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Abstract: Fractional differential equations, which are non-local and can better describe memory and
genetic properties, are widely used to describe various physical, chemical, and biological phenomena.
Therefore, the multi-agent systems based on discrete-time fractional stochastic models are established.
First, some followers are selected for pinning control. In order to save resources and energy, an event-
triggered based control mechanism is proposed. Second, under this control mechanism, sufficient
conditions on the interaction graph and the fractional derivative order such that formation control can
be achieved are given. Additionally, influenced by noise, the multi-agent system completes formation
control in the mean square. In addition to that, these results are equally applicable to the discrete-time
fractional formation problem without noise. Finally, the example of numerical simulation is given to
prove the correctness of the results.

Keywords: formation control; stochastic systems; discrete-time fractional systems; multi-agent
systems; event-triggered strategy

1. Introduction

In recent years, multi-agent systems have been instrumental in the field of robotics,
involving multiple agents with autonomous decision-making and collaborative abilities.
These systems enable the collective accomplishment of complex tasks through communi-
cation and cooperation. They are applied in diverse areas like unmanned aerial vehicle
formations, robot collaborations, autonomous vehicles, and distributed sensor systems [1,2].

The key issue of multi-agent systems is the formation and adaptation in their de-
velopment. Formation refers to a group of agents maintaining specific relative positions
and exhibiting coordinated behavior while performing tasks. These formations can be
either static, with agents maintaining fixed relative positions, or dynamic, allowing agents
to flexibly adjust their positions during task execution. Solving formation problems is
crucial for enhancing system efficiency, robustness, and collaborative capabilities. Solving
the formation problem in multi-agent systems presents several challenges. First, deter-
mining the optimal formation configuration that satisfies task constraints and objectives
is a complex optimization problem [3,4]. It involves considering factors such as agent
capabilities [5], communication constraints [6], obstacle avoidance [7], and task-specific
requirements [8]. Second, ensuring robustness and fault tolerance in formation is crucial,
as agents may face uncertainties, failures, or communication disruptions during task ex-
ecution [9,10]. Developing algorithms and strategies that can handle these uncertainties
and maintain formation integrity is a significant research challenge. Finally, scalability
is another important consideration, as the number of agents and the complexity of tasks
increase. Efficient algorithms and communication protocols are required to handle large-
scale multi-agent systems. Therefore, it is highly useful to study the problem of formation
control in multi-agent systems.
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Recently, the exploration of formation control in fractional systems has garnered
considerable interest due to their capacity to capture intricate dynamics with memory
and long-range dependencies [11,12]. Fractional systems, characterized by non-integer
derivatives, have demonstrated promising applications across diverse domains, including
control systems [13], signal processing [14], and optimization. By extending fractional
dynamics to multi-agent systems, the formation control challenge in fractional multi-agent
systems has emerged as a captivating and sought-after research area. Unlike conventional
integer-order systems, fractional-order dynamics introduce memory effects and long-range
interactions among agents, allowing for more sophisticated and nuanced formation control
strategies [15–17]. Various control techniques have been employed and refined in the realm
of fractional formation control, such as sliding-mode control [18,19], double-integrator
control [20], and both-and-observer control [21]. Thus, building on these prior studies
and the benefits of fractional-order control, the domain of fractional multi-agent system
formation holds the potential to revolutionize numerous applications.

In practical scenarios, the prevalence of attacks and uncertainties necessitates consid-
ering the impact of the resulting perturbations on systems. As a result, many studies have
utilized stochastic differential equations with noise terms to model systems. While the
research on continuous-time stochastic systems has been significant, the control strategies
proposed for continuous systems are often too idealized for direct application in real-world
settings. Consequently, discrete-time stochastic systems have garnered considerable atten-
tion due to their enhanced realism and practicality. The researchers in Ref. [22] delved into
finite-time H∞ state estimation for discrete time-delayed stochastic systems using communi-
cation protocols. Additionally, Ref. [23] explored recursive fusion estimation for stochastic
discrete-time-varying complex networks under stochastic communication protocols. To
address energy consumption concerns in scenarios with limited resources, energy-efficient
controllers are in high demand. Moreover, the fixed allocation of bandwidth can constrain
communication between nodes in networks. To conserve resources and bandwidth, event-
triggered control mechanisms are widely implemented in discrete-time stochastic systems.
In Ref. [24], an event-triggered law was developed for discrete stochastic systems to ensure
system stability. Ref. [25] investigated event-triggered control problems in the presence
of packet loss. Furthermore, novel approaches for addressing event-triggered control
problems in discrete-time stochastic systems were presented in the context of the pinning
synchronization problem in Ref. [26] and the quasi-synchronization in probability problem
in Ref. [27]. Compared to systems with continuous-time dynamics, discrete-time systems
are more computationally implementable. Additionally, many real-world systems are not
accurately captured by continuous dynamics. References [28–30] have explored intriguing
questions concerning the consensus stability of discrete-time multi-agent systems. Notably,
significant progress has been made in event-triggered control for integer discrete-time
stochastic systems. This paper extends event-triggered control from integer discrete-time
stochastic systems to fractional systems with time delay, with results applicable to both
types of systems.

Inspired by the above, this paper investigates leader-following formation control for
discrete-time fractional stochastic multi-agent systems by the event-triggered strategy. In
summary, the contributions of this paper can be outlined as:

(1) In contrast with the existing discrete-time literature [31,32], a novel fractional stochas-
tic discrete-time multi-agent system model is introduced.

(2) Unlike the traditional discrete-time fractional stochastic systems [33,34], this paper
uses a control law with an event-triggering mechanism, which conserves resources
and saves bandwidth.

(3) Pinning controllers and the corresponding sufficient conditions are provided to
achieve mean square pinning consensus in the fractional stochastic networks.

(4) Differently from the traditional synchronous control problems [27,35,36], the forma-
tion control proposed is structurally more flexible and expandable. When the ratio
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formation structure is taken as a zero vector, it is the ordinary asymptotic synchro-
nization problem.

The paper is structured as follows: Section 2 introduces some preliminaries. Section 3
presents the system model and main results. Section 4 illustrates a numerical example.
Finally, the conclusion is presented in Section 5.

2. Preliminaries

Definition 1 ([37]). The discrete-time difference operator of order α of function f (·) is defined by

∇α
T f (k) =

1
Tα

[k/T]

∑
r=0

(−1)r
(

α
r

)
f (k − rT), α > 0,

where 0 is the initial time. Take T = 1 for convenience, then ∇α f (k) = ∑k
r=0(−1)r

(
α
r

)
f (k− r).

Lemma 1 ([37]). For α ∈ (0, 1), the function wα
r = (−1)r+1

(
α
r

)
satisfies the properties

wα
0 = −1, wα

r−1 > wα
r for r ∈ N+∖{1}, limr→+∞ wα

r = 0 and ∑+∞
r=1 wα

r = 1.

Lemma 2 ([38]). Consider a sequence of nonnegative random variables {V(k)}k≥0 with E{V(0)}
< ∞. Let

E{V(k + 1)} ≤ (1 − c1(k))EV(k) + c2(k)

where
c1(k) ≥ 0, c2(k) ≥ 0, ∀k
∞
∑

k=0
c2(k) < ∞,

∞
∑

k=0
c1(k) = ∞

lim
k→∞

c2(k)
c1(k)

= 0.

Then, V(k) converges to zero in the mean square, i.e.,

lim
k→∞

EV(k) = 0.

Lemma 3 ([39]). Given a convergent series {lm | lm ∈ R, m = 1, 2, . . .}, then(
∑+∞

m=1 lmzm
)TQ

(
∑+∞

m=1 lmzm
)
≤
(
∑+∞

m=1 lm
)

∑+∞
m=1 lmzT

mQzm where zm ∈ Rn, Q ∈ Rn×n is
a positive semidefinite matrix.

3. Problem Formulation

Consider the following discrete-time fractional stochastic multi-agent systems com-
posed of the leader

∇αx0(k + 1) = 0, (1)

and N followers
∇αxi(k + 1) = σ(k)ζ(k) + ui(t), i = 1, 2, . . . , N, (2)

where k ∈ N, α ∈ (0, 1), xi(k) = [xi1(k), xi2(k), . . . , xin(k)]
T ∈ Rn is the state of the i th agent

at time k; ζ(k) = [ζ1(k), ζ2(k), . . . , ζm(k)]
T ∈ Rm are system noises on

(
Ω,F , {Ft}t≥0, P

)

satisfying the following statistical properties:

E{ζi(k)} = 0,

E
{
∥ ζi(k) ∥2

}
= µ2,

E
{

ζi(k)ζ j(k)
}
= 0, i ̸= j, i, j = 1, 2, . . . , m

(3)
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and σ(·) : R → Rn×m is continuous nonlinear noise intensity function.

Assumption 1. Assume noise intensity function σ(k) satisfied

∞

∑
k=1

∥ σ(k) ∥2 < +∞, lim
k→+∞

∥ σ(k) ∥ = 0.

Defining a formation using a vector h =
[
hT

1 , . . . , hT
N
]T ∈ RNn, where hi ∈ Rn repre-

sents the desired relative position of agent i with respect to the leader, the leader-following
system is deemed to have achieved formation h in a mean square sense if

lim
k→∞

E∥ xi(k)− x0(k)− hi ∥ = 0, i = 1, 2, ..., N. (4)

For this purpose, the control law is designed as follows:

ui(k) = c
N

∑
j=1

gijΓ
(
xj(k)− hj

)
− diΓ(xi(k)− x0(k)− hi)−

k+1

∑
r=1

ωα
r hi + hi, (5)

where c > 0 represents the coupling strength. The matrix Γ = diag{γ1, γ2, . . . , γn} is the
internal linking matrix with γi > 0. The matrix G =

[
gij
]
∈ RN×N denotes the coupling

configuration matrix, where gii = −∑N
j=1,j ̸=i gij. If agent i can transmit information to

agent j, then gij > 0, ensuring ∑N
j=1 gij = 0 for all i = 1, 2, . . . , N. A directed path from

agent i1 to ip is represented by a sequence of edges (i1, i2), (i2, i3), . . . ,
(
ip−1, ip

)
. Drawing

inspiration from pinning control concepts, only a small subset of agents are selected for
control. Without loss of generality, control actions are applied to the first l agents. This
implies di > 0 for i = 1, . . . , l, and di = 0 for i = l + 1, . . . , N.

According to Definition 1 and Equation (5), then Equations (1) and (2) can be rewritten as

x0(k + 1) =
k+1

∑
r=1

ωα
r x0(k + 1 − r)

xi(k + 1) =
k+1

∑
r=1

ωα
r xi(k + 1 − r) + σ(k)ζ(k) + c

N

∑
j=1

gijΓ
(
xj(k)− hj

)

−diΓ(xi(k)− x0(k)− hi)−
k+1

∑
r=1

ωα
r hi + hi,

(6)

where the function wα
r = (−1)r+1

(
α
r

)
represents a heavy-tailed discretization following

a power-law distribution. In the context of a multi-agent system modeled by a discrete-time
difference equation with specific “time-delays”, where xi(k + 1) relies on all historical
states {xi(0), xi(1), . . . , xi(k)}, it is essential to consider that the impact of historical states
on xi(k + 1) may diminish as the time-delay increases. In this scenario, the function ωα

r is
selected as the weight function.

Remark 1. Unlike in the literature [40–42] in the original text on system modeling, which
investigates integer-order time delay for discrete systems, this paper considers fractional-order
distributed time delay. The propagation delays are distributed over a period of time and may influence
the control system to oscillate more. Hence, it is mandatory to investigate the formation control
systems with fractional-order distributed delay. Additionally, differing from the literature [32,34]
in the original text on system modeling, the systems mentioned in this paper add noise term ζ(k),
which considers the effect of disturbance in real life, having real significance.

To minimize the frequency of controller updates and communication overhead, a
distributed event-triggered strategy is employed for the system described in Equation (6).
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Assuming that the first l nodes in the network are under control (1 ≤ l < N), a pinning
event-triggered control system is formulated as:

xi(k + 1) =
k+1

∑
r=1

ωα
r xi(k + 1 − r) + c

N

∑
j=1

gijΓ
(

xj

(
ki

s

)
− hj

)

+σ(k)ζ(k) + hi −
k+1

∑
r=1

ωα
r hi − diΓ

(
xi

(
ki

s

)
− x0

(
ki

s

)
− hi

)
,

k ∈
[
ki

s, ki
s+1

)
, i = 1, 2, . . . , l,

xi(k + 1) =
k+1

∑
r=1

ωα
r xi(k + 1 − r) + hi −

k+1

∑
r=1

ωα
r hi + c

N

∑
j=1

gijΓ
(

xj

(
ki

s

)
− hi

)
+ σ(k)ζ(k),

k ∈
[
ki

s, ki
s+1

)
, i = l + 1, l + 2, . . . , N,

(7)

where the time sequence ki
0, ki

1, . . . , ki
s, ki

s+1, . . . represents the event triggering time sequence
for agent i, which is generated by the following event-triggered mechanism.

Remark 2. The pinning control adopted in this paper only requires controlling a subset of nodes to
achieve control over the entire system. Compared to non-pinning control [43], the control strategy
proposed in this paper is simpler and more efficient. In addition, unlike traditional continuous
control [44], event-triggered control only transmits and updates information when triggered, saving
resources and bandwidth.

Let the combined measurement of the systems Equation (5) be

qi(k) = c
N

∑
j=1

gijΓ
(
xj(k)− hi

)
− diΓ(xi(k)− x0(k)− hi), (8)

for i = 1, 2, ..., N, and the measurement error be

ei(k) = qi

(
ki

s

)
− qi(k), i = 1, 2, . . . , N (9)

The sequence ki
0, ki

1, . . . , ki
s, ki

s+1, . . . for agent i is determined by the triggering condi-
tion specified in Theorem 1:

ϕi(ei(k), qi(k)) = 0, i = 1, 2, . . . , N. (10)

4. Main Result

Let yi(k) = xi(k)− x0(k)− hi, i = 1, 2, . . . , N. From Equation (7),

yi(k + 1) =
k+1

∑
r=1

ωα
r yi(k + 1 − r) + σ(k)ζ(k) + c

N

∑
j=1

gijΓ
(

xj

(
ki

s

)
− hj

)
− diΓyi

(
ki

s

)
,

k ∈
[
ki

s, ki
s+1

)
, i = 1, 2, . . . , l,

yi(k + 1) =
k+1

∑
r=1

ωα
r yi(k + 1 − r) + σ(k)ζ(k) + c

N

∑
j=1

gijΓ
(

xj

(
ki

s

)
− hi

)

k ∈
[
ki

s, ki
s+1

)
, i = l + 1, l + 2, . . . , N.

(11)
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Let f α
r ≜ ωα

r+1, then

k+1
∑

r=1
ωα

r xi(k + 1 − r) = ωα
1 xi(k) +

k+1
∑

r=2
ωα

r xi(k + 1 − r)

= αxi(k) +
k
∑

r=1
ωα

r+1xi(k − r) = αxi(k) +
k
∑

r=1
f α
r xi(k − r).

(12)

By the gefinition of qi(k) and ei(k), we obtain

yi(k + 1) =qi(k) + ei(k) + σ(k)ζ(k) + αyi(k) +
k

∑
r=1

f α
r yi(k − r),

k ∈
[
ki

s, ki
s+1

)
, i = 1, 2, . . . , N,

(13)

where di = 0, i = l + 1, l + 2, ..., N.
Denote

y(k) =
(
yT

1 (k), yT
2 (k), . . . , yT

N(k)
)T,

e(k) =
(
eT

1 (k), eT
2 (k), . . . , eT

N(k)
)T,

(14)

and q(k) =
(
qT

1 (k), qT
2 (k), . . . , qT

N(k)
)T, then

q(k) = ((cG − D)⊗ Γ)y(k) (15)

where D = diag{d1, d2, . . . , dl , 0, . . . , 0}.
Thus,

y(k + 1) =((cG − D)⊗ Γ)y(k) + e(k) + αy(k) +
k

∑
r=1

f α
r y(k − r) + (1N ⊗ σ(k))ζ(k)

=[αIn×N + (cG − D)⊗ Γ]y(k) + e(k) +
k

∑
r=1

f α
r y(k − r) + (1N ⊗ σ(k))ζ(k).

(16)

Theorem 1. Under Assumption 1, the system Equation (6) will realize formation control if there exists
ε1, ε2, ε3 > 0 such that

H ≜(1 − η2)In×N − 2αη1

(
c

G + GT

2
− D

)
⊗ Γ − η1(cG − D)T(cG − D)⊗ ΓΓ > 0, (17)

where η1 = 1 + ε1 + ε2, η2 = η1α2 + 4(1 − α)
(

1 + 1
ε1
+ ε3

)
and the triggering condition

as follows

ϕi(ei(k), qi(k)) = ∥ ei(k) ∥2 − (1 − νi)λmin(H)

η3λmax(A)
∥ qi(k) ∥2 ≤ 0, i = 1, 2, . . . , N (18)

where η3 = 1 + 1
ε2
+ 1

ε3
, A = ((cG − D)⊗ Γ)T((cG − D)⊗ Γ) and 0 < νi < 1.

Proof. Construct the Lyapunov function as follows:

V(k) = V1(k) + V2(k) + V3(k), (19)

with
V1(k) = yT(k)y(k),

V2(k) =
+∞

∑
r=1

f α
r

k−1

∑
j=k−r

yT(j)y(j),

V3(k) =
+∞

∑
r=k+1

f α
r

k−1

∑
j=k−r

yT(j)y(j),

(20)
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where V2(k), V3(k) < +∞ according to Lemma 1. Then

E[∆V1(k)]

=E
{

yT(k)
(

αIn×N + (cG − D)T ⊗ Γ
)
[(αIn×N + (cG − D)⊗ Γ)y(k)

+2
k

∑
r=1

f α
r y(k − r) + 2(1N ⊗ σ(k)) ζ(k) + 2e(k)]

+

(
k

∑
r=1

f α
r y(k − r)

)T( k

∑
r=1

f α
r y(k − r) + 2(1N ⊗ σ(k))ζ(k) + 2e(k)

)

+eT(k)[e(k) + 2(1N ⊗ σ(k))ζ(k)]+ζT(k)(1N ⊗ σ(k))T(1N ⊗ σ(k))ζ(t)
}

.

(21)

Fromthepropertiesofthestochasticprocess{ζ(k), k ≥ 0} in Equation (3), then

E[∆V1(k)]

=E
{

yT(k)
(

αIn×N + (cG − D)T ⊗ Γ
)
[(αIn×N + (cG − D)⊗ Γ)y(k)

+2
k

∑
r=1

f α
r y(k − r) + 2e(k)]+

(
k

∑
r=1

f α
r y(k − r)

)T( k

∑
r=1

f α
r y(k − r)

+2e(k)) + eT(k)e(k)+ζT(k)(1N ⊗ σ(t))T(1N ⊗ σ(t))ζ(k)
}

≤E
{

yT(k)[(1 + ε2 + ε3)
(

αIn×N + (cG − D)T ⊗ Γ
)

×(αIn×N + (cG − D)⊗ Γ)− In×N ]y(k)

+

(
1 +

1
ε1

+ ε3

)(+∞

∑
r=1

f α
r y(k − r)

)T(+∞

∑
r=1

f α
r y(k − r)

)

+

(
1 +

1
ε1

+ ε3

)( +∞

∑
r=k+1

f α
r y(k − r)

)T( +∞

∑
r=k+1

f α
r y(k − r)

)

+eT(k)e(k) + ζT(k)(1N ⊗ σ(t))T(1N ⊗ σ(t))ζ(k)
}

.

(22)

Moreover,
E[∆V2(k)]

=E



+∞

∑
r=1

f α
r

k

∑
j=k+1−r

yT(j)y(j)−
+∞

∑
r=1

f α
r

k

∑
j=k−r

yT(j)y(j)




=E
[
+∞

∑
r=1

f α
r yT(k)y(k)−

+∞

∑
r=1

f α
r yT(k − r)y(k − r)

]
.

(23)

According to Lemma 1, then ∑+∞
r=1 f α

r = 1 − α ∈ (0, 1). From Lemma 3, then

+∞

∑
r=1

f α
r yT(k − r)y(k − r) ≥ 1

1 − α

(
+∞

∑
r=1

f α
r y(k − r)

)T(+∞

∑
r=1

f α
r y(k − r)

)
(24)

Thus,

E[∆V2(k)] ≤ E


yT(k)y(k)− 1

1 − α

(
+∞

∑
r=1

f α
r y(k − r)

)T(+∞

∑
r=1

f α
r y(k − r)

)
. (25)
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Furthermore,

E[∆V3(k)]

=E




+∞

∑
r=k+2

f α
r

k

∑
j=k+1−r

yT(j)y(j)−
+∞

∑
r=k+1

f α
r

k−1

∑
j=k−r

yT(j)y(j)




≤E
[

+∞

∑
r=k+1

f α
r yT(k)y(k)−

+∞

∑
r=k+1

f α
r yT(k − r)y(k − r)

]

≤E


yT(k)y(k)− 1

1 − α

(
+∞

∑
r=k+1

f α
r y(k − r)

)T( +∞

∑
r=k+1

f α
r y(k − r)

)
.

(26)

Combining Equations (19)–(26) gives

E{∆V(k)}
=E{∆V1(k) + ∆V2(k) + ∆V3(k)}
≤E
{
−yT(k)Hy(k) + eT(k)e(k)

}

≤−λmin(H)E
{
∥ y(k) ∥2

}
+E

{
∥ e(k) ∥2

}
+ Nmµ2∥ σ(t) ∥2.

(27)

Then, from Equation (18),

∥ e(k) ∥2≤
N

∑
i=1

∥ ei(k) ∥2

≤ (1 − νi)λmin(H)

η3λmax(A)

N

∑
i=1

∥ qi(k) ∥2

=
(1 − νi)λmin(H)

η3λmax(A)
∥ q(k) ∥2

=
(1 − νi)λmin(H)

η3λmax(A)
∥ ((cW − γ(k)D)⊗ Γ)y(k) ∥2

≤ (1 − ν)λmin(H)

η3
∥ y(k) ∥2,

(28)

where ν = max{νi}. Therefore,

E{∆V(k)} ≤ −εE
{
∥ y(k) ∥2

}
+ Nmµ2∥ σ(t) ∥2. (29)

where ε = νλmin(H) > 0.
Then, from Assumption 1, we can obtain Nmµ2∥ σ(k) ∥2 > 0, Nm ∑∞

k=1 ∥ σ(k) ∥2 < +∞,

∑∞
k=1 ε = +∞ and limk→+∞

σ(k)
ε = 0, which satisfies the condition of Lemma 2. Thus, from Lemma 2,

limk→∞ E∥ xi(k)− x0(k)− hi ∥ = 0, ∀i = 1, 2, . . . , N. □

5. Simulation
The directed communication graph given by Figure 1 is composed of four agents. The com-

munication topology shown in Figure 1 has a spanning tree, with agent 1 as the root node. Let
N = 4, n = 3, α = 0.88, Γ = diag{1, 1, 1}, d1 = d2 = d3 = d4 = 0.2, c = 0.02, σ(k) = 3

(k+1)2 , and the

initial position is as follows:

x0(0) =
(

1.1 −0.9 0.3
)T

x1(0) =
(

1.8 0.9 −1.1
)T , x2(0) =

(
0.7 −0.6 −1.1

)T ,
x3(0) =

(
−0.9 1.1 −1.4

)T , x4(0) =
(

1.4 −0.8 −0.6
)T .
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Choose the formation vector

h =




3 −3 5 −5
−3 3 4 −4
−3 3 3 −3




for the leader-following system. For the triggering condition (17),

∥ ei(k) ∥2 ≤ (1 − νi)λmin(H)

η3λmax(A)
∥ qi(k) ∥2, i = 1, 2, . . . , N

It can be calculated that H =




−3.7600 0.0048 0.0056 0
0.0048 −3.7475 0.0056 0
0.0056 0.0056 −3.7475 0.0048

0 0 0.0048 −3.7360


⊗ I3 < 0, which satisfies

the condition of Theorem 1. Note that the definitions of H and A are independent of µi, so regardless
of the sizes of H and A, it is always possible to find three sets suitable µi ∈ (0, 1) and η3 such that
(1−µi)λmin(H)

η3λmax(A)
= 0.75, (1−µi)λmin(H)

η3λmax(A)
= 0.9, and (1−µi)λmin(H)

η3λmax(A)
= 1.05, respectively. Therefore, we can

assume that the event-triggering conditions used in this simulation are ∥ ei(k) ∥2 ≤ 0.75∥ qi(k) ∥,
∥ ei(k) ∥2 ≤ 0.9∥ qi(k) ∥, and ∥ ei(k) ∥2 ≤ 1.05∥ qi(k) ∥, separately. Obviously, from Figure 2, it
can be observed that the state of the error system tends to zero over time, indicating that systems
(1) and (2) achieve formation control under the requirements of Theorem 1. Figures 3–5 show the
moments of updating the control law; it can be seen that as the trigger parameter increases, the
number of controller updates becomes fewer, revealing that the larger the threshold value, the fewer
the number of updates to the controller. Thus, event-triggered control reduces the update frequency
compared to continuous control, which requires real-time monitoring of agent information, saving
the resources needed for monitoring and interacting information. Figure 6 demonstrates that the
followers eventually stabilize at a fixed position and maintain a constant relative position with the
leader, thus achieving formation control. Figures 7–10 depict their specific positions in space, showing
that the followers stabilize over time, indicating successful formation control.
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Figure 10. Position trajectories at k = 30.

6. Conclusions

We studied leader-following formation control for discrete-time fractional stochastic
multi-agent systems by an event-triggered strategy. First, a new discrete-time fractional
stochastic system is modeled, which with stochastic terms can better characterize systems
operating under the influence of disturbances and cases of restricted communication.
Second, an event-triggered control law is proposed for controlling partial followers, with
the aim of making all the agents eventually reach their expected positions and achieve a
certain shape of motion. Finally, the theory of Lyapunov’s energy equation is employed to
prove that under the impact of disturbance, the formation error eventually tends to zero in
the mean square, and formation control can be achieved. However, the formation formed
in this way can only achieve translational motion in the end, so the affine formation control
with higher maneuverability and flexibility will be studied in the future.
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proposed for controlling partial followers, with the aim of making all the agents eventually reach their
expected positions and achieve a certain shape of motion. Finally, the theory of Lyapunov’s energy
equation is employed to prove that under the impact of disturbance, the formation error eventually
tends to zero in the mean square, and formation control can be achieved. However, the formation
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