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Abstract: We investigate a class of boundary value problems (BVPs) involving an impulsive fractional
integro-differential equation (IF-IDE) with the Caputo–Hadamard fractional derivative (C-HFD). We
employ some fixed-point theorems (FPTs) to study the existence of this fractional BVP and its unique
solution. The boundary conditions (BCs) established in this study are of a more general type and can
be reduced to numerous specific examples by defining the parameters involved in the conditions. In
this way, we extend some recent nice results. At the end, we use an example to verify our results.
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1. Introduction

Fractional derivatives (FDs) have several definitions, including those given by Hadam-
ard (1891 [1,2]), Riemann (1849), Caputo (1997), Grunwald–Letnikov (1867), Riemann–
Liouville (1832), and many more. The Hadamard fractional derivative (HFD) can be
generated into the C-HFD by combining the differential and integral parts. The primary
distinction between an HFD and a C-HFD, notwithstanding any differences in the function’s
standards, is that a constant C-HFD is zero [3].

The HFD, in contrast to the Caputo and Riemann–Liouville derivatives, has an
arbitrary-order logarithmic function (log α − log β) rather than (α − β). The expression of
the HFD can be understood as a generalization operator (refer, for example, to [4–11]). This
is only one more crucial aspect of the HFD. The characteristics and uses of the HFD are
covered in a number of articles (see, e.g., [12]). For example, Kilbas talked about fractional
differential equations (FDEs) of the Hadamard type on the finite interval [a, b] in various
spaces. See also the properties of Hadamard calculus, and the modification of the HFD
with the Caputo one, known as the C–HFD [12]. It is obtained from the HFD by changing
the order of its differentiation and integration.

Recently, the theory of FDEs has gained significant attention due to its numerous
applications in fields such as physics, chemistry, aerodynamics, complex-medium elec-
trodynamics, polymer rheology, and others. Another useful application of FDEs is the
explanation of the inherited properties of different materials. Because of this, FDEs are
becoming a very important and well-known topic. For details, see, e.g., [3,13–19].

The study of impulsive BVPs has developed during the past few decades. In the
applied sciences and engineering, it has been shown to be extremely useful in the devel-
opment of numerous applicable mathematical models for real processes. Some existence
results of impulsive BVPs involving FDs of Caputo’s type were studied by Tian and Bai [20].
It has been discovered recently that a large portion of the research on the FDEs of the
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Caputo and Caputo–Hadamard types with various circumstances, including impulses,
time delays, and BVCs, are in [3,13,21–26].

Several researchers have focused on some fascinating outcomes of solutions to FDEs
with beginning and boundary conditions by applying various FPTs (see [27–29]). Many
studies on FPTs, topology, and nonlinear analysis have contributed to the current rapid
growth of FDEs with HFD (see [30–32]).

In 2008, Benchohra et al. [33] discussed the following solutions of the nonlinear FDE:

Dζ ϑ(τ) = ℏ(τ, ϑ(τ)), τ ∈ J ,

aϑ(0) + bϑ(T ) = c.

The following BVP has been studied in [21]:

Dζϑ(τ) = ℏ(τ, ϑ(τ)),

ϑ(0) = ωIϵϑ(ς), 0 < ς < 1.

In [34], Irguedi et al. studied the following Caputo–Hadamard fractional derivative
equation (C-HFDE) and initial boundary condition (IBC) with fractional initial condi-
tion (FIC):

CHDκϑ(τ) = ℏ(τ, ϑ(τ)), τ ∈ J = [a, T ],

∆ϑ|τ=τκ
= Iκ(ϑ(τ

−
κ )), τ = τκ ,

∆ϑ′|τ=τκ = Iκ(ϑ(τ
−
κ )),

ϑ(τ) = µ(τ),

ϑ′(T ) =
∫ T

a
ℓ(ν, ϑ(ν)).

In 2018, Benhamida et al. [17,35] studied the following nonlinear FDE:

Dϖϑ(τ) = ℏ(τ, ϑ(τ)),

Aϑ(1) + Bϑ(T) = C.

where J := [1, T], and Dϖ is the order of the C-HFD of ϖ.
In [36], Reunsumrit et al. studied the BVP for the following C-FIDE:

ABCDζ
τ [ω(t)−U (τ, ω(t))] = ℓ(τ, ω(τ),Gω(τ)),

∆(ω)|τ=τκ
= Iκ(ω(τ−

κ )),

ω(0) =
∫ ι

0

(ι − p)ϵ−1

Γ(ι)
℘(ρ, ω(ρ)).

The following FDE has been studied in [37]:

Dϵϑ(τ) = ℓ(τ, ϑ(τ)),

ϑ(0) + ϑ(T) = B
∫ T

0
ϑ(ν)ν,

order ϵ ∈ [0, 1).
Abdo et al. in [13] discussed the positive solutions of the following FDE with IBC:

Dϵϑ(τ) = ℓ(τ, ϑ(τ)),
ϑ(0) = B

∫ 1
0 ϑ(ν), dν.

In 2019, Ardjouni et al. [23] discussed the following FDE with IBC:
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Dϵ
1ϑ(τ) = ℘(τ, ϑ(τ)),
ϑ(1) = B

∫ e
1 ϑ(ν)dν.

Motivated, among other papers, by the aforementioned ones, we concentrate on the
following IF-IDE with BVP:

C
HDι

1+ℵ(τ) = ℓ(τ,ℵ(τ),Gℵ(τ)), τ ∈ ℑ := [1, T ], 0 < ι ≤ 1, (1)

ℵ(τ+
κ ) = ℵ(τ−

κ ) + ϑκ , ϑκ ∈ ℜ κ = 1, . . . ,M, (2)

νℵ(1) + πℵ(T ) = δIςℵ(ξ) + ϖ, ς ∈ (0, 1], (3)

where CHDι is the C-HFD of order ι, ℓ : [1, T ]×ℜ×ℜ → ℜ is a continuous function,
ν, π, δ, ϖ are real constants, ξ ∈ (1, T ), Gℵ(τ) =

∫ τ
0 κ(τ, υ,ℵ(υ))dυ, and κ : ∆ × [1, T ] → ℜ,

∆ = {(τ, υ) : 1 ≤ υ ≤ τ ≤ T }. Furthermore, 1 = τ0 < τ1 < τ2 < . . . < τM = 1, ∆ℵ|τ=τκ
=

ℵ(τ+
κ )−ℵ(τ−

κ ) and ℵ(τ+
κ ) = limℏ→0+ℵ(τκ + ℏ) and ℵ(τ−

κ ) = limℏ→0−ℵ(τκ + ℏ) represent
the right- and left-hand limits of ℵ(τ) at τ = τκ .

Motivations:

1. The main motivation for this work is to use the C-HFD to present a new class of IF-IDE
with anti-periodic BC;

2. We investigate the existence and uniqueness of the solutions of (1)–(3) using Schauder’s
FPT, Krasnoselkii’s FPT, and the Banach Contraction Principle;

3. We extend the results studied in [38] by including the C-HFD, impulsive conditions,
and nonlinear integrals.

The remaining part of the paper is organized as follows. Section 2 discusses the integral
operator associated with the problem that is presented and many more. The existence
results that follow are based on the FPT of Krasnoselkii, Scheafer, and Schauder’s nonlinear
alternative. Furthermore, we obtain uniqueness results in Section 3 by applying BFPT. An
example of the outcomes is provided in Section 4.

2. Preliminaries

Let the space PCN
ϖ ([A,B],ℜ) =

{
ℏ : [A,B] → ℜ : ϖN−1ℏ(ℵ) ∈ PC([A,B],ℜ)

}
and

E = PC([1, T ],ℜ), endowed with the norm ∥ ℘ ∥ = maxτ∈[1,T ] |℘(τ)|, be the Banach space
of all continuous functions from [1, T ] into ℜ. We recall from [39] both the Hadamard
fractional integral and HFD concepts, respectively, as follows:

The fractional integral (Hadamard) of order η > 0 for function Ψ : [1, ∞) → R is (with
Γ the Gamma function)

Iη
a+Ψ(t1) =

1
Γ(η)

∫ t1

a

(
log

t1

s

)η−1
Ψ(s)

ds
s

.

For function Ψ on [1,+∞), and n − 1 < η < n, the HFD of order η is

Dη
a+Ψ(t)=

1
Γ(n − η)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−η−1
Ψ(s)

ds
s

= δn In−η
a+ Ψ(t).

where [η] denotes the integer part of η, n = [η] + 1, and δ = t d
dt , provided the convergence

of the integral.
Jarad et al. in [12] generalized the HFDs and presented the properties of such deriva-

tives. These generalizations are now known as the C-HFDs (see also the versions used
in [40,41]) and are given by the following definition (C-HFD [12]): Let ν = 0 and N =[ν] + 1
if ℏ(ℵ) ∈ PCN

ϖ [A,B], where 0 < A < B < ∞ and

PCN
ϖ [A,B] =

{
ℏ : [A,B] → C : ϖN−1ℏ(ℵ) ∈ PC[A,B]

}
.
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The Caputo-type update of HFDs of order ν is given by

C
HDν

A+ℏ(τ) = Dν
A+

(
ℏ(τ)−

N−1
∑

κ=0

ϖκℏ(A)
κ!

(
log τ

υ

)κ
)

Lemma 1. Let ℵ be an impulsive solution of the IBC with g : J ×R×R → R given by

C
HDι

1+ℵ(τ) = g(τ), τ ∈ ℑ := [1, T ], 0 < ι ≤ 1, (4)

ℵ(τ+
κ ) = ℵ(τ−

κ ) + ϑκ , ϑκ ∈ R κ = 1, . . . ,M, (5)

νℵ(1) + πℵ(T ) = δIςℵ(ξ) + ϖ, ς ∈ (0, 1] (6)

if and only if

x(t) =



1
Γ(ι)

∫ τ
1

(
log τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |δ|
|Λ|Γ(ι+ς)

∫ ξ
1

(
log ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |π|
|Λ|Γ(ι)

∫ T
1

(
log T

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ , for τ ∈ [1, τ1)

ϑ1 +
1

Γ(ι)

∫ τ
1

(
log τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |δ|
|Λ|Γ(ι+ς)

∫ ξ
1

(
log ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |π|
|Λ|Γ(ι)

∫ T
1

(
log T

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ , for τ ∈ (τ1, τ2)

ϑ1 + ϑ2 +
1

Γ(ι)

∫ τ
1

(
log τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |δ|
|Λ|Γ(ι+ς)

∫ ξ
1

(
log ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |π|
|Λ|Γ(ι)

∫ T
1

(
log T

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ , for τ ∈ (τ2, τ3)

.

.

.
m
∑

κ=1
ϑi +

1
Γ(ι)

∫ τ
1

(
log τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |δ|
|Λ|Γ(ι+ς)

∫ ξ
1

(
log ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ

+ |π|
|Λ|Γ(ι)

∫ T
1

(
log T

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ , for τ ∈ (τκ , τκ+1).

(7)

Proof. Assume that ℵ satisfies (4) and (6). If τ ∈ [1, τ1), then

C
HDι

1+ℵ(τ) = }(τ), τ ∈ J := [1, T ], 0 < ι ≤ 1,

νℵ(1) + πℵ(T ) = δIςℵ(ξ) + ϖ, ς ∈ (0, 1].

Easily,

ℵ(τ) = 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ
.
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If τ ∈ (τ1, τ2), then

ℵ(τ)= ϑ(τ+
1 )− 1

Γ(ι)

∫ τ1

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

= ϑ(τ+
1 ) + ϑ1 −

1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

= ϑ1 +
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ
.

If τ ∈ (τ2, τ3), then

ℵ(τ)= ϑ(τ+
2 )− 1

Γ(ι)

∫ τ2

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

= ϑ(τ+
2 ) + ϑ2 −

1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

= ϑ1 + ϑ2 +
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ
.
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If τ ∈ (τm, T ), then

ℵ(τ) =
m

∑
κ=1

ϑi +
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ
.

(8)

Let us say that ℵ satisfies the impulsive FBC of (8). □

3. Main Results

This section shows the main findings of this article.

Theorem 2. If
(A1): ∃ constants W1,W2 > 0,∣∣ℓ(τ,℘,V)− ℓ(τ,℘,V)

∣∣ ≤ W1|℘− ℘|+W2
∣∣V − V

∣∣
for any ℘,V ,℘,V ∈ R and τ ∈ [1, 2].

(A2): A constant Y > 0 exists:

|κ(τ,℘, υ)− κ(τ, υ,V)| ≤ Y|℘− υ|.

If
(W1 +W2Y)ω < 1,

with

ω :=

{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)

}
,

then the problem (1)–(3) has a unique solution on J .

Proof. Assign the operator R described by (1)–(3) and turn them into an FP problem as
follows:

Rℵ(τ)= 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ
+

m

∑
κ=1

ϑi.

(9)

Utilizing the Banach FPT to show that R is a contraction, let ℵ, ϑ ∈ PC(J ,R), and we
have
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|(Rℵ)(τ)− (Rϑ)(τ)|≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
|ℓ(τ,ℵ(τ),Gℵ(τ))− ℓ(τ, ϑ(τ),Gϑ(τ))|dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1

|ℓ(τ,ℵ(τ),Gℵ(τ))− ℓ(τ, ϑ(τ),Gϑ(τ))|dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1

|ℓ(τ,ℵ(τ),Gℵ(τ))− ℓ(τ, ϑ(τ),Gϑ(τ))|dυ

υ

≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
(W1 +W2Y)|ℵ(τ)− ϑ(τ)|dυ

υ

+
|ϖ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
(W1 +W2Y)|ℵ(τ)− ϑ(τ)|dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
(W1 +W2Y)|ℵ(τ)− ϑ(τ)|dυ

υ

≤ (W1 +W2Y)

{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)

}
.

Thus,
∥ (Rℵ)(τ)− (Rϑ)(τ) ∥∞ ≤ (W1 +W2Y)τ∥ ℵ − ϑ ∥∞

Consequently, (9) is a contraction. Hence, using the Banach FPT, the problem (1)–(3)
has a unique solution. □

Theorem 3. If:

(A3): ∃ a constant Wg > 0, ∀ |ℓ(τ,℘,V)| ≤ Wg for τ ∈ J and each ℘,V ∈ R.
(A4): ∃ a constant K∗ > 0 ∀ ∑m

i=1|ϑi| ≤ K∗,
then the problem (1)–(2) has at least one solution on J.

Proof. To demonstrate that R, as described by (9), has an FP, carry out the following steps:
Step 1: R is continuous. Let ℵn be a sequence ∀ℵn → ℵ in PC(J ,R). Then, for each

τ ∈ J ,

∥ (Rℵn)(τ)− (Rℵ)(τ) ∥≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
∥ ℓ(υ,ℵn(υ),Gℵn(υ))− ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
∥ ℓ(υ,ℵn(υ),Gℵn(υ))− ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
∥ ℓ(υ,ℵn(υ),Gℵn(υ))− ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

+
m

∑
i=1

ϑi

≤
{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)
+

m

∑
i=1

ϑi

}
×

∥ ℓ(υ,ℵn(υ),Gℵn(υ))− ℓ(υ,ℵ(υ),Gℵ(υ)) ∥.

Therefore, R is continuous, and ∥ (Rℵn)(τ)− (Rℵ)(τ) ∥∞ → 0 as n → ∞ .
Step 2: R maps bounded sets into bounded sets in PC(J ,R), and it is enough to show

that ι > 0.
℘ ∈ Bι = {ℵ ∈ PC(J ,R), ∥ ℵ ∥∞ ≤ ι}
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For ℵ ∈ Bι and for each τ ∈ [1, T ], we have

|(Rℵ)(τ)|≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ
+

m

∑
i=1

ϑi,

≤
Wg

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1 dυ

υ
+

|δ|(Wg)

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1 dυ

υ

+
|π|(Wg)

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1 dυ

υ
+K∗,

≤ (Wg)

{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)

}
+K∗,

≤ (Wg)ω +K∗.

Thus,
∥ (Rℵ)(τ) ∥ ≤ (Wg)ω +K∗.

Step 3: R maps bounded sets into equicontinuous sets of PC(J ,R).
Let τ1, τ2 ∈ J , τ1 < τ2,Bι be a bounded set of PC(J ,R) as in Step 2, and let ℵ ∈ Bℵ.

Then,

∥ Rℵ(τ2)−Rℵ(τ1) ∥ ≤ 1
Γ(ι)

∫ τ1

1

[(
log

τ2

υ

)ι−1
−

(
log

τ1

υ

)ι−1
]
∥ ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

+
1

Γ(ι)

∫ τ2

τ1

(
log

τ2

υ

)ι−1
∥ ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

≤
Wg

Γ(ι)

∫ τ1

1

[(
log

τ2

υ

)ι−1
−

(
log

τ1

υ

)ι−1
]

dυ

υ

+
Wg

Γ(ι)

∫ τ2

τ1

(
log

τ2

υ

)ι−1 dυ

υ

≤
Wg

Γ(ι + 1)
[
(log τ2)

ι − (log τ1)
ι],

which implies ∥ Rℵ(τ2)−Rℵ(τ1) ∥∞ → 0 as τ1 → τ2 . Therefore, with the consequence
of Steps 1–3, we conclude that R is continuous and completely continuous.

Step 4: A priori bounds. Show that the set

Λ = {ℵ ∈ PC(J ,R) : ℵ = ρR(ℵ)forsome0 < ρ < 1}

is bounded. For ℵ ∈ Λ and τ ∈ J , we have

ℵ(τ)≤ ρ{ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(υ,ℵ(υ),Gℵ(υ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(υ,ℵ(υ),Gℵ(υ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(υ,ℵ(υ),Gℵ(υ))dυ

υ
+

m

∑
i=1

ϑi}
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For ρ ∈ [0, 1],

∥ Rℵ(τ) ∥≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ
+

m

∑
i=1

ϑi,

≤ (Wg)ω +K∗.

Thus
∥ Rℵ(τ) ∥≤ ∞

This implies that Λ is a bounded set. Now, utilizing the Ascoli–Arzela theorem, we
conclude that R has an FP, which is a solution of the problem (1)–(3) on J . □

Theorem 4. Assume the following hypotheses:
(A5): ∃ ϕ ∈ L1(J ,R+) and ψ : [0, ∞) → (0, ∞) continuous and non-decreasing:

|ℓ(τ,ℵ, ϑ)| ≤ ϕ(τ)ψ(∥ ℵ ∥ + ∥ ϑ ∥), for τ ∈ J andeachℵ, ϑ ∈ R.

Then, the BVP (1)–(2) has at least one solution on J.

Proof. Let ℵ be such that for each τ ∈ J , we take ℵ = δ Imℵ for δ ∈ (0, 1), and let ℵ be a
solution. Then,

|ℵ(τ)|≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ϕ(τ)ψ(∥ ℵ ∥+ ∥ ϑ ∥)dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ϕ(τ)ψ(∥ ℵ ∥+ ∥ ϑ ∥)dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ϕ(τ)ψ(∥ ℵ ∥+ ∥ ϑ ∥)dυ

υ
+K∗

≤ ∥ ϕ ∥ ψ(∥ ℵ ∥)Y +K∗.

and, consequently,
∥ ℵ ∥∞

∥ ϕ ∥ ψ(∥ ℵ ∥+ ∥ ϑ ∥)Y +K∗ ≤ 1

Then, by condition (A5), ∃ϵ: ∥ ℵ ∥∞ ̸= ϖ, set

γ = {ℵ ∈ PC(J ,R) :∥ ℵ ∥< ϖ}.

Obviously, the operator Im : γ → PC(J ,R) is completely continuous. From the
choice of γ, there is no ℵ ∈ ∂γ: ℵ = δ Im(ℵ) for some δ ∈ (0, 1). As a result, by Leray–
Schauder’s nonlinear alternative theorem, R has an FP ℵ ∈ γ, which is a solution of (1)–(2).
□

Theorem 5. If Assumptions 3 and 4 hold, then the problem (1)–(3) has at least one solution for J .

Proof. Take Bι = {ℵ ∈ PC(J ,R) : |ℵ| ≤ ι}. Let T1 and T2 be the two operators explained
for Bι by

(T1ℵ)(τ) = 1
Γ(ι)

∫ τ
1

(
log τ

υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ)) dυ

υ (10)
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and

(T2ℵ)(τ)=
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(τ,ℵ(τ),Gℵ(τ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(τ,ℵ(τ),Gℵ(τ))Gυ

υ
+

m

∑
k=1

ϑi,
(11)

respectively.
Note that ℵ, ϑ ∈ Bι, then T1ℵ+ T2ϑ ∈ Bι. Check the inequality in the above equation

as follows:

|T1ℵ+ T2ϑ|≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(ϑ,ℵ(ϑ),Gℵ(υ))dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
ℓ(υ,ℵ(υ),Gℵ(υ))dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
ℓ(υ,ℵ(υ),Gℵ(υ))Dυ

υ
+

m

∑
i=1

ϑi,

≤ 1
Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|δ|

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ

+
|π|

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1
|ℓ(υ,ℵ(υ),Gℵ(υ))|dυ

υ
+

∣∣∣∣∣ m

∑
i=1

ϑi

∣∣∣∣∣,
≤

Wg

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1 Dυ

υ
+

|δ|(Wg)

|Λ|Γ(ι + ς)

∫ ξ

1

(
log

ξ

υ

)ι+ς−1 dυ

υ

+
|π|(Wg)

|Λ|Γ(ι)

∫ T

1

(
log

T
υ

)ι−1 dυ

υ
+K∗,

≤ (Wg)

{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)

}
+K∗,

≤ (Wg)ω +K∗,

≤ ι.

Thus, T1ℵ+ T2ϑ ∈ Bι for all ℵ, ϑ ∈ Bι.
It is clear that (T2) is a contraction map, and the continuity of ℵ and the operator

(T1ℵ)(τ) is continuous and observe that

|(T1ℵ)(τ)|≤
1

Γ(ι)

∫ τ

1

(
log

τ

υ

)ι−1
ℓ(υ,ℵ(υ),Gℵ(υ))dυ

υ
,

≤ (log T )ι

Γ(ι + 1)
(Wg).

Hence, (T1) is uniformly bounded on Bι.
Now, we prove that (T1ℵ)(τ) is equicontinuous, and τ1, τ2 ∈ J , τ2 ≤ τ1 and ℵ ∈ Bι.

Since T1 is bounded on compact set

sup
(τ,ℵ,ϑ)∈J×Bι

|ℓ(υ,ℵ(υ),Gℵ(υ))| := C0 < ∞,

we will obtain
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∥ T ℵ(τ2)− T ℵ(τ1) ∥ ≤ 1
Γ(ι)

∫ τ1

1

[(
log

τ2

υ

)ι−1
−

(
log

τ1

υ

)ι−1
]
∥ ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

+
1

Γ(ι)

∫ τ2

τ1

(
log

τ2

υ

)ι−1
∥ ℓ(υ,ℵ(υ),Gℵ(υ)) ∥dυ

υ

≤ C0

Γ(ι)

∫ τ1

1

[(
log

τ2

υ

)ι−1
−

(
log

τ1

υ

)ι−1
]

dυ

υ

+
C0

Γ(ι)

∫ τ2

τ1

(
log

τ2

υ

)ι−1 dυ

υ

≤ C0

Γ(ι + 1)
[
(log τ2)

ι − (log τ1)
ι]

→ 0 as τ2 → τ1.

Consequently, T1(Bι) is relatively compact, and, according to the Ascoli–Arzela theo-
rem, T1 is compact. Then, the problem (1)–(3) has at least one FP on J . □

The following example is used to verify our main results.

4. Example

Consider the problem for the C-HFDE:

C
HD

2
3 ℵ(τ) = ℓ(τ,ℵ(τ),Gℵ(τ)), (τ,ℵ) ∈

(
[1, e],R+

)
, (12)

ℵ(τ+
κ ) = ℵ(τ−

κ ) +
1
6

, (13)

ℵ(1) + ℵ(e) = 1
2

(
I

1
2 ℵ(2)

)
+

3
4

. (14)

Here,
ι = 2

3 , ς = 1
2 , ν = 1, π = 1,

ϖ = 3
4 , δ = 1

2 , ξ = 2, T = e.

with
ℓ(τ,ℵ(τ),Gℵ(τ)) = 1

τ2 + 4
cosℵ+ Gℵ(τ), τ ∈ [1, e]

Gℵ(τ) = 1
2

∫ τ

0
e−(υ−τ)ℵ(υ)dυ.

Hence, the hypothesis (A1)–(A2) is satisfied with W1 = W2 = 1
4 , Y = 1

3 .
Further,

ω :=

{
(log T )ι

Γ(ι + 1)
+

|δ|(log ξ)ι+ς

|Λ|Γ(ι + ς + 1)
+

|π|(log T )ι

|Λ|Γ(ι + 1)

}
≃ 2.0286,

and
(W1 +W2Y)ω ≈ 0.6745 < 1.

Hence, (12)–(14) has a unique solution on [1, e].

5. Conclusions

We obtained some existence results for nonlinear C-HFDEs with Hadamard IBCs by
means of some standard FPTs and a nonlinear alternative of the Leray–Schauder type.
The method was utilized to prove the problem’s existence is a common one; however, it
is presented in a novel way in the current framework. By providing some examples, the
current work is also illustrated. Potential future directions could be to investigate a much
more complicated class of BVPs. In addition, we intend to study the Ulam stability, the
generalized Ulam stability of the problem.
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