative
amount of unassimilated food material passing through the gut [91]. In addition, increases
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in the rate of movement of food material through the gut decrease the proportional amount
that can be absorbed into the body [92–94]. The longer food is retained in the gut, the more
efficiently it can be digested and absorbed, as observed in avian predators feeding on the
same prey [95,96]. However, although rates and efficiency of digestion of the same type of
food are usually negatively related, some exceptions exist (e.g., [89,97,98]).
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Figure 7. Schematic representation of organismal resource uptake and use systems that often entail
negative versus positive covariation between power and efficiency, respectively. Resource uptake
(blue arrows) involves resource acquisition from the external environment and assimilation across
gut surfaces into the blood/body. Resource use (red arrows) includes growth, reproduction, and
muscular work.

By contrast, when comparing uptake of resources of different quality, positive associ-
ations between power and efficiency may be observed. Highly defended or indigestible
food sources should entail both lower rates and efficiencies of assimilation of usable energy
(nutrients) compared to more digestible food resources, thus yielding a positive correla-
tion between rates and efficiency of energy assimilation across food types, as observed
in shrews [99] and crabs [100]. Positive correlations between rates and efficiencies of
energy flow from producers to consumers across plankton, grassland, and forest ecosys-
tems [65] may also be explained in this way. Mass-specific rates and efficiencies of energy
flow are both lower in forests with large, well-defended, relatively indigestible producers
(trees) than in aquatic communities with small, relatively easily consumed, and digested
phytoplankton (also see [101,102]).

In addition, the use of assimilated resources (energy) for growth and reproduction
should show positive correlations between power and efficiency, as observed in many
kinds of animals (see Section 3.1). This is because increases in energy use (power) for
growth or reproduction increase the relative allocation of assimilated energy to production
versus maintenance (respiration), thus increasing gross production efficiency [4,24,39,57].
Similar increases in gross efficiency occur as the power of muscular work increases [4,25].
The power–efficiency contrast between resource supply and resource use systems is nicely
revealed in Daphnia spp. As food ration (and overall rate of energy flow) increases, as-
similation efficiency decreases [24], whereas production efficiency (i.e., the proportion of
assimilated energy used for growth and reproduction) increases [24,103]. A similar pattern
is shown by a rotifer, though at the highest ration levels, production efficiency decreases
somewhat [85]. Exceptions may occur when food limitation causes a greater proportional
decrease in energy use for maintenance versus production [98]. A complex picture may
also emerge if growth efficiency is based on ingested energy, thus preventing the separation
of effects of food ration on efficiencies of energy assimilation and conversion to tissue
growth [104,105].

However, why do trophic transfer efficiencies (TTEs) vary inversely with production
(power) in freshwater ecosystems (Figure 2, and [28,29]) but show positive covariation in
marine ecosystems and within each of two groups of comparable terrestrial ecosystems



Sci 2024, 6, 28 10 of 56

(Figure 4)? Unfortunately, a conclusive answer is not yet available, but I offer three sugges-
tions to stimulate further research. First, consider that these patterns involve both resource
uptake and use by animal consumers. Perhaps resource uptake trade-offs between power
and efficiency (left image in Figure 7) have predominate effects on animal consumers in
aquatic ecosystems, whereas resource use synergy between power and efficiency (right
image in Figure 7) has predominate effects on animal consumers in terrestrial ecosystems.
This difference may relate in part to the greater ability of herbivores to consume small vul-
nerable phytoplankton than larger, more protected shrubs and trees (hence the higher TTEs
observed in plankton versus shrub/forest ecosystems) [65,101,102]. However, although
this hypothesis may help explain the negative relationships between TTE and productivity
in the freshwater ecosystems, it cannot explain the positive correlation observed in marine
ecosystems. Second, consider that the nearly isothermal freshwater spring ecosystems
analyzed in Figure 2 differ greatly in water temperature (range of mean temperatures ≈
9.0 to 38.7 ◦C) throughout the year, and thus high maintenance costs related to thermally
enhanced metabolic rates may have reduced the proportion of assimilated energy available
for animal production, thus decreasing TTE from producers to consumers. This effect
may have been less important in the relatively thermally similar subtropical and tropi-
cal marine ecosystems compared [67] as well as in the terrestrial ecosystems analyzed,
whose often highly fluctuating temperatures were not as distinctly different during the
growing season. Therefore, it is possible that the power–efficiency synergy observed in
marine plankton ecosystems, forests, and other non-forest terrestrial ecosystems is due to
positive correlations between primary production (power) and the proportion of energy
assimilated by animal consumers devoted to production versus maintenance, following the
effects of higher food energy levels frequently observed in individual animals (Figure 6).
Third, the apparent power–efficiency trade-off observed in freshwater springs may be the
result of an inverse correlation between temperature and the number of tolerant animal
consumers that can survive (see, e.g., [106]). Indeed, a global survey of freshwater springs
revealed that over a range of temperatures from 4.5 to 31 ◦C, macroinvertebrate species
richness declines significantly [106]. With fewer consumer species at higher temperatures,
the amount of animal production per producer production should decrease. In addition,
eutrophic and dystrophic (humic) lakes with low TTEs may experience hypoxia and/or
high acidity that reduces zooplankton abundance and productivity [30,107,108]. Thus,
stressful abiotic conditions in freshwater lakes may cause low TTEs, rather than being the
result of a trade-off with productivity. This hypothesis is supported by a non-negative
(positive) correlation between the TTEs and productivity observed in marine plankton
ecosystems where stressful hypoxia and acidity were not evident [66].

A distinction between energy-uptake versus energy-use systems may help explain
some (but not all) of the variation in relationships between power and efficiency observed
in living systems. Further theory, such as that discussed in Section 3.2, is needed to explain
fully various patterns of power/efficiency covariation at different levels of biological
organization. Although positive covariation between power and efficiency in resource
use systems may be explained by the MEP with a maximal power limit (Figure 1b), the
contrasting covariation of power and efficiency in resource uptake systems involving the
same resource versus resources with different quality is not easily explained by the MEP.
For example, negative associations between the rates and efficiency of energy assimilation
(digestion) cannot be explained by assuming that they occur only on the right-hand side of
the hump-shaped curve predicted by the MEP, because (1) these associations have been
observed over a broad range of levels of food (energy) intake and power outputs from near
zero to very high [4], and (2) they may be concave upward instead of concave downward
(see Figure 5.5 in [4]), contrary to the MEP (Figure 1a).

4. Allometric Scaling of Power and Efficiency in Living Systems

In this section, I draw attention to how the concepts of ‘power’ and ‘efficiency’ have
been used in allometric scaling analyses. Although this section represents a sidebar to
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my discussion so far, it is a useful prelude to Sections 7.3.2 and 7.7 that consider how the
(co)variation of power and efficiency relates to body size. Some investigators have used the
term ‘power’ when describing scaling between rates (power) of metabolism, production,
or locomotion and body mass (e.g., [21,109–111]). Although this use is not problematic,
the use of the term ‘efficiency’ in allometric scaling analyses can be. For example, some
scientists (especially physicists) describe the hypometric body mass scaling of metabolic
rate as showing increased efficiency (economy) of energy use for maintenance in larger
animals (e.g., [14,111–116]). Moreover, some have proposed that this size-related efficiency
or ‘economy of scale’ has been an important factor driving the evolution of larger size (e.g.,
by allowing larger organisms to survive better through resource-poor periods [112,117,118]).
However, this view is misleading (or at least incomplete) in two ways.

First, much theory and evidence indicate that relatively low mass-specific rates of
metabolism and other metabolically dependent processes in larger animals relate to various
geometric, physical, biological, and ecological constraints, rather than being merely due
to natural selection for increased energetic efficiency. For example, to maintain constant
body temperatures, endotherms must balance metabolic heat production with heat loss
across their body surfaces. Because of their low surface area (SA) to volume (V) ratios, large
endotherms have greater problems dissipating heat, thus favoring lower metabolic rates,
compared to smaller species [42,119,120]. Indeed, if a steer had the mass-specific metabolic
rate of a mouse, its metabolic heat dissipation would cause its surface temperature to exceed
the boiling point [42]. In addition, larger organisms may suffer more stringent resource
supply limits because of their smaller SA/V ratios (reviewed in [121,122]) and because they
must transport resources over greater distances to reach all their metabolizing cells [123],
both of which could lower metabolic rate (but see [121,122,124,125]). Ecologically, lower
vulnerability to predation, but increased parasitism and intraspecific competition, may also
select for slower paces of life (including rates of growth, development, and reproduction)
requiring lower rates of metabolism in larger organisms [101,102].

If these and other constraints or selection pressures did not exist, natural selection
should cause organisms of all sizes to have similar power outputs (see Section 5) that scale
isometrically (loglinear scaling slope = 1). In fact, when constraints related to resource
supply or waste removal (including heat dissipation) are temporarily removed during
torpor, hibernation, or diapause, or temporarily bypassed during brief episodes of strenu-
ous exercise, metabolic scaling becomes isometric or nearly so [126–129], i.e., size-related
increases in ‘metabolic efficiency’ are reduced or absent.

Second, many kinds of biological efficiencies (e.g., assimilation, growth, and produc-
tion efficiencies) tend to scale zerometrically or nearly so with animal body mass (loglinear
slope ≈ 0) [57,60,130,131], thus showing that in many ways, larger species are not neces-
sarily more efficient than smaller species. In addition, within the unicellular prokaryotes,
unicellular eukaryotes, multicellular ectotherms, and multicellular endotherms, production
efficiency varies independently of body mass, but it decreases across these evolutionary
grades ([132,133]; but see [134]). The principal way in which energetic efficiency may
increase with increasing body size is with respect to resource (energy) acquisition from the
environment. As will be discussed further in Section 7.3.2, populations of large, protected
organisms that experience relatively low mortality rates are more likely to be nearer to
the carrying (resource) capacity of their environments (i.e., more regulated by food than
predators or other environmental hazards) compared to those of smaller vulnerable organ-
isms that experience high mortality rates. Therefore, the amount of population biomass
or energy used relative to environmental resource supply (i.e., the ecological efficiency of
converting available environmental resources into productive energy use) may be higher
in larger versus smaller organisms.

5. Power and Evolutionary Fitness

This section aims to discuss two major issues: (1) how evolutionary fitness has been
equated with energetic power production and (2) how various intrinsic and extrinsic factors
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may limit and cause variation in (re)productive power among species. In Section 6, I discuss
how adaptation has been equated with energetic efficiency or functional effectiveness. In
Section 7, I show how both viewpoints can be viewed as correct, if one distinguishes the
concepts of fitness and adaptation, often regarded as synonymous, as representing power
and efficiency, respectively. Evidence for this dichotomy is presented at the species level,
both for a broad body size spectrum and within clades of related species.

5.1. Theory of Universal Evolution of Maximal Power

Since all biological processes depend on metabolic energy, and natural selection favors
reproductive success (gene transmission to the next generation), one might argue that
natural selection should maximize the acquisition and conversion of resources (energy) into
reproduction, i.e., “reproductive power” [3,8–13,135,136]. The “struggle for life” described
by Darwin [137] can be viewed as a “struggle for acquiring available energy” [138], and
those organisms that do this best should outcompete and eventually replace relatively
unsuccessful energy gatherers/users [3,9,139–141]. Following this viewpoint, some biolo-
gists have suggested that the energetic power supporting reproduction (or, more broadly,
somatic and reproductive production above maintenance costs) can be considered a useful
non-tautological index of evolutionary fitness [10–13,142]. As such, it is a basic assumption
of the “equal fitness paradigm”, which posits that all species, small and large, have evolved
to maximize their reproductive power relative to generation time, thus causing them all
to have nearly equal energetic fitness, at least in a broad statistical sense [14–16] (but see
Section 7.3.2).

It is undeniable that an energetic perspective improves our understanding of evolu-
tion. Indeed, the field of evolutionary ecology (and specifically life-history evolution) is
filled with theories based on the evolutionary ‘optimization’ of resource (energy/nutrient)
acquisition and allocation to various vital functions and structures, including reproduction
(see, e.g., [89,136,143–146]). Indeed, nearly a century ago, Fisher ([147], p. 43) famously
encouraged the investigation of the evolution of organismal energy budgets by asking
what the conditions are that cause organisms to devote more or fewer of their available
resources (energy) to reproduction. However, the key word here is ‘optimization’. Natural
selection would favor equally high rates of uptake and use of energy for reproduction in all
species if there were no constraints on energy acquisition/use or competing demands for
energy by other vital organismal activities (e.g., growth and survival) and other species in
an ecosystem. However, many kinds of intrinsic and extrinsic constraints and conflicting
selection pressures (trade-offs) exist that vary greatly among species, thus preventing an
idealistic “Darwinian demon” [148,149] from maximizing reproductive power in all species
to the same degree, as evidenced by the great diversity of life histories and associated
patterns of energy use (see Sections 5.2, 5.3, 7.3 and 7.4). In addition, several studies have
shown that within species, various measures of evolutionary fitness may vary negatively
as well as positively with rates of energy use (e.g., metabolic rate: [150–153]). Indeed, some
biologists have argued that natural selection should generally favor minimal maintenance
costs (basal metabolic rates) whenever possible (e.g., [154]). Moreover, among species,
two major indicators of fitness—reproductive rate (intrinsic rate of increase) and survival
(longevity)—can vary independently of metabolic rate (e.g., [151,155–157]).

In addition, some forms of selection (e.g., sexual selection) do not target increased rates
of use of energy resources per se, but rather increased access to other kinds of resources (e.g.,
mates). Indeed, sexual selection favors the development of exaggerated sexually dimorphic
traits that cost relatively little energy to maintain [158–160], thus causing a decrease in mass-
specific energy use and potentially contributing to hypometric size-scaling of metabolic
rate during ontogeny [161]. Thus, selection for sexually dimorphic traits illustrates “cost
minimization” [158,160], rather than power maximization.
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5.2. Factors Preventing the Attainment of Maximal Power

Lotka [9] himself acknowledged that life maximizes its “energy flux” (power) “as
compatible with the constraints to which the system is subject” (p. 148), as also discussed
by [8,162]. However, Lotka never fully explained what these constraints are. This section
describes some of these intrinsic (biological) and extrinsic (ecological) constraints (Table 1),
which are critical not only for understanding the diversity of life histories seen in the natural
world (Sections 5.3 and 7.4), but also for causing physical, functional, or evolutionary limits
on power output, thus potentially preventing the manifestation of trade-offs (negative
correlations) between power and efficiency predicted to occur by the “maximum efficiency
principle” (MEP; see Figure 1b and Section 3). An efficiency–power curve with submaximal
power limits may thus be linked to Brody’s “principle of diminishing increments”, as
supported by positive decelerating relationships observed between efficiency and power of
production and muscular work in many kinds of animals (Figure 6 [4]).

Table 1. A non-exhaustive list of intrinsic (biological) and extrinsic (ecological) factors that limit
power production in living systems. Interactive effects can also occur but are not specified here. Only
a sampling of sources is indicated.

Factor Effect Sources

Intrinsic factors
Energy-uptake capacity

Energy-processing capacity

Resource (energy) allocation

Heat dissipation

Biological regulation

Deleterious effects

Central limits on energy assimilation by gut
Peripheral limits on energy use by specific tissues,

organs, functions, or processes
Competing demands by other functions
(e.g., maintenance, repair, and defenses)

Overheating limits power production
(e.g., growth, reproduction, and muscular work)

Regulation of power production
below maximal possible

Increased risk of injury, illness, or developmental
error; enhanced aging; genetic mutations

and random genetic drift

[94,163–171]
[94,164,166–170,172–176]

[89,94,136,177–191]

[42,168,175,176,192–197]

[4,94,151,179,190,198]

[4,89,94,178,181,185,199–205]

Extrinsic factors
Food (energy) supply

Competition

Predators
Parasites

Limited food (energy) supply in environment

Competitors reduce amount of
accessible food, nutrients, or light

Fear of predators reduces foraging activity
Pathogens and parasites divert energy resources that

could have been used for production

[4,24,94,103,168,179,180,184,188,190,197,
206–210]

[184,211–215]

[170,188,216–218]
[219–223]

5.2.1. Intrinsic Factors

Various intrinsic (biological) factors can limit rates of energy uptake and use for
production and muscular work (Table 1; Figure 8). The rate of resource (energy) assim-
ilation is limited by gut capacity (including surface area- and volume-related processes
of digestion and absorption); and, in turn, rates of use of assimilated energy for growth,
reproduction, and locomotion are limited by (1) finite biosynthetic or biomechanical ca-
pacities, biological regulation, and rate-enhanced risks of injury, illness, increased aging,
or developmental/functional error; (2) competing demands for energy among growth,
reproduction, locomotion, maintenance, repair, and other activities; and (3) loss of en-
ergy to pathogens and parasites and defenses induced in response to them. Lynch and
colleagues [199] have also suggested that increased frequencies of deleterious mutations
in small populations prone to random genetic drift may reduce maximal growth rates,
especially in large organisms.
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5.2.2. Extrinsic Factors

In natural environments, limited food supply and access to food inhibited by com-
petitors and the fear of predators reduce resource (energy) acquisition, and thus chemical
energy ultimately available for power production (Table 1). Parasites and pathogens living
in the body also divert resources (energy) away from productive work of the host (Figure 8).
All species strive to garner as much energy as they can, which often results in evolutionary
“conflicts of self-interest” that inhibit the attainment of maximum power by any individual
species. As a result, evolution is a “zero-sum game” [11], causing no species on Earth to
usurp all the sun’s energy for itself. As pointed out by Vermeij [139], since most resources
are often other species, “acquisition and retention of resources by an individual organism
requires that individual to prevent others from obtaining or monopolizing those resources”
(p. 221).

The limiting effects of various abiotic and biotic factors in the environment on “re-
productive power” has been called the “energy-flow principle” [224,225], which comple-
ments the “energy-allocation principle” emphasized in the life history evolution litera-
ture [89,182,183,187,190,191,209,226,227]. Both ecological limitations on energy acquisi-
tion/uptake and energy allocation to competing demands can whittle down the reproduc-
tive power of an organism.

5.3. The Diversification of Reproductive Power: Some Preliminary Thoughts

Lotka [9] himself stated that life can achieve maximal energy flux (power) only if there
are abundant resources (also see [228]). However, he failed to articulate the many intrinsic
and extrinsic constraints on biological power production, whose variation can help explain
the great diversity of reproductive power among species, from tiny bacteria to huge whales
(also see Section 7.3). J. H. Brown and colleagues [12] suggested that within a taxonomic
group (e.g., Mammalia), specific intermediate body sizes are optimal because they are
associated with maximal reproductive power. However, their model used to support this
view has been criticized for various logical and empirical reasons [229–234], which I will
not consider here. Nevertheless, when viewed as total species-wide energy use, energetic
fitness or productive power does vary considerably among species, both in relation to body
size and independently of it (see Sections 7.3 and 7.4).

J. H. Brown and colleagues [14] have also claimed that (re)productive power varies
interspecifically as a trade-off with generation time. However, I would suggest that this
negative covariation arises because both parameters are related to mortality rate, the
ultimate driver of life history variation [157,235], but in opposite ways. As body size
increases, mortality rate declines (as is well known: see, e.g., [236–239]; and references cited
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in [102,235]), because larger organisms are more protected against predators and other
environmental hazards than are more vulnerable, small organisms [101,102,157,235]. As a
result, smaller organisms have both shorter generation times (they die sooner) and higher
reproductive rates to compensate for higher mortality rates than do larger organisms (also
see Section 7.7). Species (biotic) interactions may play a fundamental role in causing the
opposite allometry of productive power and generation time (also see [101]). Coevolution
among species (adaptation and counteradaptation) should be considered when explaining
variation in (re)productive power ([240–244], as also discussed in Section 7.3).

6. Efficiency and Evolutionary Adaptation

Evolutionary fitness may be increased by either increasing power (rates of energy
intake and use for production) or efficiency (amount of conversion of energy intake into
energy use for production) [200,245]. This possibility raises two questions. First, is power or
efficiency maximized, or can each be a chief target of natural selection depending on specific
environmental conditions? Second, if the latter is true, what are the conditions that favor
power versus efficiency? In this section, I discuss how the concept of ‘efficiency’ has been
considered a useful quantitative indicator of the level of adaptation (i.e., ‘adaptiveness’)
shown by a population or species. In Section 7, I consider how power (fitness) and efficiency
(adaptiveness) may be maximized simultaneously or at the expense of the other under
specific environmental conditions.

Many biologists have assumed that natural selection maximizes ‘efficiency’
(e.g., [9,120,141,246–248]), but this view has been debated. On the one hand, Bock [18]
claimed that natural selection favors adaptive features (involving favorable fits with the
environment called “synergs”) that cost the least amount of energy to maintain; hence,
high adaptiveness involves high efficiency of energy use. He argued that an efficiency
measure based on energy required per gram of body mass could be used to estimate the
degree of adaptation for a specific biological feature (synerg) among related species, a
view considered further in Sections 7.3 and 7.4. On the other hand, Slobodkin [249] ar-
gued that adaptation involves the ‘effectiveness’ of a structure or function, which does not
necessarily equate with the ‘efficiency’ of energy use for maintaining/driving a specific
structure/function (also see Section 8.2). In short, functional effectiveness may not equate
with energetic efficiency (as Bock [18] also acknowledged with respect to specific cases:
e.g., the evolution of long tongues may increase the effectiveness of food capture but also
increase the energy cost of muscular contraction, thus reducing efficiency).

As Calow [200] noted, ‘efficiency’ is a tricky concept. How it is defined depends
on the purpose/objective/needs of the ‘job’ undertaken. It is critical to consider what
the input is as well as what the ‘useful’ output is. When doing so, it becomes clear that
‘efficiency’ can be defined in multiple ways. For example, consider growth efficiency,
which can be defined as (1) the amount of chemical energy deposited as new tissue mass
divided by the amount of food energy ingested, which involves two kinds of efficiency: the
efficiency of converting ingested food energy into assimilated energy and the efficiency of
converting assimilated energy into new, calorically estimated somatic tissue, (2) the amount
of assimilated energy (ingested energy minus that lost in feces) converted into new somatic
tissue, (3) the amount of metabolized energy (assimilated energy minus energy lost in urine)
converted into new somatic tissue, (4) the amount of metabolized energy converted into
new somatic tissue minus that used for maintenance of existing tissues (sometimes called
“net growth efficiency”), and (5) the amount of metabolized energy converted into new
somatic tissue plus that used to support the cost of biosynthesis [4,57,94,134,224,250,251].
Wieser [134] even wondered whether some efficiency measures are merely “patterns of
energy allocation” because evolution does not just optimize production. In any case,
how one defines efficiency becomes critical when asking basic questions such as whether
endotherms with high energy costs of maintenance have lower production efficiencies than
ectotherms (also see Section 7.6.5).
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To complicate matters further, increases in one type of efficiency may be associated
with decreases in another. For example, Welch [252] reported a negative interspecific
correlation between assimilation efficiency (AE) and net growth efficiency (NGE) among
various aquatic ectothermic animal species whose energy budgets had been estimated
in the laboratory. This trade-off (which is not as apparent when a heterogeneous group
of aquatic and terrestrial ectotherms and endotherms are compared [253]) appears to be
due to AE and NGE relating oppositely to diet [200,253]. Herbivores/detritivores tend
to have low AE but high NGE, whereas faunivores tend to have a high AE but low NGE.
Herbivores/detritivores consume relatively indigestible food that causes AE to be low,
whereas faunivores consume relatively digestible food that causes AE to be high. By
contrast, faunivores must expend more effort searching and capturing their dispersed
animal food, thus lowering their NGE because more energy is diverted away from growth
to support increased foraging activity, compared to herbivores/detritivores that feed on
more accessible, locally concentrated vegetative or detrital food [200,253]. This pattern
illustrates the importance of distinguishing resource supply versus use systems (Figure 7).
The energetic efficiency of resource supply and use systems may respond very differently
to changes in food quantity, quality, and accessibility. Increased food quantity can cause
AE to decrease and NGE to increase (also see Section 3.3). Decreased food quality can
cause AE to decrease, whereas increased food accessibility can cause NGE to increase. In
short, adaptation to various trophic environments does not necessarily involve concordant
changes in various kinds of energetic efficiency.

7. Covariation between Power (Fitness) and Efficiency (Adaptation) Revisited

This section has six major goals. First, I recommend that ‘fitness’ and ‘adaptation’ be
considered overlapping but distinguishable concepts, which becomes clearer if they are
defined in energetic terms, i.e., as representing ‘power’ versus ‘efficiency’ (Section 7.1).
Second, I describe examples where natural selection and biochemical/physiological exigen-
cies/constraints have apparently favored positive covariation between fitness-enhancing
power and adaptive efficiency in resource use systems (Section 7.2). Third, I describe
examples where natural selection and ecophysiological trade-offs have apparently favored
negative covariation between fitness-enhancing power and adaptive efficiency in resource
supply systems, especially at the whole species level (Section 7.3). Fourth, I further illustrate
this third point with a case study of pertinent energetic, ecological, and biogeographic
patterns among related species of an exceptionally well-studied genus of mice (Peromyscus)
in North America (Section 7.4). Fifth, I describe how energetic power and efficiency vary in
space and time for various living systems (Sections 7.5 and 7.6). Sixth, I attempt a tentative,
preliminary synthesis of how and why power and efficiency (co)vary in living systems at
various hierarchical levels of biological organization (Section 7.7).

7.1. Fitness as Power and Adaptation as Efficiency

Evolutionary fitness and adaptation are often equated. These terms have been used
interchangeably, though there has been much disagreement about their exact meanings,
how they should be measured, and even whether they are useful nontautological con-
cepts (see, e.g., [254–257]). According to Darwin [137], natural selection favors organisms
with the highest possible reproductive fitness (i.e., success in producing progeny and
thus transmitting genes to the next generation), which is facilitated by adaptations that
foster survival, growth, and reproduction in specific environments. Thus, selection favors
both increased fitness and adaptation. However, three distinctions between fitness and
adaptation can be made, which I believe gives these concepts valuable operational and
quantitative value. First, not all fitness-promoting features of an organism enhance adap-
tive survival, including sexually selected traits that not only do not improve an organism’s
adaptive fit to an environment, but also may increase risks of dying from predation or
other environmental hazards. Thus, although adaptation can improve fitness, increased
fitness need not improve adaptation. Second, selection for increasing fitness is manifested
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at a regional/global scale that transcends local environments. Any traits that increase the
reproductive success, abundance, and geographical spread of a species relative to that of
other species enhance ‘fitness’. By contrast, any traits that increase the ability of a species
to survive and reproduce in a specific environment enhance ‘adaptation’. Third, at the
whole species level, fitness-enhancing traits increase energetic ‘power’ (i.e., the total rate of
energy capture and use by a species), whereas adaptive traits increase energetic ‘efficiency’
(i.e., the proportion of available resources in a specific local environment that is captured
and converted into production). Thus, asymmetric causation, regional/global versus local
scales of application, and power versus efficiency all distinguish fitness from adaptation.
These ideas, which focus on applying the concepts of fitness (power) and adaptation (ef-
ficiency) to the whole species level, will be further developed in the following sections.
How these concepts are used can vary with the level of biological organization (individual,
population, and species) and with the time scale [247,254,258]. My approach is not the only
one possible (nor should it be), but I believe that it presents some advantages that could
facilitate profitable research based on measurable nontautological concepts of fitness and
adaptation that can be compared among species.

7.2. Natural Selection May Favor Both Power and Efficiency of Resource Use Systems

Natural selection for increased rates of energy use (power) for production and mus-
cular work should be accompanied by increases in energetic efficiency, as indicated by
frequent positive covariations between power and efficiency in resource use systems (see
Figure 6; and Section 3). Watt [19] argued that selection favors both power and efficiency in
biochemical systems (but see [22,23]). Evolution of faster growth rates in bacteria favors
higher energetic efficiency [39,40,80]. Rodent species having higher rates of energetic post-
natal growth of their offspring also have higher energetic growth efficiencies [57]. Rates and
efficiencies of growth and protein synthesis are positively correlated in fishes [134]. Both
production rate and efficiency ([mass-specific biomass production]/[metabolic rate]) covary
positively when comparing unicellular prokaryotes, unicellular eukaryotes, and multicellu-
lar eukaryotes [132]. In addition, a positive association between power and efficiency may
even be seen in corals, where both gross production and (gross production)/(respiration
energy expenditure) decrease per polyp with increasing colony size [259]. As suggested in
Section 3.2 (Figure 1b), these positive correlations between power and efficiency in resource
use systems (Figure 7) may arise because natural selection has eliminated those systems that
exceeded a specific power threshold that causes harmful injuries, illness, developmental
errors, enhanced aging, and/or functional inefficiency and thus reckless energy wastage
(also see Sections 3.2 and 8.2.1).

7.3. Natural Selection May Favor Power–Efficiency Trade-Offs in Resource Supply Systems

Unlike resource use systems, resource supply systems may often show trade-offs
(negative correlations) between power and efficiency (Figure 7). In Section 3.3, I discuss why
rates and efficiencies of energy assimilation are often negatively correlated. In the following
sections, I review why this may also occur for energy acquisition systems (see Table 2). First,
I consider possible factors that may be involved in causing power–efficiency trade-offs in
resource acquisition (Section 7.3.1). Second, I consider how power–efficiency trade-offs
in resource acquisition may occur along a body size continuum and independently of it
(Section 7.3.2).

7.3.1. Possible Factors Causing Power–Efficiency Trade-Offs in Resource Acquisition

Lotka [3,9] claimed that natural selection should favor increased power when resources
are abundant and in excess but favor increased efficiency (economy) when resources are
scarce and limited (also see [8,22,162,228,260,261]). This view relates to the concept of
wasteful versus frugal strategies [262,263]. When resources are abundant, maximization of
productive power is a target of natural selection, even if resources are used recklessly and
inefficiently, whereas when resources are scarce, maximization of production efficiency is a



Sci 2024, 6, 28 18 of 56

better strategy because it minimizes the loss of energy that is critically needed to achieve
positive energy balance, thus enabling growth and reproduction, albeit at unavoidably low
rates. A similar dichotomy of maximizing power versus efficiency of resource use may
occur in response to high- versus low-quality resources [264].

In addition, a trade-off between power and efficiency may occur along a continuum
from ecological generalists that use a wide variety of resources and habitats to ecological
specialists that use a narrow range of resources and habitats. Dietary and habitat general-
ists have often been considered “jacks of all trades, but masters of none” (e.g., [265–271]),
though exceptions may exist [272,273]. Their ability to acquire numerous kinds of resources
may help them to achieve high productive power, but at the cost of not being efficient (well
adapted) at using any one resource. By contrast, specialists have evolved to use a specific
resource or set of resources with high efficiency, but at the cost of reduced species-level
power production. Consistent with this hypothesis, a specialist bee species was found to be
a more efficient forager for pollen from its preferred host plant than were four generalist
species [274]. Specialized food habits and habitat use are also associated with increased for-
aging efficiency in other animals, including crabs [275], spiders [276–278], insects [279–281],
and vertebrates [282–284] (also see Section 8.3), but exceptions exist, especially when food
resources are scarce [285,286]. In addition, herbivorous caterpillars that are trophic general-
ists exhibit a broad habitat distribution (indicating high species-level productive power
and ‘fitness’) but low local population densities (indicating low species-level production
efficiency and ‘adaptiveness’), whereas trophic specialists show the opposite pattern [272].
Similar patterns have been reported for aquatic invertebrates [270,287] (however, for further
perspective, also see Section 7.3.2 and [288–291]).

Table 2. A list of some factors that may cause rates (power) and efficiencies of resource (energy)
acquisition to be negatively correlated through the action of natural selection.

Factor Effect Sources

Food quantity High food: high power; low efficiency
Low food: low power; high efficiency [3,8,9,22,162,228,260,261]

Food quality High quality: high power; low efficiency
Low quality: low power; high efficiency [264]

Niche breadth Generalist: high power; low efficiency
Specialist: low power; high efficiency [265–271]

Population
stability

Stable (K-selected): low power; high efficiency
Unstable (r-selected): high power;

low efficiency
[211–213,266]

Lastly, according to r- and K-selection theory, species living in disturbed or unstable
habitats should have highly variable population densities typically below the carrying
capacity (K) of their environments that in turn favor high productive power and associated
high rates of population increase (r), whereas species living in stable habitats should have
relatively stable population densities typically near their environmental carrying capacity
(K) that favor high competitive ability and efficient capture and utilization of resources
at the expense of low productive power ([211–213,266]); but see [292–294]. Although r-
and K-selection theory has been frequently criticized (see, e.g., [182,183,295]), variation in
population dynamics and habitat stability (a core pattern underlying the theory) may help
explain not only trade-offs between power and efficiency among related species, but also
among species with different body sizes (see Section 7.3.2).

All these factors may have interactive effects that reinforce a dichotomy between
high power versus high efficiency. For example, some ecological specialists have become
adapted to living on low-quality resources that constrain their productive power (e.g.,
rodents that specialize in eating low-quality conifer needles at the expense of producing
small, slowly developing litters, as compared to related species that eat a wider variety
of more nutritious vegetative food [296,297]). In addition, ‘weedy’ species that exploit
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disturbed and unstable habitats may experience high population fluctuations and thus
r-selection that, together with generalized food habits, favor high reproductive outputs.
Ecological generalism, high colonization ability, and an ability to live in disturbed habitats
are often positively associated (e.g., [243,270,287,298–307]; but see [308]). By contrast, K-
selection in relatively stable habitats may favor ecological specialization [267] and increased
efficiency of acquiring resources [212,213,266]. Specialized trophic adaptations in animals
tend to be associated with stably abundant, long-lasting, and predictably accessible food
resources [309–313].

7.3.2. Possible Trade-Offs between Power and Efficiency along a Body Size Spectrum and
within Specific Clades

Predation and other environmental hazards tend to cause greater mortality rates in
small versus large organisms [101,102,157,235]. As a result, it can be inferred that the
population densities of small organisms should more often be below the resource capacity
of their environments (i.e., their carrying capacity K), thus enhancing resource availability
per individual, as compared to larger, more protected organisms whose populations should
more often be near their K, thus causing intense intraspecific competition for limited
resources [101,102,157]. This pattern, which has been canonized as a “Serengeti Rule” [314]
because of its clear demonstration in mammals of the Serengeti ecosystem [315,316], is
likely common across many kinds of taxa and ecosystems [101], but still needs further
testing. Accordingly, one may infer that small organisms with abundant resources should
be selected to maximize their power production (energetic fitness), whereas large organisms
with limited resources should be selected to maximize their efficiency of resource acquisition
(energetic adaptiveness) (Figure 9). This hypothetical size spectrum of power (fitness) to
efficiency (adaptation) resembles the proposal that small organisms are r-selected for
‘productivity’, whereas large organisms are K-selected for ‘efficiency’ [212,213], though my
scheme does not depend inextricably on the detailed mechanisms of r- and K-selection
theory. It also extends the frequent claim that maximization of power versus efficiency
depends on resource availability [3,8,9,22,162,228,260,261] by framing it with a body size
perspective. In short, a trade-off between power and efficiency of resource acquisition may
scale with body size. This view is consistent with the observation that tiny unicellular
prokaryotes exhibit the most rapid rates of reproduction and biomolecular turnover in the
living world [140].
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Based on the “equal fitness paradigm” (EFP) [14–16], one might argue that produc-
tive power (energetic fitness) is nearly the same across small and large organisms, thus
contradicting the “power/efficiency size spectrum” hypothesized in Figure 9. However,
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note that the EFP focuses on individual energy use for offspring biomass production (OBP)
during a generation of time (G), whereas my scheme focuses on the total productive power
(rate of energy uptake/use for growth and reproduction) of whole species (see Section 7.1).
I hypothesize that the total mass-specific productive power of a species (i.e., the rate of
energy uptake or use for production per individual mass x number of individuals of a
species) tends to decrease with increasing body size, whereas the efficiency of acquiring
available resource energy (i.e., the proportion of available species or niche specific trophic
energy that is captured and assimilated) increases. Two critical departures from the EFP
are evident. First, proponents of the EFP define energetic fitness as mass specific OBP × G.
Thus, their fitness measure is not a ‘rate’ (power), but the mass-specific amount of energy
used during a generation (a variable, relative time measure that scales with body size).
My scheme explicitly focuses on the rate (power) of energy uptake for production, which
scales negatively with body size (as is consistent with the negative scaling of the rate of
population growth [130,133,317–319]). Second, my scheme focuses on the species level,
rather than the individual organism level, though power production at the two levels may
be related (see Section 7.4).

The EFP, as conceived by [14–16], and the data upon which it is based, have four other
problems. First, its measure of energetic fitness does not explicitly consider variation in
the number of breeding events per lifetime. Note that as G (or age at first reproduction as
a proxy) increases, the post-maturational lifespan, which may include multiple breeding
events, tends to increase disproportionately (log-log slope ̸= 1) in a variety of plant and
animal taxa [157,319], a pattern that may cause the EFP to underestimate the energetic
fitness of long-lived iteroparous species because it is based on G and not total lifespan.
Second, many of the species and major taxa used to calculate the body mass scaling of G
were not the same as those used to calculate the body mass scaling of OBP and thus are
not strictly comparable. Third, many of the G values that were calculated are not realistic
(e.g., values greater than 10 years for many small birds and mammals that do not live
nearly that long in nature, on average). Fourth, in the same species of birds and mammals
(thus controlling for species composition in two of the major taxa used in the analysis
of [14] for which there was sufficient sample size), the mass-specific OBP does not scale
inversely with G in a proportionate way (i.e., log-log slope = −1) (Figure 10), as would be
expected based on their presumed nearly equal but opposite scaling with body mass [14].
Even though the EFP posits that OBP × G is ‘invariant’ (scaling zerometrically with body
mass: log-log slope ≈ 0), it should not be assumed that OBP and G have a proportional
1:1 relationship because both traits vary considerably (by approximately two orders of
magnitude), even at the same body size (see Figures 2 and 3 in [14]). Ratios or multiples of
other life history traits that appear to be invariants (see, e.g., [319]) may prove not to be so
when one trait is related directly to the other (see the many examples described in [157]).
As such, the disproportionate relationships between OBP and G observed in birds and
mammals indicate that energetic fitness, as defined by [14–16], varies with G, and thus is
not invariant, as posited by the EFP. In addition, at a given G, OBP may vary by as much as
two orders of magnitude (see scatter of points in Figure 10). Furthermore, the body mass
scaling of OBP and G do not show quarter-power relationships in birds and mammals, nor
are they equally opposite scaling relationships (see Figure 10 legend), as assumed by the
EFP [14–16].

In any case, my measure of energetic fitness (species-wide productive power) is based
on the rate of energy uptake for production for all individuals of a species across its
entire geographical range. Since microscopic organisms are usually more abundant, and
often more widespread [320–326], than macroscopic organisms (notwithstanding some
apparent exceptions [325,327,328], and because of technical difficulties in obtaining reliable
data on the abundance and distribution of tiny organisms that are hard to detect and
identify [327–332]), they should in general also have greater species-level power (fitness),
even if individual energetic fitness is similar across body sizes, a plausible hypothesis
requiring testing.
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In addition, mortality may not only be higher in small, vulnerable versus large,
protected organisms, but it may also be proportionately less selective (more random
with respect to genotype), thus favoring generalized fitness-/power-enhancing responses
of increased rates of growth, development, and reproduction [102,235,254,333,334]. By
contrast, although large organisms suffer lower rates of mortality, a larger proportion of
their mortality may be selective (nonrandom), thus favoring specific adaptive efficiency-
enhancing responses [102,235,333]. The generally greater population stability of large
versus small organisms may also promote increased levels of adaptation and efficiency of
resource capture [212,213,254] (also see Section 7.7).

In passing, it is worth mentioning that humans are a major exception to the power-
versus-efficiency size spectrum depicted in Figure 9. Humans have used special cultural
innovations (including the harnessing of fossil fuels) to give them extremely high produc-
tive power despite being a relatively large-bodied species [6,261,335,336].

The power–efficiency trade-off may also occur for related species of similar body size
in specific clades (Figure 9). Based on their overall greater abundance and total biomass,
widespread species have higher species-wide production and thus power (fitness) than ge-
ographically restricted related species. In many clades (e.g., white-footed mice in the genus
Peromyscus: see Section 7.4), widespread species have achieved their high overall power of
energy uptake and use by being generalized ‘opportunistic species’ that exploit new, dis-
turbed, early successional, and seasonally variable environments with abundant resources
(at least temporally) and that require relatively little energy-sapping counteradaptation with
other relatively few enemy species (e.g., [243,270,298,304,305,307,337]). ‘Hyperabundant’
microbes [305] and animals [307,337] illustrate this pattern well. By contrast, geograph-
ically restricted species are often specialized ‘equilibrium species’ that exploit relatively
stable habitats and resources in environments requiring considerable counteradaptation
against numerous enemy species that reduces their productive power. Many studies have
shown positive correlations between niche breadth and geographical range size in various
groups of organisms (e.g., [243,270,289,304,338–348]; but see [349–352]). Both ecological
specialization and habitat/population stability should thus favor increased efficiency of
resource acquisition in restricted species (also see Sections 7.3.1 and 7.4). Increased effi-
ciency (adaptiveness) exploiting locally available niche-specific resources for production,
in turn, supports greater competitive ability, as experimentally demonstrated in protists
(my interpretation of results in [353]) and inferred from natural history observations in
white-footed mice (Peromyscus species) (see Section 7.4).
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A ‘deep’ (geological) time perspective may also improve an understanding of inter-
specific trade-offs between power (fitness) and efficiency (adaptation) in four ways. First,
widespread ‘powerful’ species tend to have greater geological longevity and lower extinc-
tion risk than restricted species (e.g., [354–359]), thus further enhancing their species-wide
fitness. Second, selective extinction of restricted species that have perilously low population
sizes because of inefficient resource acquisition may have been an important higher-order
evolutionary process that promoted high trophic efficiency in restricted species. Restricted
species may also preferentially occur in stable habitats with stable resources that are con-
ducive to the evolution of adaptive, efficient resource acquisition because they are less
likely to go extinct than those found in unstable habitats [360]. Third, isolated populations
of generalized widespread species may often evolve into specialized restricted species
(e.g., [241–244,360–363], because their well-adapted, ‘efficient’ resource acquisition has
increased their competitive superiority in stable habitats with predictable resources [364].
Fourth, the evolution of large body size (Cope’s Rule) may be linked to ecological special-
ization [365], and thereby adaptive efficiency of resource acquisition, as attested by several
supporting studies (see Section 7.3.1). If true, this pattern helps to link power–efficiency
trade-offs seen among species both in relation to and independently of body size.

7.4. Trade-Offs between Power and Efficiency: A Case Study Based on White-Footed
Mice (Peromyscus)

The rodent genus Peromyscus and closely related satellite genera (e.g., Habromys, Isth-
momys, Megadontomys, Neotomodon, Osgoodomys, and Podomys, all of which were once
considered subgenera of Peromyscus [366–368]) constitute an excellent group to test the
proposed power versus efficiency scheme described in Section 7.3.2. The geographical
range sizes and species-wide power (fitness) of these Peromyscine species vary enormously,
from continent-wide (e.g., Peromyscus maniculatus, the most abundant and widespread
small mammal in North America [369]; note, however, that this species is regarded as an
evolutionarily dynamic species complex, with many recently evolved allopatric subspecies
that are approaching species status [370]) to highly localized, some of which are confined
to single mountaintops or islands [243,366,371]. Their ecology and biogeography also lend
themselves well to testing the niche breadth and habitat stability explanations for power–
efficiency trade-offs (Table 2). Widespread Peromyscus species are habitat generalists that
occupy broad altitudinal ranges and often new, disturbed, highly seasonal, species-poor
habitats, whereas restricted species are usually habitat specialists that occupy relatively
narrow altitudinal ranges and usually relatively stable, species-rich habitats [224,243,371].
The widespread species also show r-selected traits such as large litters, small body sizes,
rapid development, and short lifespans, whereas restricted species tend to show K-selected
traits such as small litters, often larger body sizes, slower development, and longer lifes-
pans [243,372–374]. Furthermore, not only do the widespread species exhibit high species-
wide productive power just by virtue of their high abundance, but energetic studies also
indicate that they tend to have relatively high reproductive power at the individual level
as well. Peromyscus maniculatus and P. leucopus, the two most widespread species, not
only have relatively high rates of energy expenditure for reproduction [224,375], but their
rates of basal and daily (routine) existence metabolism and overall activity levels are also
relatively high [224,376–378]. By using the strong interspecific relationship between litter
size and maternal energy ingested for lactation observed by [224,375], one can show that
individual energy uptake for reproduction (reproductive power) correlates positively and
highly significantly with geographical range size among Peromyscus species (Figure 11a).
The high somatic and reproductive energy fluxes of the widespread species clearly fit the
view of their having high energetic fitness (also see Section 7.1).
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One may question the energetic patterns just described because they are based on
laboratory observations. Do the widespread species have higher reproductive power in
nature? Although this question requires further research to achieve a definitive answer,
three observations support this view. First, litter sizes observed in wild-caught Peromyscus
species parallel those observed in the laboratory [224,375]. Second, the annual production
of young of three wild species coexisting in the same chaparral habitat in California (thus
controlling for environmental differences) was correlated with their geographical range
size (from most widespread to least: P. maniculatus—20, P. truei—9, P. californicus—6.2 [379]).
Third, wild lactating females of the widespread P. leucopus trapped in a forest near Ithaca,
New York state exhibited not only larger mean litter sizes but also higher mean total energy
content (kJ) of the ingested food in their stomachs than did those of P. eremicus, a similarly
sized, more restricted species trapped in a desert near Portal, Arizona [224].

The hypothetical scheme depicted in Figure 9 predicts that the geographically re-
stricted species of Peromyscus should exhibit a higher degree of adaptation to their local
environments, as indexed by a higher efficiency (economy) of resource acquisition for
production. Finding evidence for this prediction is more difficult than documenting a
correlation between reproductive power and geographical range size, but a comparison
of the widespread P. maniculatus and P. leucopus with the relatively restricted P. eremicus
is revealing. First, although wild lactating females of P. leucopus and P. eremicus had sim-
ilar body fat contents (g fat/g lean dry mass) in the field, the fat contents of lactating P.
eremicus were significantly higher than those of P. leucopus in the laboratory [224]. This
result suggests that when given equal amounts of abundant food, the restricted P. eremicus
from a food-poor desert environment had higher efficiency accumulating fat stores than
the widespread P. leucopus from a relatively food-rich forest environment. Second, female
P. eremicus showed no significant decrease in body fat content during energy-expensive
lactation, whereas female P. leucopus did [224], thus suggesting that P. eremicus was more
economical with using acquired energy for reproduction. Third, despite living in an envi-
ronment with scarcer food, wild non-breeding females of P. eremicus were able to ingest
slightly more stomach food energy than those of P. leucopus [224], thus suggesting that



Sci 2024, 6, 28 24 of 56

P. eremicus was more efficient at acquiring limited food resources. Fourth, in the same
desert shrub habitat near Portal, Arizona, the restricted desert specialist P. eremicus was
more abundant and had higher population production than the coexisting widespread
habitat generalist P. maniculatus [380]. Since the two species were living on essentially the
same food supply, P. eremicus appeared to show greater efficiency of food acquisition for
production than did P. maniculatus. Similar patterns occur for other coexisting widespread
and restricted species. For example, the restricted P. keeni (once considered P. oreas and
P. sitkensis) is more abundant in its native temperate rainforest habitat in northwestern
North America than is the more widespread sympatric P. maniculatus [381]. In addition,
the restricted P. gossypinus is more abundant in its specialized habitat (lowland woods and
swamps) than the coexisting widespread P. leucopus, which occurs in both lowland and
upland forests [382].

Further circumstantial evidence supporting the possibility that restricted species of
Peromyscus and other rodents are more efficient resource gatherers than more widespread
species is that they tend to have more stable populations often associated with non-seasonal
breeding [298,374,383], which should foster K-selection for increased efficiency of resource
acquisition ([211–213,266]; also see Table 2 and Section 7.3.1). In general, the most restricted
species of Peromyscus preferentially occur in relatively stable species-rich tropical and sub-
tropical environments that should favor the evolution of increased competitive ability and
associated high efficiency of resource acquisition. As evidence, more restricted specialized
species of Peromyscus and other rodents tend to outcompete more widespread generalized
(opportunistic) related species [364], often preventing them from invading their native
habitat [243,371,381,382].

Another approach is to calculate an index of efficiency of resource acquisition for
reproduction by comparing the maternal energy ingested during the lactation (EI) of
female mice of widespread and restricted Peromyscus species with the net primary pro-
ductivity (NPP) of their local environments. I have done this by using data collected
from [243,375,376,378]. Data were available for only five species, and they show that
two of the three restricted species have higher efficiencies (EI/NPP) than those of the
two widespread species (Figure 11b). However, the overall negative correlation between
EI/NPP and geographical range size is not significant (r = −0.356; p = 0.554). This efficiency
index was also negatively correlated with habitat productivity (Figure 11c), but only with
marginal significance (r = −0.839; p = 0.0758). This trend is consistent with the view that
limited resource supplies favor the evolution of increased efficiency of resource acquisition
(see Section 7.3.1). However, more data are needed that are based on more precise measures
of food availability and acquisition, which will be challenging to collect for omnivorous
Peromyscus species.

I hope that the above suggestive results will stimulate further research exploring
relationships between power/efficiency and the niche breadth, population dynamics, and
geographical range size of not only Peromyscus species (a model taxon for such studies),
but also related species in other clades. Consistent with the trends observed in Peromyscus,
the widespread and versatile racoon Procyon lotor has higher rates of metabolism and
reproduction than do other more restricted, specialized Procyonid species [384]. In addition,
the most widespread heteromyid rodents have the highest basal metabolic rates in their
genera (e.g., Chaetodipus hispidus and Dipodomys ordii [385]), as also occurs in the rodent
genus Microtus in North America (M. pennsylvanicus [386]). Furthermore, the widespread
M. pennsylvanicus and M. arvalis ingest more food energy for lactation than does the more
restricted M. pinetorum (see references cited in [375]). More generally, rates of energy flow
(as indicated by basal, daily, and maximal metabolic rates) that can support reproductive
power [169,208,243,376,387,388] are positively associated with geographical range size in
eutherian mammals [389–391]. Reproductive output is also positively correlated with
geographical range size in herbaceous plants in France [392] and birds in Britain and New
Zealand [393] (other examples are cited in [298]).
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7.5. Geography of Power and Efficiency

In general, large/warm/wet geographical areas tend to have higher rates of biological
productivity and consumption (power) than smaller/colder/drier areas [68,261], though
differences in geographical variation in community energy use among terrestrial vertebrate
taxa have been observed [394]. Increases in productivity from polar to tropical regions are
well known [68,395–397], but geographical patterns of efficiency of resource acquisition
and use have been little studied. Forest production efficiency increases with increasing
temperature (and decreasing latitude) [398]. Global estimates of efficiency of trophic
energy transfer from producers to primary consumers (herbivores) also tend to increase
along environmental gradients of increasing temperature and precipitation [65]. Percent
consumption or damage of vegetation by herbivores (an indicator of trophic transfer
efficiency, TTE) increases with decreasing latitude [399] and toward more productive
sites ([400] and references cited therein). The evolution of economical solutions to resource
scarcity and/or intense competition for resources is exemplified by the energy conservatism
of cave [401–404] and island animals [101,215,405,406].

Geographical patterns in species diversity may help explain why TTE increases
with increasing productivity in terrestrial ecosystems but decreases in freshwater ecosys-
tems. In terrestrial ecosystems, positive covariation of productivity and species diver-
sity [395,407,408] may result in more consumer species being available to eat vegetation at
more productive sites. However, in highly productive (eutrophic or thermal) freshwater
ecosystems, hypoxia and high temperatures may limit consumer species diversity [31,106],
thus lowering TTE from producers to consumers (also see Section 3).

7.6. Temporal Variation in Power and Efficiency

The power production of a living system may vary considerably over time: daily,
seasonally, ontogenetically, successionally, and evolutionarily. How this temporal variation
is related to energetic efficiency has been little studied empirically. Here, I only touch on
this topic to stimulate further research.

7.6.1. Daily Variation in Power Production

In animals, daily variation in power production mainly relates to periods of rest, sleep,
torpor, and bouts of activity. Circadian rhythms of activity have been much studied and
will not be reviewed here (see, e.g., [409,410]). Notably, animals undergo regular sleep–
awake cycles. Sleeping involves minimal activity and power production (though body
growth and tissue repair may be hastened somewhat [411]), which may be adaptive at
night when diurnal animals cannot effectively find food and avoid predators and other
environmental hazards [412–415]. Although powering down during sleep would seem
economical because it reduces energy costs during times of inactivity [413,416–419], it also
reduces time available for acquiring food energy and nutrients for production, and thereby
also daily production efficiency, because of a decrease in energy and time spent in engaging
in productive work relative to that used for standby (idling) body maintenance, or the
“cost of living while doing nothing” [420]. Daily, often lengthy, resting periods clearly
show that animals are not geared for continually maximal activity. Indeed, as Elton [421]
remarked, many kinds of animals “spend an unexpectedly large proportion of their time
doing nothing at all, or at any rate nothing in particular” (pp. 55–56) (also see [422]). And
yet, we still understand little why this is so.

Some heterothermic birds and mammals also engage in energy-sparing, daily torpor,
involving substantial reductions in body temperature and metabolic rate, when food
availability/accessibility is low, predation risk is high, or thermoregulatory costs are
exorbitant during cold nights [423–425]. This ability to power up and down in relation
to the favorableness/harshness of the environment on a moment-by-moment basis nicely
illustrates the importance of food availability, predator avoidance, and biological regulation
in moderating power production [151,423–427] (also see Table 1 and Sections 5.2 and 7.6.2).
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In addition, the primary production rates and efficiencies of ecosystems may vary
during the diel cycle, being maximal during the day (e.g., [32,428,429]). Bacterioplankton
growth rates and efficiencies also vary with the daily light cycle [39]. Overall, daily
variation in productive activity at both the organismal and ecosystem levels illustrates
positive synchronization of power and efficiency, as expected for resource use systems
(right-hand side of Figure 7).

7.6.2. Seasonal Variation in Power Production

Seasonal variation in rates and efficiencies of production has been observed at the level
of individual organisms, populations, communities, and ecosystems. At the individual
level, reproductive activity is highest during relatively warm, resource-rich (spring and
summer) months. Since higher rates of offspring production are associated with higher
production efficiencies in captive animals (Figure 6 [4,24,25,39,57,103]; also see Sections 3.1
and 3.3), it is plausible that wild animals should also show synergistic increases in rates
and efficiencies of production during favorable growing seasons, as expected for resource
use systems (right-hand side of Figure 7). During harsh, food-poor (winter) months, many
animals are dormant, thus conserving their limited energy resources until the next grow-
ing/breeding season, but at the same time reducing their annual production efficiency
(see Section 7.6.1). However, although increased torpor use decreases the rate of energy
assimilation, it may increase assimilation (digestive) efficiency, as observed in the East-
ern chipmunk (Tamias striatus) [430]. This trade-off between power and efficiency is as
expected for resource uptake systems (left-hand side of Figure 7). Thus, many animals an-
nually cycle between periods of high/low rates/efficiencies of assimilation and production
that correspond with shifts in energy allocation between growth/reproduction and sur-
vival/maintenance. Deciduous trees also power down during the winter months by shed-
ding their production-making solar panel-like leaves. Synergistic seasonal changes in the
rate and efficiency of photosynthesis have been observed in various plants (e.g., [431,432]).
How seasonality affects annual and seasonal production rates and efficiency should depend
on the length of the growing/breeding season. Shorter growing seasons (and thus longer
nongrowing seasons, as occur at higher latitudes) should select for trees that have high rates
and efficiencies of production during the spring and summer months, as observed [433],
while at the same time reducing annual rates and efficiency of production, a plausible
hypothesis requiring testing.

At the population level, increased temperature, as occurs during the growing season,
increased, or had no effect, on carbon use efficiency in 29 strains of isolated bacteria [434].
Typically, the growth rate of bacterial populations responds more strongly to temperature
than does their respiration rate, thus accounting for positive (or non-negative) temperature-
related covariation between the rates (power) and efficiency of growth.

At the community/ecosystem levels, cross-season covariation between rates (power)
and efficiency of production depends on whether temperature affects rates of production
more or less than that of rates of respiration (maintenance metabolism). In several stud-
ies, production rates and efficiencies of bacterial communities covaried positively across
seasons [39,435–437]. However, in one study, during summer when bacterial growth rates
were highest, growth efficiency was lowest, because increasing temperature increased
respiration rates more than growth rates [438]. Synergistic (and sometimes antagonistic)
seasonal changes in rates and efficiencies of primary production (photosynthesis) have also
been observed in aquatic and forest ecosystems (e.g., [428,439–441]).

In addition, planktonic communities show seasonal changes in trophic transfer efficien-
cies (TTEs) from phyto- to zooplankton production [442,443]. I further predict that increased
seasonality and fluctuations in resource supply (including shorter growing/breeding sea-
sons) should decrease annual TTEs, as supported by an inverse association between annual
TTE and seasonality (increased latitude) in forest ecosystems (see Figure 5; and [65]).
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7.6.3. Variation in Power Production over a Lifetime

Typically, during early ontogeny (young life stages), animals exhibit faster rates and
efficiencies of growth (production) than during later ontogeny (e.g., [4,82,84,444–446]; but
see [104]), thus showing synergy between power and efficiency, as predicted for resource
use systems (right-hand side of Figure 7). Aging trees also show synergistic declines
in rates and efficiencies of production [398,447]. Age-related decreases in production
efficiency appear to be largely due to increases in maintenance costs of already grown body
mass [446].

In ectotherms, according to “developmental cost theory” (DCT: [448]), the relationship
between the energy cost of development and temperature depends on the relative thermal
sensitivities of developmental time and metabolic rate. This theory predicts that the energy
cost of development should be optimally minimal at intermediate temperatures, as has been
empirically demonstrated in fishes, crustaceans, and reptiles [448,449]. Since the energy
cost of development represents the efficiency of converting food (e.g., yolk) energy into
developmental processes, the DCT is consistent with the “maximum efficiency principle”
(MEP) where efficiency of fuel use is maximal at intermediate power (speed), which is a
function of temperature in ectotherms (see Section 2; Figure 1a).

In mammals, reproductive efficiency (the percent conversion of maternal food into
offspring tissue) is usually higher during gestation than lactation, because extrauterine
young have greater energy costs of activity and thermoregulation than do intrauterine
young, and lactation involves additional energy costs related to the biosynthesis and di-
gestion of milk [450,451]. Therefore, it is not surprising that reproductive efficiency in
rodents is positively correlated with the duration of gestation (G) relative to lactation
(L) [450]. The marsupial Monodelphis domestica also has a much lower efficiency of litter
growth and G/(G + L) than two ecologically comparable eutherian species (Elephantu-
lus rufescens and Echinops telfairi) of similar size (data in [452] analyzed by [450]). These
differences in reproductive efficiency may have important ecological and evolutionary
implications [450,451,453–455]. For example, precocial rodents tend to have higher repro-
ductive efficiencies than altricial rodents [451] that may offset, at least in part, their lower
rates and efficiency of offspring production [456]. In addition, reproductive efficiency has
been shown to be higher during early versus late lactation of two Peromyscus species in
association with the higher relative energetic growth rates of young versus older lactating
pups [375].

It would be interesting to examine how and why power and efficiency change dur-
ing complex life cycles involving metamorphosis of larvae into distinctly different adults.
In holometabolous insects with complete metamorphosis, the relatively sedentary larval
stages are geared for high productive power (rates of feeding and growth), whereas the
highly mobile adult stages are geared for high locomotor power (rates of flying and disper-
sal) [457,458]. Perhaps this temporal division of labor between growing and moving (flying)
has increased the power and efficiency of both by decreasing antagonistic resource alloca-
tion, a hypothesis worth testing (also see Section 8.2.2). In support, insect larvae that expend
relatively little energy on foraging activity tend to have higher growth efficiencies [50].

A power/efficiency perspective could cast new light on the evolution of complex life
cycles, and even life cycles in general. I have already discussed r- and K-selection in terms
of a power–efficiency trade-off (see Table 2 and Sections 7.3.1, 7.3.2 and 7.4), but it would
also be worthwhile to explore how productive power and efficiency relate to embryonic
versus postembryonic development, prenatal versus postnatal development, and lifetime
variation in growth (determinate versus indeterminate) and reproduction (semelparous
versus iteroparous). It is plausible that protected, sedentary embryonic and fetal life stages
should exhibit rapid rates and efficiencies of growth, because they are unimpeded (or
relatively little affected) by energy costs of locomotion, homeostasis, and coping with
environmental stressors. In support, the energetic conversion efficiencies of embryos and
early postnatal or post-hatching developmental stages are among the highest observed in
the living world [82,446]. One may also conjecture that semelparous species that expend
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much energy for a single reproductive event before dying [200,459] should have a higher
lifetime reproductive efficiency than iteroparous species that expend smaller amounts of
energy per each repeated reproductive event, and thus relatively little compared to lifetime
maintenance costs.

7.6.4. Variation in Power Production over Ecological (Successional) Time

In a classic paper, E. P. Odum [460] identified 24 ways that terrestrial plant communities
change after disturbance from early to late successional stages, including shifts from small to
large plants, r- to K-selection, high colonization ability to high competitive ability, and high
mass-specific production (power) to high efficiency of resource (energy/nutrient) use. This
scheme dovetails nicely with how power and efficiency appear to trade off along body size
gradients and among related widespread generalist and geographically restricted specialist
species that occupy habitats of varying stability and successional stage (see Sections 7.3
and 7.4). However, although successional shifts from power to efficiency have received
some theoretical support [7,211,461,462], they have been little studied empirically [463].
Notably, a recent study of phytoplankton communities provides partial empirical support,
showing that energy wastage decreases during succession [464], but more research on other
communities is clearly needed.

7.6.5. Variation in Power Production over Geological Time

Numerous scientists have claimed that organismal and ecosystem power production
(rates of energy use) have increased over geological time. At the organismal level, evo-
lutionary trends toward increased rates of metabolism and activity, culminating in the
appearance of high-powered endothermic birds and mammals, have long been the subject
of much discussion [261,333,465–471]. At the ecosystem level, evidence suggesting geologi-
cal trends toward increased rates of primary production and consumption has also been
accumulating [261,467,468,472–476]. Chaisson [477,478] has even claimed that increased
mass-specific rates of energy consumption (power) characterize the evolution of complex
entities throughout the universe (but see [479]).

To some scientists, the organismal trends support the view that “Evolution is the
survival of the powerful” (p. 166 in [462]; also see Section 5.1 and [3,8–13,139–142,480,481]).
By contrast, other scientists have argued that evolution has increased the energetic or
functional efficiency of organisms (also see Section 6 and [9,141,246–248,482]). This would
make sense if one assumes that the evolution of increased species diversity (packing) has
increased competition for limited resources, thus favoring increased efficiency of resource
acquisition/use (see, e.g., [200,266,461]). However, this view assumes that the evolution
of increased species richness [474,483] has occurred at a faster rate than the evolution of
increased primary productivity, and thus availability of resources, which remains to be
determined. J. H. Brown [142] has also argued that the evolution of endothermic animals,
which now occur in almost all ecosystems [484], supports the view that evolution has
favored increased power over efficiency. As support, many scientists have claimed that
energy use for growth/reproduction by high-powered endothermic birds and mammals
is relatively inefficient (i.e., energetically wasteful). Although endothermic animals have
higher rates of individual growth and population production than ectothermic animals of
equivalent size, their production efficiencies are lower [59,60,198,251,261,317,485,486]. Ec-
totherms with high production efficiencies appear to have an advantage when resources are
scarce [485], thus supporting the view that power is favored in resource-rich environments,
but efficiency is favored in resource-poor environments (Table 2; Section 7.3.1).

The evolution of endotherms is especially intriguing to consider from a power/efficiency
perspective. How this is done depends critically on how one defines efficiency. As noted in
Section 6, ‘efficiency’ is a tricky concept [200]. One must clearly specify what the input and
the useful output are and provide a justifiable rationale for doing so. An apropos example is
the internal combustion engine. Typically, from an anthropocentric viewpoint, one assumes
that the useful output is kinetic energy for locomotion, but heat production could also be
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considered a useful output because it could help one keep warm, especially during winter
travel [200]. The same perspective applies to endothermic animals. If biomass production
is considered the useful output because it increases reproductive fitness, then populations
of endotherms that expend relatively high amounts of energy on maintenance metabolism
do have lower production efficiencies than ectotherms of equivalent size. However, if
heat production (and its retention) is also considered a useful output because it increases
metabolic power and efficiency, then endotherms need not be considered less efficient than
ectotherms. A key point is that in endotherms, heat is not merely lost as useless energy;
rather, it is essential for maintaining high body temperatures that permit exploitation of
cold habitats and nocturnal time periods and that support enhanced rates of muscular activ-
ity, food acquisition, digestion, growth, reproduction, and parental care [261,484,487–497].
Heinrich [498] has argued that the maintenance of high, nearly constant body tempera-
tures in many endothermic animals increases the efficiency of their biochemical reactions.
In addition, young individual endotherms and ectotherms have comparable efficiencies
of converting assimilated energy into growth [82,134,200,499], though during early on-
togeny, both endotherms and ectotherms tend to be relatively ectothermic. Moreover,
endothermy often permits higher efficiency of resource exploitation, as exemplified by how
agile, high-energy goats have outcompeted more sluggish, low-energy tortoises of similar
body mass and trophic niche on the Galapagos Islands [500]. The more efficient grazing of
goats has reduced the availability of vegetation to tortoises, thus exterminating them in
many places [501]. Not surprisingly, endothermic mammals dominate large herbivore and
carnivore niches, which are underrepresented by ectothermic reptiles except on oceanic
islands [502–505]. Herbivorous mammals have higher rates of ingestion and assimilation
than herbivorous reptiles of equivalent size [506]. Although the Komodo dragon (Varanus
komodoensis), the largest carnivorous lizard in the world, has higher population biomass rel-
ative to prey population biomass (and thus higher biomass production efficiency) than that
of large mammalian carnivores, its resource exploitation efficiency appears to be relatively
low because it has no effect on the population dynamics of its prey, unlike that observed
for mammalian carnivores that capture more prey per unit time because of their higher
activity levels and metabolic needs [505].

Organismal energy budgets are typically viewed in terms of resource acquisition and
allocation. According to the “resource allocation principle” [89,182,183,187,226], given
finite available resources, more energy that is used for one function is less that is available
for another. However, it has not been sufficiently appreciated that different organismal
functions may share (recycle) energy, a phenomenon that I have called “resource associa-
tion” (the third RA: [187]), which is not thermodynamically impossible [6], as one might
first think [140,187]. An excellent example of this is when energy used by digestion, lo-
comotion, or production is used again as heat for thermoregulation (i.e., maintenance of
a body temperature above the ambient temperature, especially in the cold), sometimes
called “compensation” [507–509] or thermal “substitution” [510–515]. Endotherms are
especially adept at thermal substitution, an economical strategy that can save significant
amounts of energy [512–517]. Indeed, I suggest that resource association played a critical
role in the origin of endothermy itself. The earliest ancestral endotherms may have used
thermal substitution to maintain elevated body temperatures that enhanced their activity
and thermal niche breadth in an economical way with minimal or no increases in metabolic
rate, thus constituting an ‘easy’ preadaptation for endothermy. Individual variation in
thermal substitution, as observed in mice (Peromyscus leucopus) [516], should have allowed
natural selection to readily increase its effectiveness, especially in cold environments. Later
in evolution, specific adaptations involving more costly increases in metabolic rate, e.g.,
thermogenic shivering, as seen in endothermic insects and vertebrates, and various mecha-
nisms of non-shivering thermogenesis, as found in modern birds and mammals, may have
furthered the development of endothermy (also see [494,496,497,518,519]).

In short, high-powered endotherms are not necessarily less efficient than ectotherms
(also see Section 8.2.3 and [134,245,499,520]). Endothermy has permitted increases in two
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useful outputs: (1) heat production for thermoregulation enabling increased metabolic
power and environmental temperature tolerance [487,492,498] and (2) biomass production
for increased rates of growth and reproduction [198,317,486]. Viewed this way, heat pro-
duction is not just a metabolic waste but a means for increasing energetic power, functional
performance, and exploitation of a wide range of resources and habitats. Both heat produc-
tion and biomass production should be considered important evolutionary and functional
assets in a holistic analysis of power and efficiency in endotherms. This viewpoint is not
teleological but can be viewed in terms of the action of mindless natural selection (see [496]).

Indeed, based on the power/efficiency spectrum described in Section 7.3.2 (Figure 9),
one could argue that evolution over geological time has been largely a story of commu-
nities of microscopic organisms with high species-level productive power evolving into
communities with additional macroscopic organisms with high species-level efficiencies
of resource acquisition for production, thus paralleling trends observed during ecological
succession (see Section 7.6.4).

7.7. Synthesis

Here, I attempt to synthesize the major findings discussed in Section 7. I have de-
scribed how power and efficiency may covary in living systems at various hierarchical
levels of organization, but “what is the ultimate driver of these energetic patterns?” Some
would say that metabolic rate, as constrained by body size-related resource supply or time
limits, drives variation in productive power (e.g., [14–16,521,522]), but this leaves open the
question of “what ultimately drives metabolic rate?”. I contend that it is mortality rate
in conjunction with the availability/accessibility of energy resources (Figure 12; also see
Section 7.3.2). Species of small organisms and those living in relatively unstable/ephemeral
habitats are subject to high mortality rates that favor (by natural selection) more rapid rates
of growth and reproduction (and thus successful transmission of their genes to the next gen-
eration) before their imminent death, compared to species of more protected, longer-lived,
larger organisms and those living in relatively stable/persistent habitats [101,102,157,235].
This trend is reinforced by intraspecific competition for resources and thus resource avail-
ability per individual being positively and negatively correlated with increasing body size
and habitat stability, respectively. These ecological trends are inferred from the plausible as-
sumption that the high mortality of species of small organisms or those that live in unstable
habitats has caused them to have population densities well below the carrying capacity (K)
of their environments, thus decreasing intraspecific competition and increasing resource
availability per individual. By contrast, the low mortality of species of large, well-defended
organisms or those that live in relatively stable habitats has caused them to have population
densities near the carrying capacity (K) of their environments, thus increasing intraspecific
competition and decreasing resource availability per individual [101,102,157,212,213,235].
Therefore, it is reasonable to hypothesize that variation in mortality rate has evolutionarily
and ecologically caused species of small organisms or those that live in unstable/ephemeral
habitats to have relatively high power of resource use for production, in contrast to species
of large organisms or those that live in stable/persistent habitats that should have relatively
high efficiency of resource uptake for production. In support, power density (W/g) de-
creases from unicellular eukaryotes to large metazoans [115]. In addition, at the ecosystem
level, small heterotrophs consume a greater share of the available energy than do larger
heterotrophs in both marine and terrestrial environments [479]. For more details and
supporting evidence, see other parts of Section 7. Size-dependent selective mortality may
also reinforce the power/efficiency pattern just described. Small organisms are not only
subject to greater mortality than larger species, but it has also been suggested that a greater
proportion of their mortality is random (non-selective with respect to genotype) [333,334].
Small organisms have responded evolutionarily with generalized increases in reproductive
rate [254,333], i.e., power production. By contrast, larger, better defended organisms experi-
ence less mortality that is proportionately more selective, thus favoring specific adaptive
responses entailing efficient acquisition of environmental resources. I also suggest that
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species living in relatively unstable, species-poor habitats with fluctuating resources may
experience more random mortality than do those in relatively stable, species-rich habi-
tats. Again, the former should evolve generalized increases in productive power, whereas
the latter should evolve specific adaptive responses entailing not only efficient resource
uptake but also effective counteradaptation against numerous enemy species (also see
Section 7.3.2).
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Figure 12. Hypothetical scheme showing how mortality rate may affect the species-wide, mass-
specific power and efficiency of energy use/uptake for production. These effects vary with body
size and habitat stability and are mediated by natural selection and secondary ecological effects of
mortality rate on intraspecific competition for resources and resource availability per individual. K is
the carrying capacity of the environment. See text for more details.

My proposed synthesis has some similarities with other theoretical schemes. For
example, Pianka [212] and others [213] have used the theory of r- and K-selection to
argue that small species with highly fluctuating populations should be selected for high
power, whereas large species with relatively stable populations should be selected for
efficiency. However, my hypothetical scheme differs from that of Pianka’s in making a
distinction between resource use and resource uptake systems (Figure 7). According to
my scheme, species of small organisms or those that live in unstable/ephemeral habitats
have evolved both high mass-specific power and efficiency of resource use for production,
which follows from the frequent observation that the power and efficiency of resource use
systems covary positively in living systems at various levels of biological organization
(see Sections 3.1, 3.3, 7.2, 7.5 and 7.6; and right-hand side of Figure 7). By contrast, I
contend that species of large organisms or those that live in stable/persistent habitats have
evolved high efficiency, but low species-wide, mass-specific power of resource uptake for
production, which follows from the frequent observation that the power and efficiency of
resource uptake systems covary negatively in living systems at various levels of biological
organization (see Sections 3.1, 3.3, 7.3, 7.4 and 7.6; and left-hand side of Figure 7).

It is also interesting to compare my scheme with the concepts of general and special
adaptation discussed by W. L. Brown [523] and P. J. Darlington [524]. These concepts
vaguely resemble my energetic definitions of ‘fitness’ and ‘adaptation’ (see Section 7.1).
According to Brown, “general adaptations” are traits that increase the ability of a species to
survive and reproduce in multiple environments, whereas “special adaptations” are traits
that increase the ability of a species to survive and reproduce in a specific local environment.
The global/regional versus local distinction parallels my use of the concepts ‘fitness’ versus
‘adaptation’. Brown [523] also associated general adaptations with good colonization
ability, large geographical ranges, and fluctuating populations, whereas special adaptations
were associated with ecological specialization and stable populations, thus resembling my
contrast between widespread, generalist species with high fitness versus geographically
restricted, specialist species with high adaptiveness (see Sections 7.1 and 7.3). However,
Brown did not explicitly state that special adaptations promote efficiency of energy uptake
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for production. In contrast, he argued that general adaptations include characters that
increase system efficiency (not clearly defined) (also see [524]). This notion is the opposite of
my distinction between fitness and adaptiveness as representing productive power versus
efficiency of resource acquisition for production.

Another way to view my synthetic scheme is to realize that power involves both
energy and time. One can increase power by either increasing energy input or output or by
decreasing the time involved in obtaining or using a specific amount of energy [462]. Thus,
not only can energy availability affect the power and efficiency of a species, but so can a
mortality-imposed time limit. Accordingly, vulnerable short-lived species that experience
high mortality must engage in rapid growth and reproduction (fast productive speed,
even at the expense of reduced efficiency of resource uptake) to ensure their evolutionary
success. Protected, longer-lived species can afford more frugal, high-efficiency strategies of
resource uptake.

8. Applications of a Power/Efficiency Perspective to Nutrient/Water Uptake/Use,
Functional Performance, and Information Processing

So far in my review, I have discussed the power and efficiency of living systems from
an energetic perspective, as typically used by physicists for physical energy-transforming
systems. However, in complex living systems, analogous perspectives may also be used to
understand the dynamics of nutrient/water uptake/use, the strength and effectiveness of
performance of various biological functions, and the speed and accuracy of information
processing. Since the focus of my review is energetic in nature, I only briefly discuss each
of these applications and how they may influence energetic power and efficiency.

8.1. Power (Rate) and Efficiency of Nutrient/Water Uptake and Use

Several studies have examined how the rates and efficiencies of uptake/use of specific
elements/nutrients (e.g., carbon, nitrogen, and phosphorus) vary with environmental
conditions. For example, the carbon uptake (power) and carbon use efficiency (CUE)
of forests increase synergistically with increases in temperature and water availability
([398] but see [397]). By contrast, nitrogen use efficiency (NUE) increases from warm
wet terrestrial plant ecosystems with high productivity (forests and grasslands) to cold
dry ones with low productivity [525]. NUE is also inversely related to temperature and
photon intensity during the growing season [525]. Therefore, covariation between power
and efficiency of nutrient use appears to depend on the nutrient considered. Like energy
use efficiency, CUE increases with increasing productivity, whereas NUE increases with
decreasing productivity. Perhaps this is because nitrogen is essential for the biosynthesis
of vital macromolecules (proteins and nucleic acids), and thus its uptake and use must
be maintained as high as possible even when resource availability is low. Alternatively,
the different responses of CUE and NUE to light and fertilization may reflect different
optimization strategies [526].

Nutrient availability can also affect both the power and efficiency of energetic pro-
duction. For example, bacterial growth rates and efficiency both increase markedly with
increasing nutrient availability [39]. In addition, fertilization (increased nitrogen or phos-
phorus) commonly increases both production and efficiencies of production or radiation
conversion in individual plants (e.g., [79,527,528]) and forest ecosystems [58,529], thus
paralleling the synergistic effects of food rationing on productive power and efficiency
seen in animals (see Section 3 [4,47,48,50,77,78]). The maximization of energy intake in
animals, as predicted by optimal foraging models, may also be constrained by nutrient
availability [530–533].

The power/efficiency of uptake/use of energy and water can also interactively affect
each other. For example, cactus mice (Peromyscus eremicus) appear to have high efficiencies
of both energy acquisition and water use, important indicators of their specialized adapta-
tion to desert habitats (see Section 7.4 and [534]). Furthermore, when dehydrated, these
mice conserve water by reducing their energy expenditure and food intake, thus reducing
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fecal water loss [534]. In general, many desert mammals have low rates and high efficiencies
of both water and energy use that are mutually reinforcing (as indicated by efficient water
retention and low metabolic rates: see, e.g., [535,536]). In addition, desert scorpions, which
are highly effective sit-and-wait, venomous predators, acquire and use energy and water
highly economically, thus allowing them to sustain high, stable population densities (and
population biomasses that can exceed that of all local vertebrate animals combined) despite
the scarcity of food and water [537–541], the epitome of K-selection and high adaptiveness
(efficiency of resource acquisition for production), as defined in Sections 7.1 and 7.3.1.

It is also well known that plant productive power is constrained by a trade-off with
water use efficiency. High rates of photosynthesis (carbon uptake and energy production)
entail lower water use efficiency because open stomata needed for essential CO2 uptake
also increase water loss [542], thus essentially “trading water for carbon” [543].

8.2. Power (Rate) and Effectiveness of Functional Performance

The rates and effectiveness of the performance of specific functional activities may
be negatively correlated, which may have important consequences for the covariation of
energetic power and efficiency, as discussed in Section 8.2.1. Division of labor in living
systems may also affect the power and efficiency of their functional activities, as discussed
in Section 8.2.2.

8.2.1. Deleterious Effects of Speed

Increasing the speed of various functional activities (e.g., growth, reproduction, and
behavior) may reduce their effectiveness, resulting in injury, enhanced aging, developmen-
tal or decision-making mistakes, increased exposure to predators or other environmental
hazards, and/or energy wastage. If so, this may help explain why production efficiency
often shows a positive asymptotic relationship with productive power (speed) (also see
Figure 6 and Sections 3.3, 7.2, 7.5 and 7.6), without a decline in efficiency (effectiveness)
resulting from a further increase in power, as predicted by the maximum efficiency prin-
ciple (Figure 1a [5]), because very high-power levels are ‘forbidden’. Natural selection
may have eliminated organisms that exceeded a maximal power limit (Figure 1b) because
of the deleterious effects produced (also see Table 1 and Sections 3.2, 5.2 and 7.2). Rapid
growth may produce developmental errors [89,184,188,201]. Indeed, rapidly growing,
small mammals accumulate “epigenetic disorder” more rapidly than do slower growing,
large mammals [544]. Rapid growth and reproduction may also hasten aging and mortality,
including by increasing tissue/oxidative damage ([94,177,180,184,200,202–205,545–549]
but see [550,551]) and/or exposure to predators or other environmental hazards (Ta-
ble 1 [136,178,188,217,218]). Animals and humans that run too fast or too long may suffer
more physical injuries [4,552,553]. Rapidly performed behaviors may also be associated
with decision errors [554–556] (also see Section 8.3). Experiments involving hormonal
manipulations, genetic engineering, or artificial selection for enhanced rates of growth, re-
production, or locomotion may prove especially useful for testing the hypothetical scheme
depicted in Figure 1b (see, e.g., [545,546,557,558]).

8.2.2. Effects of Division of Labor on Power and Efficiency

Division of labor (functional specialization) is commonly believed to enhance per-
formance efficiency in biological and economic systems (e.g., [120,559–564]). However,
surprisingly, this plausible idea has not been rigorously tested from an energetic point of
view in living systems. If this idea, the “division-of-labor efficiency” (DLE) hypothesis, is
true, then one may predict that the efficiency of conversion of assimilated energy into a
performance activity should be greater when that activity occurs separately (or largely so)
from other competing activities. Indirect support for the DLE hypothesis comes from the
observation that growth efficiency in immature insects is higher when they engage in rela-
tively little locomotor activity, a competing demand for metabolic energy [50]. Therefore, it
follows that a temporal (ontogenetic) division of labor between ‘growing’ during juvenile



Sci 2024, 6, 28 34 of 56

stages and ‘moving’ during adult stages, as occurs in holometabolous insects, should
increase the efficiency of each of these performance activities. As noted in Section 7.6.3,
embryonic and prenatal developmental stages may have especially high growth efficiencies
because of not having to deal with competing activities, such as locomotion, reproduction,
thermoregulation, and other forms of homeostasis. Production efficiency in domestic
livestock is also maximized by reducing their activity, as in cages [4].

However, does a spatial division of labor also increase the energetic efficiency of
specific performance activities? No one yet knows. Consistent with the DLE hypothesis
is the observation that the slime mold (Dictyostelium discoideum) transforms from being
unicellular to multicellular when resources become scarce [565], though energetic measure-
ments are still needed to test whether multicellular slime molds are more efficient than
unicellular ones. In addition, colonial plants apparently use division of labor to maximize
efficient uptake of spatially heterogenous resources [566,567]. If the DLE hypothesis is true,
then organisms with more kinds of functionally different cells should be more efficient at
using assimilated energy for supporting various life functions than organisms with fewer
cell types. Thus, large organisms with many cell types should have lower mass-specific
energetic costs for carrying out multiple maintenance functions at rest (i.e., lower resting
metabolic rates) than do smaller organisms with fewer cell types. However, this prediction
of the DLE hypothesis is contradicted by two observations. First, across all living organisms,
from tiny unicellular organisms to huge multicellular organisms, the mean mass-specific
metabolic rate of various taxa varies independently of body size ([479,568]; but see [140])
and thus number of cell types [120]. Second, although small and large mammals have the
same number of cell types, the mass-specific resting metabolic rate still declines markedly
with increasing body mass [120,569], thus showing a dissociation between metabolic effi-
ciency and division of labor. In fact, increased cell-type diversity (division of labor) has been
associated with enhanced metabolic intensity (i.e., increased power, rather than efficiency)
across all taxonomic groups of life [569], though this view is contradicted by analyses
in [479,568]. Nevertheless, “metabolic division of labor” may help to explain why larger
colonies of social insects have lower mass-specific energy expenditures, and thus appear to
be more efficient energetically, than smaller colonies, thus apparently showing ‘economy
of scale’ [570]. We have much to learn about the interrelationships among organismal
complexity, body size, and the power and efficiency of various performance activities (for
stimulating discussions, see [562,563,565]).

8.2.3. Functional View of Power and Efficiency in Endothermic Animals

In Section 7.6.5, I argued that endothermic animals need not be considered energeti-
cally inefficient relative to ectothermic animals. A functional view reinforces this argument.
For example, endothermic mammals have evolved multiple structures and functions that
are more economical than those of their ectothermic reptilian ancestors, including a more
effective masticatory apparatus, external fur (insulation) that conserves energy by reducing
heat loss, a more upright gait that improves the efficiency of body support and movement,
and a complex kidney that improves the effectiveness of various body functions by control-
ling body fluid composition [571,572]. In addition, mammals evolved a secondary palate
that helped to separate and thus improve the effectiveness of respiration and ingestion,
as well as a dental division of labor (heterodonty) that increased the effectiveness of food
acquisition and processing compared to the homodonty of reptiles [571,572]. Other avian
and mammalian features that improved the effectiveness of various vital functions are
discussed in [571–574]. Birds and mammals are not only relatively powerful, but also
efficiently designed for supporting high rates of resource uptake and use.

8.3. Rate and Accuracy of Information Acquisition and Use

To sustain and perpetuate themselves, all living systems require two major com-
modities: resources (including energy and materials) and information. After countless
generations of natural selection, organisms have evolved information-based resource man-
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agement systems that maximize productive power/efficiency within certain constraints,
both intrinsic and extrinsic (see Table 1). Those organisms that most effectively acquire and
use information about their external and internal environments to ensure maximally possi-
ble resource uptake and use for growth and reproduction will be favored over those that
are less informed and thus less effective resource managers. In short, existing organisms
have evolved to be “well-informed resource users” [121,187].

However, evolving information-based resource management systems that maximize
power/efficiency may be constrained by trade-offs between the speed and accuracy of
information acquisition and processing that parallel trade-offs between the power and effi-
ciency of resource (energy) uptake for production. Trade-offs between speed and accuracy
occur in many kinds of informational systems at various hierarchical levels of biological
organization, including biochemical (e.g., RNA translation and protein synthesis [575–578]
but see [579]), physiological (e.g., neural and sensory processing [580–584]), and behavioral
processes (e.g., foraging behavior [279,280,555,584]). Foraging behavior is of special interest
here because it involves the integrated acquisition and use of both energy and information.
Effective (powerful/efficient) foragers not only obtain the most energy-rich prey with the
least amount of cost, but they also manage their ‘optimal foraging’ by obtaining and using
relevant information about their prey as quickly/efficiently as they can. Cognitive limita-
tions may cause foraging speed/accuracy trade-offs that can help to explain why trophic
specialists are often more efficient at acquiring resources than generalists ([279,280,584];
also see Section 7.3.1).

Based on the above observations, I encourage exploration of how the speed and
accuracy of information processing scale with body size. Small organisms with fast paces
of life that demand rapid mass-specific rates of resource acquisition should also have
faster mass-specific rates of information processing than larger organisms with slower,
more energy-conservative lives. Frequently observed hypometric (or zerometric) scaling
of genome size and brain mass with body mass (log-log slope < 1 or ≈0) [130,585–588] is
consistent with this view. These patterns suggest that small organisms usually have more
information-processing machinery relative to their body size than do larger organisms.
In addition, animals with small body size and/or high metabolic rates can detect and
react to visual stimuli faster than larger or less energetic animals [589]. Therefore, high
informational processing power appears to be linked to high energetic power, but more
research is clearly needed.

9. Practical Applications

An understanding of power and efficiency is essential for improving the pro-
duction of fish [590–592], domestic animals [4], agricultural crops [528,593–597], and
forests [398,528,529], as well as the effectiveness of microbially powered bioremedia-
tion strategies [598,599], bioenergy production [600], and other biotechnology innova-
tions [601,602]. A power/efficiency perspective also provides valuable insight into athletic
performance [25,72–75,603], human economic systems [6,8,21,228,462,480,604,605], and the
effects of disturbance, pollution, and climate warming on energy flow through organisms
and ecosystems [606–609]. Thus, studies of power and efficiency have not only great the-
oretical importance for understanding how living systems work and have evolved but
also many practical applications of benefit to human society, a topic that deserves more
attention than I can give here.

10. Conclusions

I have attempted to show that a power/efficiency perspective provides useful insight
into the tempo, functioning, evolution, and size-scaling of living systems at multiple levels
of biological organization, from cells to ecosystems. Positive correlations between energetic
power and efficiency are just as common as negative correlations predicted by “maximum
power theory” [3,5,8,9,20,462,480,481], thus requiring new theory. Development of new the-
ory should include distinctions between (a) resource supply and resource use systems that



Sci 2024, 6, 28 36 of 56

often entail negative versus positive correlations between power and efficiency, respectively,
and (b) power-enhancing fitness and efficiency-enhancing adaptation and their covariation
with body size, habitat stability, and the geographical range size of related species. New
synthetic, interdisciplinary theory of power and efficiency in living systems should not
only be based on physical, thermodynamic, and/or biochemical constraints as traditionally
done, but also incorporate other diverse intrinsic and extrinsic effects, including effects of
body size, mortality rates, food quantity/quality, niche breadth, population dynamics, and
various evolutionary strategies.

Major observations and conclusions made in my review, all of which require further
testing, exploration, and theoretical development, are listed below.

1. Although proponents of “maximum power theory” have claimed that the humped
relationships of power versus efficiency observed in some physical systems (i.e., max-
imum power at intermediate efficiency) should also occur in living systems, I argue
that the humped relationships of efficiency versus power observed in other physical
systems (i.e., maximum efficiency at intermediate power) may also be usefully ap-
plied (perhaps more so) to living systems with realistic modifications (e.g., selectively
imposed limits on power production; also see conclusion #3 below). Converse rela-
tionships between power and efficiency, entailing the “maximum power principle”
(MPP) versus the “maximum efficiency principle” (MEP), also deserve attention.

2. Negative correlations (trade-offs) between power and efficiency often occur in re-
source supply systems (e.g., speed versus efficiency of acquisition of environmental
resources and their assimilation into the body), whereas positive synergistic correla-
tions between power and efficiency often occur in resource use systems (e.g., speed
versus efficiency of growth, reproduction, and muscular work). Positive covariation
between the speed and efficiency of productive work can be explained, at least in part,
by rate-related increases in the proportion of energy used for productive work versus
maintenance (idling costs) of the resource use system.

3. Living systems do not universally show maximization of power at the detriment
of efficiency. Many intrinsic (physical/biological) and extrinsic (ecological) factors
limit power production. As a result, many organisms spend much of their time
doing nothing. Positive asymptotic covariation between productive power and ef-
ficiency may often occur because natural selection has weeded out living systems
that are too speedy, which entails deleterious effects of increased injury, developmen-
tal/behavioral mistakes, enhanced aging, increased exposure to predators or other
environmental hazards, and/or resource wastage.

4. Natural selection may favor either power or efficiency depending on resource quan-
tity/quality, niche breadth, and population stability. Increased productive power is
often favored when resources are abundant, organisms are ecological generalists, and
populations and habitats are unstable, whereas efficiency of resource acquisition for
production is often enhanced when resources are scarce, organisms are ecological
specialists, and populations and habitats are relatively stable.

5. At the whole species level, ‘fitness’ can be usefully indexed as power production,
whereas ‘adaptation’ can be usefully indexed as efficiency of resource acquisition for
production. These energetic definitions have the important advantages of being mea-
surable, non-tautological, and comparable among different species. This approach is
examined by focusing on variation in power and efficiency along a body size spectrum
and among related species in specific clades. I suggest that abundant microscopic
organisms subject to high mortality rates have been selected for high productive
power (species-level fitness), whereas less abundant macroscopic organisms subject
to relatively high resource limitation have been selected for high efficiency of resource
acquisition for production (species-level adaptiveness). This power/efficiency size
spectrum dovetails nicely with classical r- and K-selection theory. My approach is
also supported by a case study of North American white-footed mice (Peromyscus
species), where widespread generalist species that often occupy disturbed/unstable
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habitats promoting r-selection exhibit high productive power (fitness) at both the
individual and species (regional/global) levels, whereas geographically restricted spe-
cialist species that occupy relatively stable habitats that promote K-selection appear
to exhibit high efficiency of resource acquisition for production (adaptiveness at the
local population level).

6. Productive power and efficiency often increase synergistically with increases in re-
source abundance both in space and time. Both primary production and the trophic
transfer efficiency from primary to secondary production increase along environmen-
tal gradients of increasing temperature and water availability. Daily and seasonal
changes in resource availability/accessibility are also typically associated with syner-
gistic changes in productive power and efficiency at the individual, population, and
ecosystem levels. However, daily/seasonal temperature changes may have varying
effects on covariation between productive power and efficiency, depending on the
relative thermal sensitivities of production versus maintenance (respiration). Rapid
growth during early ontogenetic stages is positively associated with enhanced growth
efficiencies. Other features of life cycles (including complex life cycles) may also relate
to covariation between productive power and efficiency. However, the ecological
succession of terrestrial plant communities appears to involve temporal trade-offs
between power and efficiency. Pioneering r-selected species have relatively high
mass-specific production rates, whereas climax K-selected species appear to be more
efficient at capturing and retaining energy and nutrients. Similar patterns appear to
have occurred over geological time, as ecological communities evolved from only
having microbes with high species-level productive power to also having macroscopic
organisms with relatively high species-level efficiency of resource acquisition for
production. By contrast, some scientists have suggested that over geological time,
organisms have evolved increased power at the expense of decreased efficiency. Re-
cently evolved endothermic animals are often cited as examples of high-powered,
but inefficient, ‘energy-leaking’ living systems. I challenge this view by pointing out
that endothermy entails increases in two kinds of useful output, biomass production
that enhances reproductive success and heat production (and retention) that ampli-
fies metabolic power and thermal niche breadth. Many biologists have considered
heat as merely a metabolic waste that reduces productive efficiency, but endotherms
retain much heat for useful purposes. When considering both these useful outputs,
endotherms are not necessarily less efficient than ectotherms. Indeed, highly active
endotherms may have higher efficiencies of resource exploitation than ectotherms of
equivalent size. Furthermore, I argue that the economical ‘recycling’ of heat dissipated
from various work processes—including digestion, production, and locomotion—to
support regulation of high body temperatures, especially in the cold (called ‘thermal
substitution’, a form of ‘resource association’), may have been a preadaptation for the
evolution of endothermy itself.

7. A power/efficiency perspective may not only be useful from an energetic viewpoint,
but also in relation to the nutrient/water uptake/use, functional performance, and
information processing of living systems. New general theory of the metabolic,
stoichiometric, functional, and informational organization of living systems may
benefit from considering power/efficiency covariation of each of these components
and their interactions.

8. A power/efficiency perspective may also have many practical applications of benefit
to human society.

In conclusion, I hope that my review of the (co)variation of power and efficiency in
living systems will help to stimulate the development and empirical testing of a general
theory of metabolic organization that is applicable to all of life across multiple hierarchical,
spatial, and temporal scales (also see [19,115,479,610–612]). This theory should focus not
just on the maximization of power or efficiency, but rather on the conditions under which
each should be maximized within demonstrable functional, ecological, and evolutionary
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constraints. It should also recognize the rich diversity of relationships between power
and efficiency observed in various organismal and ecological systems, as documented
throughout my review. A power/efficiency approach promises to provide much insight
into the tempo, functioning, and evolution of living systems, small and large.
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