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Abstract: The aim of this research is to introduce two new notions, Θ-(Ξ,h)-contraction and rational
(α,η)-ψ-interpolative contraction, in the setting of F-metric space and to establish corresponding fixed
point theorems. To reinforce understanding and highlight the novelty of our findings, we provide a
non-trivial example that not only supports the obtained results but also illuminates the established
theory. Finally, we apply our main result to discuss the existence and uniqueness of solutions for a
fractional differential equation describing an economic growth model.
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1. Introduction

Fixed point theory, a vibrant intersection of topology and analysis, offers a robust
analytical tool with wide-ranging applications in pure and applied mathematics. By
establishing key concepts and frameworks, it fuels ongoing research and development.
At its heart lies the study of metric spaces, which define distances within sets. Countless
impactive and elegant applications of this notion abound across various scientific
fields ([1,2]). To broaden its reach, mathematicians have generalized metric spaces,
leading to fruitful extensions of fixed point theory. Branciari [3] proposed the ingenious
idea of a generalized metric, replacing the standard triangle inequality with a more
general, four-term “rectangular inequality”. This type of metric space, known as the
rectangular metric space, is well-established in the literature. Bakhtin [4] introduced
the concept of b-metric space in 1989, a notion further elucidated by Czerwik [5] in
1993. Unlike classical metrics, the b-metric lacks continuity within the topology it
defines. Expanding upon these ideas, Jleli et al. [6] initiated the concept of F-metric
space in 2018, presenting it as a generalization encompassing all previously mentioned
metric spaces. These generalizations offer greater flexibility for modeling real-world
phenomena and tackling problems that might not fit classical metric structures.

Stefan Banach [7] played a pioneering role in this theory, introducing the concept
of contraction within the background of metric spaces and proving a fundamental fixed
point theorem. His contributions have found significant applications in diverse domains,
including optimization problems, differential equations, economics, and many other fields.
Numerous research endeavors have been dedicated to enhancing and extending Banach’s
contraction principle through various avenues. Jleli et al. [8] introduced the notion of
Θ-contractions as a significant generalization of traditional contractions. This concept
goes beyond the simple distance criterion by incorporating an additional function, Θ,
which captures the intricate interplay between distances for paired points in a metric space.
This extension allows for a more nuanced and flexible analysis of contraction properties
and proves to be a valuable tool for understanding the convergence behavior of iterative
processes in broader settings. Samet et al. [9] further extended the reach of admissibility,
a crucial concept in fixed point theory, by introducing the idea of α-admissibility. This
innovation involves a “weighting” function, α(a, ♭), that assigns varying importance to
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the contractiveness between different pairs of points. This allows for a more customized
analysis that takes into account specific conditions and complexities within the metric space.
Ansari et al. [10,11] further contributed to this domain by introducing C-class functions,
paving the way for establishing fixed point results as generalizations of Banach’s theorem in
metric-like spaces and 0- f -orbitally complete partial metric spaces. These novel functions
provide even greater adaptability and enable fixed point analysis within broader and more
diverse mathematical structures. For a deeper exploration of these advancements and their
implications, readers are encouraged to delve into references [12–20].

On the other side, fixed point theory has become an indispensable tool for the anal-
ysis and solution of fractional differential equations. Its ability to establish the existence
and uniqueness of solutions, as well as its capacity to handle nonlinearities and provide
constructive methods, has made it a cornerstone for the study of fractional differential
equations across various scientific and engineering disciplines. Further, these equations
offer a promising approach to economic growth modeling, providing a richer frame-
work for capturing complex dynamics and memory effects. As research in this field
progresses, equations are expected to assume growing significance for comprehending
and predicting patterns of economic growth, informing policy decisions, and address-
ing economic challenges more effectively. In 2016, McTier [21] employed a fractional
order approach for modeling the economic growth of both the United States and Italy,
with a specific emphasis on their respective gross domestic products (GDPs). McTier
incorporated key variables such as geographic expanse, cultivable terrain, population, at-
tendance at educational institutions, total capital investment, exports of goods and services,
overall government consumption spending, and currency and quasi-money to character-
ize the GDP. The findings indicated that fractional models exhibit superior performance
compared to alternative approaches discussed in the existing literature. Subsequently,
Tejado et al. [22] used fractional calculus to model the economic growth of Spain and
Portugal. Later on, Ming et al. [23] utilized fractional calculus in models pertaining to
the economic growth of China. Very recently, Johansyah et al. [24] gave a comprehensive
review approach of applications of fractional differential equations in different economic
growth models.

In this ongoing investigation, we propose the concepts of Θ-(Ξ,h)-contractions and
rational (α,η)-ψ-interpolative contractions in the background of F-MS and obtain corre-
sponding fixed point theorems. As an application, we apply the leading result to discuss
the existence and uniqueness of solutions for a fractional differential equation.

2. Preliminaries

In this article, we employ the subsequent symbols: R represents the set of all real
numbers, R+ denotes the set of all positive real numbers, and N indicates the set of
all natural numbers. In the literature, numerous extensions of the renowned Banach
contraction principle [7] can be found. This principle states that any self-mapping B
defined on a complete metric space (X, d) and satisfying

d(Ba,B♭) ≤ τd(a, ♭), where τ ∈ [0, 1)

for all a, ♭ ∈ X has a unique fixed point.
In the year 2014, Jleli et al. [8] introduced an innovative form of contraction and

proved some novel fixed point theorems applicable to this type of contraction within the
realm of generalized metric spaces.

Definition 1 ([8]). Let Ω be the set of all functions Θ : (0, ∞) → (1, ∞) such that

(Θ1) for all t1, t2 ∈ R+ such that t1 ≤ t2, which implies Θ(t1) ≤ Θ(t2);
(Θ2) for each sequence {tn} ⊆ R+, limn→∞ Θ(tn) = 1 if and only if limn→∞(tn) = 0;

(Θ3) there exists 0 < q < 1 and l ∈ (0, ∞] such that limt→0+
Θ(t)−1

tq = l.
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A mapping B : X → X is termed a Θ-contraction if there exist a function Θ satisfying the
conditions (Θ1)–(Θ3) and a constant τ ∈ (0, 1) such that for all a, ♭ ∈ X,

d(Ba,B♭) ̸= 0 =⇒ Θ(d(Ba,B♭)) ≤ [Θ(d(a, ♭))]τ .

Theorem 1 ([8]). Suppose that B : X → X is a Θ-contraction on complete metric space (X, d);
then B has a unique fixed point.

Bakhtin [4] introduced the concept of a b-metric by modifying the triangular inequality
of the metric space in the following manner:
for all a, ω, ♭ ∈ X and for some s ≥ 1,

d(a, ♭) ≤ s[d(a, ω) + d(ω, ♭)].

On the other hand, The concept of F-metric space (F-MS) originates from the work of
Jleli et al. [6], as detailed in the following definition.

Let F be the class of functions ξ : (0,+∞) → R satisfying
(F1) 0 < a1 < a2 ⇒ ξ(a1) ≤ ξ(a2),
(F2) for all {an} ⊆ R+, limn→∞ an = 0 if and only if limn→∞ ξ(an) = −∞.

Definition 2 ([6]). Let X ̸= ∅ and d : X × X → [0,+∞). Suppose that there exists (ξ,ℏ) ∈
F× [0,+∞) such that

(D1) (a, ♭) ∈ X × X, d(a, ♭) = 0 if and only if a = ♭;
(D2) d(a, ♭) = d(♭, a) for all a, ♭ ∈ X;
(D3) for all (a, ♭) ∈ X × X and (ai)

N
i=1 ⊂ X, with (a1, aN) = (a, ♭) for all N ≥ 2, we have

d(a, ♭) > 0 ⇒ ξ(d(a, ♭)) ≤ ξ(
N−1

∑
i=1

d(ai, ai+1)) + ℏ.

Subsequently, (X, d) is termed an F-MS.

Example 1 ([6]). Consider X = N and let the mapping d : X × X → [0,+∞) be defined by

d(a, ♭) =
{

(a− ♭)2 if (a, ♭) ∈ [0, 3]× [0, 3]
|a− ♭| if (a, ♭) ̸∈ [0, 3]× [0, 3]

for all (a, ♭) ∈ X×X. Then, the pair (X, d) forms an F-MS, where ξ : (0,+∞) → R is defined as
ξ(t) = ln(t) for t > 0, and ℏ = ln(3).

Definition 3 ([6]). Let (X, d) be an F-MS.
(i) A sequence {an} ⊆ X is called an F-convergent if

lim
n→∞

d(an, a) = 0.

(ii) A sequence {an} is an F-Cauchy if

lim
n,m→∞

d(an, am) = 0.

Definition 4 ([6]). Let (X, d) be an F-MS and B : X → X. Then B is professed to be continuous
at a specific point a ∈ X if for each sequence {an} in X converging to a, the sequence Ban converges
to Ba. Additionally, the mapping B is deemed continuous on X if it exhibits continuity at every
point a ∈ X.

In their work, Samet et al. [9] gave the concept of α-admissibility in a manner unique
to their investigation.
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Definition 5. A mapping B : X → X is known as an α-admissible mapping if

α(a, ♭) ≥ 1 implies α(Ba,B♭) ≥ 1.

Recently, Ansari et al. [11] used the the following pair (Ξ, h) of functions in contractive
inequalities and established some results.

Definition 6 ([11]). Let h : R+ ×R+ → R and Ξ:R+ ×R+ → R; then we say that the pair of
the functions Ξ and h are C-class functions if the ensuing conditions are fulfilled:

(i) x ≥ 1 implies h(1, y) ≤ h(x, y);
(ii) 0 ≤ ℓ ≤ 1 implies Ξ(ℓ,℘) ≤ Ξ(1,℘);
(iii) h(1, y) ≤ Ξ(ℓ,℘) implies y ≤ ℓ℘
for all y, ℓ,℘ ∈ R+.

Example 2. Define h : R+ ×R+ → R and Ξ:R+ ×R+ → R by h(x, y) = y and Ξ(ℓ,℘) = ℓ℘;
then the pair Ξ and h are C-class functions.

3. Results and Discussions
3.1. Fixed Point Results for Θ-(Ξ,h)-Contractions

To facilitate our investigation in this subsection, we introduce a formal definition for
Θ-(Ξ,h)-contractions, setting the stage for their impactful utilization within the context of
F-MS (X, d).

Definition 7. A mapping B : (X, d) → (X, d) is designated as a Θ-(Ξ,h)-contraction if there exist
a constant τ ∈ (0, 1), the functions Θ ∈ Ω, α : X×X→ R+, and the C-class functions Ξ and h
satisfying the condition:

d(Ba,B♭) > 0 =⇒ h(α(a, ♭)), Θ(d(Ba,B♭))) ≤ Ξ
(
1, [Θ(d(a, ♭))]τ

)
(1)

for all a, ♭ ∈ X.

Theorem 2. Let (X, d) be a complete F-MS; B : X → X is a Θ-(Ξ, h)-contraction. Suppose the
following conditions are met:

(i) B is an α-admissible mapping;
(ii) There exists a point a0 ∈ X such that α(a0,Ba0) ≥ 1;
(iii) Either B : X → X is continuous, or, if {an} is a sequence in X such that an → a∗ and

α(an, an+1) ≥ 1, then α(an, a∗) ≥ 1 for all n ∈ N.
Then B has a fixed point. Furthermore, if α(a, µ) ≥ 1 for all a, µ∈Fix(B), then the fixed point

is unique.

Proof. Let a0 ∈ X be an arbitrary point such that

α(a0, a1) = α(a0,Ba0) ≥ 1. (2)

Now, we define a sequence {an} in this way:

a1 = Ba0, · · ·, an+1 = Ban = Bn+1a0 (3)

for all n ≥ 0. By condition (i) and (2), we have

α(a1, a2) = α(Ba0,Ba1) ≥ 1.

By continuing this process, we get

α(an−1, an) = α(Ban−2,Ban−1) ≥ 1 (4)
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for all n ∈ N ∪ {0}. If an0 = an0+1 holds true for a certain n0 ∈ N ∪ {0}, it becomes clear
that an0 qualifies as a fixed point of B. Consequently, let us consider the scenario where
an ̸= an+1 for all n ∈ N∪ {0}. In this case, we suppose that:

d(Ban−1,Ban) = d(an, an+1) > 0

for all n ∈ N∪ {0}. Now, it follows from (1) that we have

h(1, Θ(d(an, an+1)))

= h(1, Θ(d(Ban−1,Ban)))

≤ h(α(an−1, an)), Θ(d(Ban−1,Ban)))

≤ Ξ
(
1, [Θ(d(an−1, an))]

τ),
which entails that

Θ(d(an, an+1)) ≤ [Θ(d(an−1, an))]
τ . (5)

Repeatedly applying inequality (5) yields

Θ(d(an, an+1)) ≤ [Θ(d(an−1, an))]
τ ≤ ... ≤ [Θ(d(a0, a1))]

τn
. (6)

Letting n → ∞ in (6), we get

lim
n→∞

Θ(d(an, an+1)) = 1.

By (Θ2), we have
lim

n→∞
d(an, an+1) = 0. (7)

From (Θ3), there exist q ∈ (0, 1) and l ∈ (0, ∞) such that

lim
n→∞

Θ(d(an, an+1))− 1
[d(an, an+1)]q

= l. (8)

Consider λ ∈ (0, l). According to the definition of a limit, there exists a natural number n0
such that

[d(an, an+1)]
q ≤ λ−1[Θ(d(an, an+1))− 1] (9)

for all n > n0. Employing (6) along with the previously mentioned inequality, we infer

n[d(an, an+1)]
q ≤ λ−1n

(
[Θ(d(a0, a1))]

τn − 1
)

.

This implies that
lim

n→∞
n[d(an, an+1)]

q = lim
n→∞

n[d(a0, a1)]
h = 0.

Then, there exists n1 ∈ N such that

d(an, an+1) ≤
1

n
1
q

(10)

for n > n1. This yields
m−1

∑
i=n

d(ai, ai+1) ≤
m−1

∑
i=n

1

i
1
q

(11)

for m > n. Since ∑∞
i=n

1

i
1
q

is convergent,

0 <
m−1

∑
i=n

1

i
1
q
<

∞

∑
i=n

1

i
1
q
< δ
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for n > n1. Consider a fixed ϵ > 0 and let (ξ,ℏ) ∈ F× [0,+∞) such that the condition (D3)
is satisfied. According to (F2), there exists δ > 0 such that

0 < t < δ implies ξ(t) < ξ(t)− ℏ. (12)

Hence, by (11), (12), and (F1), we have

ξ

(
m−1

∑
i=n

d(ai, ai+1)

)
≤ ξ

(
m−1

∑
i=n

1

i
1
q

)
≤ ξ

(
∞

∑
i=n

1

i
1
q

)
< ξ(ϵ)− ℏ (13)

given that m > n ≥ n1. Now, in accordance with condition (D3) and (13) for d(an,am) > 0,
m > n ≥ n1, we obtain

ξ(d(an, am)) ≤ ξ

(
m−1

∑
i=n

d(ai, ai+1)

)
+ ℏ

≤ ξ

(
∞

∑
i=n

1

i
1
q

)
+ ℏ

< ξ(ϵ),

which, from (F1), gives that
d(an, am) < ϵ,

for all m > n ≥ n1; hence, {an} forms a Cauchy sequence in (X, d). Given that (X, d)
is complete, there exists a∗ ∈ X such that limn→∞ an → a∗. Now, we demonstrate that
a∗ = Ba∗. Assuming B : X → X is continuous, then Ban → Ba∗ as n → ∞. Therefore,

Ba∗ = lim
n→∞

Ban = lim
n→∞

an+1 = a∗.

Now, if {an} is a sequence in X such that an → a∗ and α(an, an+1) ≥ 1 for all n ∈ N, then
according to supposition (iii), it follows that α(an, a∗) ≥ 1 for all n ∈ N. Assuming the
contrary, if a∗ is not the fixed point of B, then d(Ba∗, a∗) ̸= 0. Referring to (1), we obtain

h(1, Θ(d(an+1,Ba∗)))
= h(1, Θ(d(Ban,Ba∗)))
≤ h(α(an, a∗)), Θ(d(Ban,Ba∗)))
≤ Ξ

(
1, [Θ(d(an, a∗))]τ

)
,

which infers that
Θ(d(an+1,Ba∗)) ≤ [Θ(d(an, a∗))]τ .

Allowing n → ∞ in the aforementioned inequality and leveraging the continuity of Θ and
d, we get

Θ(d(a∗,Ba∗)) = 1,

which implies by (Θ2) that we have d(a∗ , Ba∗) = 0, which is a contradiction. Thus,
a∗ = Ba∗ and a∗ is a fixed point of B. Now let a/ be another fixed point of B such that
Ba∗ = a∗ ̸= a/ = Ba/ . Then by the assumption, we obtain α

(
a∗ , a/

)
≥ 1. Now, by (1),

we have
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h
(

1, Θ
(

d(a∗, a/)
))

= h
(

1, Θ
(

d(Ba∗,Ba/)
))

≤ h
(

α
(
a∗, a/)

)
, Θ
(

d(Ba∗,Ba/)
))

≤ Ξ
(

1,
[
Θ
(

d(a∗, a/)
)]τ)

,

which implies that

Θ
(

d(a∗, a/)
)
≤
[
Θ
(

d(a∗, a/)
)]τ

< Θ
(

d(a∗, a/)
)

,

which is a contradiction because τ < 1. Thus, a∗ = a/, and the fixed point is unique.

The following outcome represents the primary finding of Ahmad et al. [16] and is a
direct implication of our main Theorem 2.

Corollary 1. Let (X, d) be a complete F-MS and B : X → X. Suppose that there exists a constant
τ ∈ (0, 1) and the functions Θ ∈ Ω, α : X×X→ R+ such that (a, ♭) ≥ 1 and

d(Ba,B♭) > 0 =⇒ Θ(d(Ba,B♭)) ≤ [Θ(d(a, ♭))]τ

for all a, ♭ ∈ X. Suppose that the subsequent conditions are met:
(i) B is an α-admissible mapping;
(ii) There exists a point a0 ∈ X such that α(a0,Ba0) ≥ 1;
(iii) Either B : X → X is continuous, or, if {an} is a sequence in X such that an → a∗ and

α(an, an+1) ≥ 1, then α(an, a∗) ≥ 1 for all n ∈ N.
Then B has a fixed point. Furthermore, if α(a,⪯)) ≥ 1 for all a, µ∈Fix(B), then the fixed

point is unique.

Proof. Define h : R+ ×R+ → R and Ξ:R+ ×R+ → R by h(x, y) = y and Ξ(ℓ,℘) = ℓ℘ in
Theorem 2.

Corollary 2. Consider a complete F-MS (X, d), where B : X → X is continuous. Assume that
there exists a constant τ ∈ (0, 1) and a function Θ ∈ Ω such that

d(Ba,B♭) > 0 =⇒ Θ(d(Ba,B♭)) ≤ [Θ(d(a, ♭))]τ

for all a, ♭ ∈ X. Then B has a unique fixed point.

Proof. Define α : X×X→R+, h : R+ × R+ → R and Ξ:R+ × R+ → R by α(a, ♭) = 1,
h(x, y) = y and Ξ(ℓ,℘) = ℓ℘ in Theorem 2.

Example 3. Let us define the sequence {an} in the following manner.
a1 = ln(1)
a2 = ln(3)
·
·
·
an = ln(1 + 3 + 5 + ... + (2n − 1)) = 2 ln(n) for all n ∈ N. Consider the set X={an : n ∈ N}
along with the F metric as specified by

d(a, ♭) =
{

e|a−♭|, if a ̸= ♭
0, if a = ♭

with ξ(t) = −1
t and ℏ = 1.
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Consequently, (X, d) forms a complete F-MS. Let us define the mapping B : X → X as follows

B(an) =

{
a1, if n = 1,
an−1, if n > 1

and α : X×X→ [1,+∞) by

α(an, am) =

{
1, if an ̸= am
0, if an = am

.

Define h : R+ ×R+ → R and Ξ:R+ ×R+ → R by h(x, y) = y and Ξ(ℓ,℘) = ℓ℘. Clearly,

lim
n−→∞

d(B(an),B(a1))

d(an, a1)
= 1.

Then B is not a contraction in the sense of [8]. Consider the mapping Θ : R → [1,+∞) given by
Θ(t) = et, t > 0. Demonstrating that Θ belongs to the set Ω is straightforward. Now, we prove B
is an Θ-(Ξ,h)-contraction: that is, d(B(an),B(am)) ̸= 0 implies

τ + ln d(B(an),B(am))) + d(B(an),B(am))) ≤ ln d(an, am) + d(an, am)

for τ > 0. The condition stated above is identical to

d(B(an),B(am)) ̸= 0 =⇒ eτ+ln d(B(an),B(am)))+d(B(an),B(am))) ≤ eln d(an ,am)+d(an ,am).

So we have to check that

d(B(an),B(am)) ̸= 0 =⇒ d(B(an),B(am))

d(an, am)
ed(B(an),B(am))−d(an ,am) ≤ e−τ .

For all m ∈ N, m ≥ 2, we get

d(B(am),B(a1)) ̸= 0 =⇒ d(B(am),B(a1))

d(am, a1)
ed(B(am),B(a1))−d(am ,a1) ≤ e−τ

d(am−1, a1)

d(am, a1)
ed(am−1,a1)−d(am ,a1)

=
eam−1−a1

eam−a1
eeam−1−a1−eam−a1

=
eln(m−1)2

eln(m)2 eeln(m−1)2−eln(m)2

=
(m − 1)2

m2 e−2m+1 < e−1.

Therefore, the inequality (1) holds true with τ = 1 > 0. Consequently, B established as an
F-(Ξ,h)-contraction. Hence, Theorem 4 deduces that a = ln(1) stands as the unique fixed point
of B.

3.2. Fixed Point Results for Interpolative Contractions

The concept of α-ψ-contractive mappings was established in 2012 by Samet et al. [9].
These mappings utilize a family Ψ of non-decreasing functions ψ : [0,+∞) → [0,+∞). A
crucial property of these functions is that ∑∞

n=1 ψn(t) < +∞ for all t > 0, where ψn is the
n-th iterate of ψ.

The subsequent lemma is widely recognized.

Lemma 1. If ψ ∈ Ψ, then the following hold:
(i) (ψn(t))n∈N converges to 0 as n → ∞ for all t ∈ (0,+∞);
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(ii) ψ(t) < t for all t > 0;
(iii) ψ(t) = 0 iff t = 0.

Theorem 3 ([9]). Let (X, d) be a complete metric space and B : X → X be α-admissible mapping.
Assume that

α(a,♭)d(Ba,B♭) ≤ ψ(d(a,♭))

for all a,♭ ∈ X, where ψ ∈ Ψ. Also, suppose that

(i) There exists a0 ∈ X such that α(a0,Ba0) ≥ 1;
(ii) Either B is continuous, or, for any sequence {an} in X with α(an, an+1) ≥ 1 for all n ∈ N

and an → a∗ as n → +∞, we have α(an, a∗) ≥ 1 for all n ∈ N.

Then B has a fixed point.

Here we define the notion of rational (α,η)-ψ-interpolative contraction in the context
of F-MS (X, d).

Definition 8. A mapping B : X → X is described as a rational (α,η)-ψ-interpolative contraction
if there exist the functions α, η : X × X −→ [0,+∞), ψ ∈ Ψ and a constant λ ∈ [0, 1) such that

α(a,♭) ≥ η(a,♭), (14)

which implies

d(Ba,B♭) ≤ ψ

[
d(a, ♭)λ.

(
d(a,Ba)d(a,B♭) + d(♭,B♭)d(♭,Ba)

max{d(a,B♭), d(♭,Ba)}

)1−λ
]

, (15)

for all a, ♭ ∈ X\Fix(B).

Theorem 4. Let B : X → X be a rational (α,η)-ψ-interpolative contraction. Let us consider the
following conditions to be true:

(i) B is an α-admissible mapping with respect to η;
(ii) There exists a point a0 ∈ X such that α(a0,Ba0) ≥ η(a0,Ba0);
(iii) B : X → X is continuous.
Then there exists a∗ ∈ X such that Ba∗ = a∗.

Proof. Let a0 ∈ X be an arbitrary point such that

α(a0, a1) = α(a0,Ba0) ≥ η(a0,Ba0) = η(a0, a1). (16)

Now we define a sequence {an} in this way:

a1 = Ba0, · · ·, an+1 = Ban = Bn+1a0, (17)

for all n ≥ 0. By hypothesis (i) and inequality (16), we have

α(a1, a2) = α(Ba0,Ba1) ≥ η(Ba0,Ba1) = η(a1, a2).

Following this procedure, we ultimately achieve

α(an−1, an) = α(Ban−2,Ban−1) ≥ η(Ban−2,Ban−1) = η(an−1, an).

for all n ∈ N ∪ {0}. Now, if an0 = an0+1 for some n0 ∈ N ∪ {0}, then clearly an0 is a fixed
point of B. Thus, we assume that an ̸= an+1, holds true for every n ∈ N∪ {0}. Therefore,
we assume that

d(Ban−1,Ban) = d(an, an+1) > 0,
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for all n ∈ N∪ {0}. From (14) and (15), we get

d(an, an+1) = d(Ban−1,Ban) ≤ ψ

[
d(an−1, an)λ

.
(

d(an−1,Ban−1)d(an−1,Ban)+d(an ,Ban)d(an ,Ban−1)
max{d(an−1,Ban),d(an ,Ban−1)}

)1−λ

]

= ψ

[
d(an−1, an)λ

.
(

d(an−1,an)d(an−1,an+1)+d(an ,an+1)d(an ,an)
max{d(an−1,an+1),d(an ,an)}

)1−λ

]

= ψ
[
d(an−1, an)

λ.(d(an−1, an))
1−λ
]

= ψ[d(an−1, an)]

for all n ∈ N. Thus,
d(an, an+1) ≤ ψ[d(an−1, an)] (18)

for all n ∈ N. Following this approach, we obtain

d(an, an+1) ≤ ψ[d(an−1, an)] ≤ ψ[ψ(d(an−2, an−1))] ≤ ... ≤ ψn[d(a0, a1)]

for all n ∈ N, which yields

m−1

∑
i=n

d(ai, ai+1) ≤
m−1

∑
i=n

ψi(d(a0, a1)) (19)

for m > n. We consider a fixed positive value ϵ. Additionally, let n(ϵ) be a natural number
satisfying the condition that ∑n≥n(δ) ψi(d(a0, a1)) < ϵ. Furthermore, given an arbitrary
element (ξ,ℏ) ∈ F × [0,+∞), if condition (D3) holds, then due to property (F2), there exists
a positive value δ such that

0 < t < δ implies ξ(t) < ξ(δ)− ℏ. (20)

Hence, by (19), (20), and (F1), we have

ξ

(
m−1

∑
i=n

d(ai, ai+1)

)
≤ ξ

(
m−1

∑
i=n

ψi(d(a0, a1))

)
≤ ξ

 ∑
n≥n(δ)

ψi(d(a0, a1))

 < ξ(ϵ)− ℏ (21)

for m > n ≥ N. Applying (D3) and (21), we get d(an, am) > 0, m > n ≥ N, which implies

ξ(d(an, am)) ≤ ξ

(
m−1

∑
i=n

d(ai, ai+1)

)
+ ℏ < ξ(ϵ).

This, combined with property (F1), implies that d(an, am) < ϵ, m > n ≥ N. This establishes
the F -Cauchy property for the sequence {an}. As (X, d) is complete, a limit element a∗

exists in X such that the sequence {xn} converges to x∗, which can be written as

lim
n→∞

d(an, a∗) = 0. (22)

Now, we show that a∗ = Ba∗. Since B : X → X is continuous, we have Ban → Ba∗ as
n → ∞. Thus,

Ba∗ = lim
n→∞

Ban = lim
n→∞

an+1 = a∗.

Theorem 5. Let (X, d) be a complete F-MS and B : X → X ba a rational (α,η)-ψ-interpolative
contraction. Let us establish the following premises.

(i) B is an α-admissible mapping with respect to η;
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(ii) There exists a point a0 ∈ X such that α(a0,Ba0) ≥ η(a0,Ba0);
(iii) If {an} is a sequence in X such that an → a∗ and α(an, an+1) ≥ η(an, an+1) for all

n ∈ N, then α(an, a∗) ≥ η(an, a∗) for all n ∈ N.
Then there exists a∗ ∈ X such that Ba∗ = a∗.

Proof. Following a similar approach to the proof of Theorem 4, we get that {an} is a
sequence in X such that an → a∗ and α(an, an+1) ≥ η(an, an+1) for all n ∈ N. Then, by
hypothesis (iii), we have α(an, a∗) ≥ η(an, a∗) for all n ∈ N. To establish a contradiction,
let us assume that a∗ is not a fixed point of B. Then d(Ba∗, a∗) ̸= 0. Now by (D3) and (14),
we thave

ξ(d(Ba∗, a∗)) ≤ ξ(d(Ba∗,Ban) + d(Ban, a∗)) + ℏ

≤ ξ

 ψ

[
d(a∗, an)λ.

(
d(a∗ ,Ba∗)d(a∗ ,Ban)+d(an ,Ban)d(an ,Ba∗)

max{d(a∗ ,Ban),d(an ,Ba∗)}

)1−λ
]

+d(Ban, a∗)

+ ℏ

= ξ

 ψ

[
d(a∗, an)λ.

(
d(a∗ ,Ba∗)d(a∗ ,an+1)+d(an ,an+1)d(an ,Ba∗)

max{d(a∗ ,an+1),d(an ,Ba∗)}

)1−λ
]

+d(an+1, a∗)

+ ℏ. (23)

Taking n → ∞ in the preceding inequality and considering the fact that
limn→∞ d(an, a∗) = 0 together with limn→∞ d(an+1, a∗) = 0 and

lim
n→∞

ξ

 ψ

[
d(a∗, an)λ.

(
d(a∗ ,Ba∗)d(a∗ ,an+1)+d(an ,an+1)d(an ,Ba∗)

max{d(a∗ ,an+1),d(an ,Ba∗)}

)1−λ
]

+d(an+1, a∗)

+ ℏ = −∞.

Thus, by (23), we have ξ(d(Ba∗, a∗)) = −∞. Hence, by (F2), we have d(Ba∗, a∗) = 0, which
is a contradiction. Thus, Ba∗ = a∗.

Corollary 3. Let (X, d) be a complete F-MS and B : X → X. Assume that there exist the functions
α : X × X −→ [0,+∞), ψ ∈ Ψ and the constant λ ∈ [0, 1) such that

α(a,♭) ≥ 1,

which implies

d(Ba,B♭) ≤ ψ

[
d(a, ♭)λ.

(
d(a,Ba)d(a,B♭) + d(♭,B♭)d(♭,Ba)

max{d(a,B♭), d(♭,Ba)}

)1−λ
]

,

for all a, ♭ ∈ X\Fix(B).
(i) B is an α-admissible mapping;
(ii) There exists a point a0 ∈ X such that α(a0,Ba0) ≥ 1;
(iii) B : X → X is continuous, or, if {an} is a sequence in X such that an → a∗ and

α(an, an+1) ≥ 1 for all n ∈ N, then α(an, a∗) ≥ 1 for all n ∈ N.
Then there exists a∗ ∈ X such that Ba∗ = a∗.

Proof. Define η : X × X −→ [0,+∞) by η(a,♭) = 1 in Theorems 4 and 5.

Corollary 4. Let (X, d) be a complete F-MS, and let B : X → X be a continuous function. Assume
that there exist the function ψ ∈ Ψ and the constant λ ∈ [0, 1) such that

d(Ba,B♭) ≤ ψ

[
d(a, ♭)λ.

(
d(a,Ba)d(a,B♭) + d(♭,B♭)d(♭,Ba)

max{d(a,B♭), d(♭,Ba)}

)1−λ
]

for all a, ♭ ∈ X\Fix(B). Then there exists a∗ ∈ X such that Ba∗ = a∗.
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Proof. Take α, η : X × X −→ [0,+∞) by α(a,♭) = η(a,♭) = 1 in Theorems 4 and 5.

4. Applications

Fractional differential equations have emerged as powerful tools, with applications
spanning various fields of science and engineering. Caputo fractional differential equations
present a promising avenue for building more accurate and insightful economic growth
models. By capturing memory effects and offering greater flexibility, Caputo fractional
differential equations pave the way for a deeper understanding of economic dynamics and
informed policy decisions (see [21–24]).

In the context of economic growth, the fractional differential equation

CDη(a(t)) = g(t, a(t)), (0 < t < 1, 1 < η ≤ 2) (24)

subject to the integral boundary conditions

a(0) = 0 , Ia(1) = a/(0), (25)

where CDη g(t) represents the Caputo fractional derivative with respect to order η as
defined by

CDη g(t) =
1

Γ(j − η)

∫ t

0
(t − s)j−η−1gj(s)ds,

(j − 1 < η < j, j = [η] + 1) and g : [0, 1]×R → [0,+∞) is a continuous function and Iη g
denotes the Riemann–Liouville fractional integral of order η of a continuous function
f : R+ → R given by

Iη f (t) =
1

Γ(η)

∫ t

0
(t − s)η−1 f (s)ds,

can be applied to model and analyze various aspects of economic dynamics. The variable
a(t) could represent the GDP or another economic indicator that characterizes the economic
health of a country or region. The right-hand side consists of a nonlinear function g(t, a(t))
that encompasses various factors contributing to economic growth. This may include invest-
ment levels, innovation, education, government spending, and other elements influencing
the overall economic output. The fractional order η reflects the memory and non-local
effects in the economic system. It captures the impact of historical economic conditions
on the current state, acknowledging that the rate of change of economic indicators might
depend on past values.The condition a(0) = 0 could represent a starting point of economic
activity or output at the beginning of the observation period, and Ia(1) = a/(0) could
signify a connection between the accumulated value of the economic variable over a certain
period (from 0 to 1) and the rate of change of the economic variable at the beginning of the
observation period.

Consider X={a : a ∈ C([0, 1],R)} with supremum norm ∥a∥∞ = supt∈[0,1]|a(t)|. Then
the Banach space (X,∥·∥∞) provided with the F-metric d as elaborated by

d(a, ♭) = ∥a− ♭∥∞ = sup
t∈[0,1]

|a(t)− ♭(t)|

for a, ♭ ∈ X is metric space as well as an F-MS.

Theorem 6. Consider the nonlinear fractional differential Equation (24). Let ζ : R×R → R be a
given function. Under the premise that the requirements enumerated herein are fulfilled:

(i) The function g : [0, 1]×R → R is continuous;
(ii) There exists some σ ∈ [1, ∞) such that the function g : [0, 1] × R → R satisfies the

following inequality

|g(t, a)− g(t, ♭)| ≤ Γ(η + 1)
4

e−σ|a− ♭|

for all a, ♭ ∈ C([0, 1] and for all t ∈ [0, 1];
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(iii) There exists a0 ∈ C([0, 1],R) such that ζ(a0(t),Ba0(t)) > 0 for all t ∈ [0, 1], where a
mapping B : C([0, 1],R) → C([0, 1],R) is defined by

Ba(t) =
1

Γ(η)

∫ t

0
(t − s)η−1g(s, a(s))ds

+
2t

Γ(η)

∫ 1

0

(∫ s

0
(s − m)η−1g(m, a(m))dm

)
ds

for t ∈ [0, 1];
(iv) For each t ∈ [0, 1] and a, ♭ ∈ C([0, 1],R), ζ(a(t), ♭(t)) > 0 implies that ζ(Ba(t),

B♭(t)) > 0;
(v) For {an} ⊆ C([0, 1],R) such that an → a in C([0, 1],R) and ζ(an, an+1) > 0 for all

n ∈ N, then ζ(an, a) > 0 for all n ∈ N;
then, (24) has at least one solution.

Proof. A straightforward observation reveals that an element a ∈ X satisfies Equation (24)
if and only if it also satisfies the integral equation

a(t) =
1

Γ(η)

∫ t

0
(t − s)η−1g(s, a(s))ds

+
2t

Γ(η)

∫ 1

0

(∫ s

0
(s − m)η−1g(m, a(m))dm

)
ds

for t ∈ [0, 1]. Now, let a, ♭ ∈ X such that ζ(a(t), ♭(t)) > 0, for all t ∈ [0, 1]. By (iii), we have

|Ba(t)−B♭(t)| =

∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(η)

∫ t

0
(t − s)η−1g(s, a(s))ds − 1

Γ(η)

∫ t

0
(t − s)η−1g(s, ♭(s))ds

+ 2t
Γ(η)

∫ 1

0

(∫ s

0
(s − m)η−1g(m, a(m))dm

)
ds

− 2t
Γ(η)

∫ 1

0

(∫ s

0
(s − m)η−1g(m, ♭(m))dm

)
ds

∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ(η)

∫ t

0
|t − s|η−1|g(s, a(s))− g(s, ♭(s))|ds

+
2t

Γ(η)

∫ 1

0

(∫ s

0
(s − m)η−1|g(m, a(m))− g(m, ♭(m))|dm

)
ds,

which implies that

|Ba(t)−B♭(t)| ≤ 1
Γ(η)

∫ t

0
|t − s|η−1 Γ(η + 1)

4
e−σ|a(s)− ♭(s)|ds

+
2

Γ(η)

∫ 1

0

(∫ s

0
|s − m|η−1 Γ(η + 1)

4
e−σ|a(m)− ♭(m)|dm

)
ds

= e−σ Γ(η + 1)
4Γ(η)

∫ t

0
|t − s|η−1|a(s)− ♭(s)|ds

+2e−σ Γ(η + 1)
4Γ(η)

∫ 1

0

(∫ s

0
|s − m|η−1|a(m)− ♭(m)|dm

)
ds

≤ e−σ Γ(η + 1)
4Γ(η)

d(a, ♭)
∫ t

0
|t − s|η−1ds

+2e−σ Γ(η + 1)
4Γ(η)

d(a, ♭)
∫ 1

0

(∫ s

0
|s − m|η−1dm

)
ds
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≤ e−σ Γ(η)Γ(η + 1)
4Γ(η)Γ(η + 1)

d(a, ♭)

+2e−σB(η + 1, 1)
Γ(η)Γ(η + 1)

4Γ(η)Γ(η + 1)
d(a, ♭)

≤ e−σ

4
d(a, ♭) +

e−σ

2
d(a, ♭)

considering the Beta function (denoted by B), the aforementioned inequality yields

d(Ba,B♭) ≤ e−σd(a, ♭).

Applying the square root function to both sides and then exponentiating the resulting
equation, we obtain

e
√

d(Ba,B♭) ≤ e
√

e−σd(a,♭).

That is,

e
√

d(Ba,B♭) ≤
(

e
√

d(a,♭)
)τ

where τ =
√

e−σ < 1. We now introduce a function, denoted by Θ : (0,+∞) → R, which is
defined as Θ(t) = e

√
t for each t > 0. Then Θ ∈ Ω and

Θ(d(Ba,B♭)) ≤ [Θd(a, ♭)]τ (26)

for all a, ♭ ∈ X and d(Ba,B♭) > 0. Now define h : R+ ×R → R and Ξ:R+ ×R → R by
h(x, y) = y and Ξ(ℓ,℘) = ℓ℘. Then the functions Ξ and h are C-class functions. Also,
define α : X×X→ R+ by

α(a, ♭) =
{

1 if ζ(a(t), ♭(t)) > 0, t ∈ [0, 1] ,
0, otherwise.

Then from (26) and the above concepts, we have

h(α(a, ♭)), Θ(d(Ba,B♭))) ≤ Ξ
(
1, [Θd(a, ♭)]τ

)
.

Now, by using condition (iv), we have

α(a, ♭) ≥ 1 =⇒ ζ(a(t), ♭(t)) > 0,

which implies
ζ(Ba(t),B♭(t)) > 0 implies α(Ba,B♭) ≥ 1

for all a, ♭ ∈ X. Hence, B is an α-admissible. Also, from (iii), there exists a0 ∈ X such that
α(a0,Ba0) ≥ 1. Finally, we obtain simply that assertion (v) of Theorem 4 is satisfied. Hence,
as an application of Theorem 4, we conclude the existence of a∗ ∈ X such that a∗ = Ba∗.
Thus, a∗ is a solution of (24).

5. Conclusions

In this research article, we have defined two new concepts, Θ-(Ξ,h)-contraction
and rational (α,η)-ψ-interpolative contraction, in the context of F-MS and established
corresponding fixed point results. To solidify understanding and showcase the novelty
of our findings, we have furnished an illustrative example that not only corroborates
the obtained results but also sheds light on the established theory. Finally, we applied
our leading theorem to discuss the existence and uniqueness of solutions for a fractional
differential equation describing an economic growth model. This application not only
highlights the practical relevance of our results but also opens avenues for further
exploration in diverse scientific domains.
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Fixed points of multi-valued mappings and fuzzy mappings satisfying Θ-(Ξ,h)-
contraction and rational (α,η)-ψ-interpolative contraction in the framework of F-MS can
be found as future work. This quest will yield the solutions for fractional differential
inclusion problems, connecting theoretical breakthroughs to practical applications.
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