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Abstract: The proper coordination of directional overcurrent relays (DOCRs) is crucial in electrical
power systems. The coordination of DOCRs in a multi-loop power system is expressed as an opti-
mization problem. The aim of this study focuses on improving the protection system’s performance
by minimizing the total operating time of DOCRs via effective coordination with main and backup
DOCRs while keeping the coordination constraints within allowable limits. The coordination problem
of DOCRs is solved by developing a new application strategy called Fractional Order Derivative
Moth Flame Optimizer (FODMFO). This approach involves incorporating the ideas of fractional
calculus (FC) into the mathematical model of the conventional moth flame algorithm to improve the
characteristics of the optimizer. The FODMFO approach is then tested on the coordination problem
of DOCRs in standard power systems, specifically the IEEE 3, 8, and 15 bus systems as well as in
11 benchmark functions including uni- and multimodal functions. The results obtained from the
proposed method, as well as its comparison with other recently developed algorithms, demonstrate
that the combination of FOD and MFO improves the overall efficiency of the optimizer by utilizing
the individual strengths of these tools and identifying the globally optimal solution and minimize
the total operating time of DOCRs up to an optimal value. The reliability, strength, and dependability
of FODMFO are supported by a thorough statistics study using the box-plot, histograms, empirical
cumulative distribution function demonstrations, and the minimal fitness evolution seen in each
distinct simulation. Based on these data, it is evident that FODMFO outperforms other modern
nature-inspired and conventional algorithms.

Keywords: directional overcurrent relay; time dial setting coordination; nature-inspired optimization;
fractional calculus

1. Introduction
1.1. Inspiration and Motivation

The protection plan is an important requirement for the reliable operation of a power
system. An effective protection plan promptly resolves a defect to provide uninterrupted
power supply to the unaffected components of the system. Each component in an electrical
power network is protected by two kinds of protections, namely main and backup protec-
tion. In order to provide a strong and reliable setup of an electrical power network, it is
crucial that the main protection system for any faults reacts with utmost speed to separate
the problematic section from the rest of the system. If the main network protection fails
to clear the problem, its backup protection shall assume the duty of eliminating the fault.
This is an ideal scenario for any protective plan, since the main defense only focuses on
the impacted region. In contrast, when the secondary reinforcement is activated, a larger
percentage of the system experiences unnecessary power interruptions. To ensure that
only the specific area of the system that is impacted remains isolated while minimizing the
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possibility of unwanted power outages, it is necessary to have a dependable and efficient
operation of the safety equipment. To ensure the efficiency and profitability of a multi-loop
electrical power network, it is essential to use directional overcurrent relays (DOCRs) as
part of the protection plan. The functioning and setup of directional overcurrent relays
(DOCRs) are governed by two constraints: the time dial setting (TDS) and the plug setting
(PS). The TDS and PS have a significant impact on the optimization of DOCRs, as they play
a crucial role in determining the operational features and coordination of the DOCRs. The
time delay of the DOCRs’ response is adjusted by the TDS in order to control the speed of
fault clearance and selectivity. A lower TDS value results in a faster DOCRs response and
action, which results in the ability to isolate the faults as rapidly as possible but may poten-
tially lead to an unwanted operation in transient circumstances. On the other hand, a higher
TDS value improves the selectivity but at the cost of delayed fault clearance, which may
lead to damage by prolonged faults. Conversely, the PS determines the current threshold
that triggers the DOCRs’ operation. It plays a key role in establishing how the DOCRs react
to a fault event. Furthermore, the sensitivity of DOCRs is increased when the PS is lower,
which enables the DOCRs to operate on low-magnitude faults, hence providing a more
efficient protection for the system. However, this may lead to other non-fault situations or
unwanted trips on load inrushes. In order to ensure the reliability and safety of the power
system, the setting for TDS and PS should be precisely calculated to achieve an optimal
balance between the sensitivity and selectivity of the DOCRs. The DOCRs effectively
coordinate to manage the TDS and PS, ensuring that the main protection immediately and
consistently eliminates the fault to the highest extent feasible. Furthermore, it is crucial to
effectively coordinate the configuration of any DOCRs with other electrical equipment in
order to prevent damage to the surrounding devices. Due to this design, the coordination
issue may become slightly more complex.

1.2. Literature Review

In order to elucidate this complex matter, many different kinds of methodologies
were developed according to the existing body of literature. The coordination issue of
overcurrent relays was addressed in [1] using the linear approach. The configuration of
relays in [2] was selected via graphical sequential programming. In [3], an expert method
was used that exploits the minimum break point established. Additional methodologies
include curve intersection [4] and graphical selection method [5].

Different versions of nature-inspired optimization, such as JAYA and whale optimiza-
tion, were used by the authors of [6–9] in order to address the DOCR coordination issue
that was present inside the electrical power network. The DOCR design created in [10,11]
was the most optimal one in terms of the physical and logical changes that were made to
the layout of the system. A hybrid genetic algorithm for DOCR coordination was employed
in [12,13] in order to determine the optimal TDS and PS values of DOCRs while taking
into consideration the possibility of a line or generator unit outage. The DOCR issue that
occurred in a multi-loop transmission system as a result of single-line outage contingency
has been addressed in [14,15]. The issue of protection coordination is very important in
the design of DOCRs, which may sometimes function incorrectly as a result of changes in
the configuration of the network. Instead of taking into account the possibility of line or
DG failures, the fault current limiters were used in [16] in order to tackle the protection
coordination issue. In [17], a new set of coordination parameters that correspond to line,
substation, and DG failures was developed in order to overcome the issue of protection
coordination for micro-grids. Additionally, the layout of all of these networks makes it
more complicated, which results in the disorganization of DOCRs, which in turn persis-
tently leads to unforeseen circumstances. In order to alleviate these concerns as well as
the power outages, it has been advised in [18–21] that the ideal relay setting be used while
taking into consideration the design of the primary system. The DOCR issue was stated as
mixed integer nonlinear programming (MINLP), and it was addressed by using a variety
of population-based optimization techniques, as described in [22,23]. In the papers [24,25],
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a linear formulation was designed in order to address the DOCR coordination problem.
This was accomplished by developing a few bio-motivated algorithms. An alternative
implementation of particle swarm optimization (PSO) was used in the research presented
in [26–30] in order to ascertain the optimal values for DOCRs. In order to demonstrate the
superiority of modified differential evolution algorithms, a revised version of the differen-
tial algorithm was reported in [31] in order to address the DOCR coordination issue. For the
purpose of DOCR coordination, a great number of other nature-inspired algorithms, such as
the modified electromagnetic field optimization (MEFO), improved firefly (IFA), mixed in-
teger linear programming, grey wolf optimizer (GWO), biology-based optimization (BBO),
teaching learning–based optimization (TLBO), and back-tracking algorithm were utilized
in [32–38]. The article [39] used a modified version of the teaching-based optimization tech-
nique. There was an attempt made in [40] to solve the DOCR issue by using an analytical
technique. A group search that was improved was used in the relay coordination process
in [41]. In [42], a different version of the firefly algorithm was utilized to solve the DOCRs
for various IEEE benchmark systems. Recent research has shown that integrating fractional
calculus (FC) and the core concepts of fractional derivatives into the mathematical model
of a system will provide significantly improved results in many scientific and engineering
domains. A diverse array of issues, such as feature selection, image processing, hyperspec-
tral visuals, controllers for forecasting robotic routes, Kalman filters, and fractional order
filters, have been effectively addressed using these techniques. Based on this research,
it is recommended to use FC approaches in conjunction with evolutionary strategies to
tackle optimization challenges in the energy industry. Fractional-order robotic particle
swarm optimization (FPSO) with a fraction order velocity has been extensively studied in
various domains [43–47]. Otsu Image Segmentation was solved using with fractional order
Moth flame optimizer [48]. In [49], fractional-order Darwinian particle swarm optimization
is adapted for Kalman filtering computations. Additional uses include the creation of a
multiband power system stabilizer that utilizes a lead–lag compensator using a hybrid dy-
namic GA-PSO [50], as well as the detection of non-linear systems [51] and fractional-order
swarming optimizers for economic load dispatch [52], hybrid fractional computing with a
gravitational search algorithm for DOCRs [53], and reactive power minimization with fact
devices, which has been solved using a fractional evolutionary strategy [54]. The results
of this study provide support for the use of FC tools in combination with metaheuristic
algorithms for addressing optimization difficulties in the energy and power industry. The
performance of the fractional-order metaheuristics methods is significantly influenced by
the configurations of its parameters, including fractional-order settings, inertial weights,
and accelerating coefficients. Early convergence, a lack of progress, or fluctuating behavior
may be the consequence of inadequate parameter values, which would need careful cor-
rection and optimization. In the context of electrical power systems, the DOCR problem
in a multisource network may be seen as an optimization problem. The disadvantage of
the previous optimization processes and the metaheuristic optimization is that they have
the potential to combine standards that may not be ideal in every situation, but are rather
limited to a local optimal value. This is a drawback of both of these optimization methods.
In this inquiry, a FODMFO algorithm approach is investigated in order to determine the
precise and optimal DOCR coordination in comparison to other cutting-edge algorithms.

1.3. Contribution and Paper Structure

In electrical power systems, the accurate coordination of DOCRs involve careful selec-
tion for appropriate settings including TDS, Ip, and PS to ensure that a primary protection
strategy is fulfilled while meeting the criteria of selectivity reliability, sensitivity, and speed.
The estimated settings may not be optimal for all possible scenarios owing to the ambigui-
ties associated with load variations, such as unexpected events or exceeding the desired
current value, as well as variations in the system’s topology, including radial, parallel,
ring, and connected topologies. Conventional computational methods are ineffective in
finding a solution that is global and often become stuck in local optimal states due to the
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existence of several optimum points, continuous TDS and Ip variables, nonconvex features,
and the inclusion of equations that are not linear in the coordination time. This research
study presents a novel optimization approach known as FODMFO. This method improves
the optimization capabilities of the traditional MFO algorithm, including its ability to
convergence rate, by incorporating the principles of FC into its mathematical framework.
This method is evaluated by identifying the minimum optimum total operating time for
DOCRs’ coordination time. Minimizing the total operating time of DOCRs allows for a
faster identification and isolation of faults, resulting in a considerable decrease in system
downtime and an enhancement of overall operational efficiency. The implementation
of this operational enhancement is crucial for ensuring the stability and uninterrupted
functioning of systems, especially in intricate power distribution networks. This is achieved
by adjusting the control settings, such as the TDS and PS. To evaluate the efficiency of the
proposed FODMFO, three distinct case studies of an IEEE standard system are considered
for the MINLP model.

The key and novel features of this research are as follows:

• The mathematical model of MFO may be enhanced by including the concept of FC
and FD integration. This integration aims to improve the optimization feature of MFO,
namely its convergence rate.

• To validate the performance of the proposed FODMFO, a total of 11 benchmark
functions including unimodal and multimodal function have been solved in terms of
mean fitness value among 100 independent runs.

• The novel application of a fractional memetic computing approach, FODMFO, is used
to minimize and optimize the operating time of DOCRs in a standard test system, by
adjusting the values of TDS and PS.

• The suggested scheme of a FODMFO aims to decrease the overall running duration
of DOCRs in conventional networks. This is recognized by restricting the TDS and PS
within acceptable ranges, considering varied topological and operational conditions.

• The statistical illustrations, such as cumulative distribution function plots, box-plots,
histogram illustrations, standard normal quantile plots, and minimum fitness value
plots, are developed to assess the stability, accuracy, and robustness of the proposed
FODMFO algorithm in independent runs.

2. DOCR Problem Formulation

The primary goal of DOCR coordination is to promptly detect faults and isolate the
affected regions. In order to accomplish this objective in relay coordination, it is necessary
to determine the optimal values for the TDS and PS of each DOCR. The goal is to reduce
the overall time of operation of all principal DOCRs by meeting the particular constraints
outlined in the objective function:

min f =
n

∑
i=1

Ti,j, (1)

The variable Ti,j represents the duration of operation of the main relay in response to a
fault occurring in zone j. Thus, the unique curvature used for the functioning of the relay Ri
is picked from a specific subset of the decisions made in accordance with the International
Electro Technical Commission IEC standard, in the following manner:

Top = TDSi

 α(
IFi

PS×CTR

)k
− 1

 (2)

TopTDS, IF, PS, and CTR represent the total operating time, time dial setting, fault
current, plug setting, and current transfer ratio (CTR), correspondingly, for standard
inverted type relays. The values of the constants α and k are 0.14 and 0.02, respectively.
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Figure 1 displays the schematic diagram illustrating the coordination of DOCRs in an
electrical power network.
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2.1. Coordination Criterion

The coordination time interval (CTI) is used to provide synchronous coordination
between the main and backup safety patterns in an electrical protection system. The CTI
value may range from 0.2 to 0.5 s, depending upon several occurrences and causes. This
section may be expressed as follows:

Tb ≥ Tp + CTI, (3)

where

Tp : the primary (or main) relay operating time;
Tb : the backup relay operating time.

2.2. Relay Setting Bounds

The total duration of the relays may be reduced by adhering to two essential factors:
the constraints imposed by relay constraints and the limits of coordination. The major
criteria establish the boundaries of TDS and PS, whilst other mandates pertain to the
coordination of primary and backup relays. The allowable values for relay configuration
parameters are determined by the constraints and design of the relay. These values may be
described using the following ranges:

TDSi
min ≤ TDSi ≤ TDSi

max (4)

PTSi
min ≤ PTSi ≤ PTSi

max (5)
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3. Design Methodology

A global search strategy that relies on the MFO algorithm and incorporates the idea of
fractional calculus inside the mathematical framework of a classic MFO is used to address
the constrained optimization issue. To assess the effectiveness and performance of the
modified method, three case studies are conducted using IEEE 3, 8, and 15 bus systems.
Figure 2 illustrates the suggested work technique.
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3.1. Moth Flame Optimization (MFO)

The MFO algorithm is a metaheuristic optimization methodology inspired by the
migratory patterns of moths in relation to moonlight. The moth utilizes a process known
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as transverse orientation to facilitate its locomotion. The possible solutions in the MFO
algorithm are represented as moths. The optimization problem’s variables consist of the
spatial location of the moths. The MFO is an algorithm that operates on a population of
moths. The mathematical representation of the moths is as follows [55]:

M| =


M1,1 M1,2 . . . ..
M2,1 M2,2 . . . ..
. . . ..
Mm,1

. . . . . .
Mm,2

. . . . . .
. . . ..

. . . . M1,n

. . . . M2,n
. . . . . .
. . . ..

. . . . . .
Mm,n

 (6)

where n represents the number of variables and m represents the number of moths. The
matrix for storing moths related to objective function values may be represented as follows:

OM =


OM1
OM2
. . . .

OMm

 (7)

where m is the number of moths. Within the MFO algorithm, there are additional elements
referred to as Flames. MFO initializes the population as follows:

Mij = lbi + uj(ubi − lbi) (8)

where ubi and lbi is the upper and lower bounds of ith variables.
The collection of flames is shown in the following manner:

F =


f1,1 f1,2 . . . . . . f1,h
f2,1 f2,2 . . . . . . . f2,h
. . . . . . . . . . . . . . .
fm,1 fm,2 . . . . . . . . fm,h

 (9)

The flames are arranged based on the values of the following objective function:

OF =


OF1
OF2
. . .

OFm

 (10)

Both flames and moths are considered as solutions in the MFO algorithm. The primary
distinction between flames and moths lies in the manner in which they are updated
throughout each repetition. The moths traverse the search space. Flames may be seen as
flags, and each moth explores the area surrounding a flag, updating it if a better solution is
found. The mathematical model for tracking the movement of a moth in relation to a flame
may be described as follows:

N = S(Kr − Yw) (11)

Dr = |Yw − Kr| (12)

S(Kr, Yw) = Dr · eqg · cos (2πg) + Yw (13)

Dr =

{
|Fi − Mi|, i ≤ fno

Ffno − Mi

∣∣∣, i > fno

}
(14)

where Yw represents the wth flame, Kr represents the rth moth, and Dr represents the
distance of the rth moth from the wth flame. The parameter q is a fixed value, whereas
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g is a randomly generated integer in the range of −1 to 1. The calculation for g may be
performed in the following manner:

a = −1 + Iter ×
(

−1
Max.Iter

)
(15)

g = (a − 1)× rand + 1 (16)

fno = round(n − l
L
(n − 1)) (17)

At each location, Max.Iter represents the maximum number of iterations, whereas Iter
represents the current iteration. Rand refers to a random integer between 0 and 1.

The MFO algorithm typically employs three functions, which may be stated as follows:

MFO = (I, P, T) (18)

The function I generates a random population within the specified boundaries of the
variables for the moths. It then calculates the fitness function values for each individual in
the population. The function P is the primary function that is performed repeatedly until
the function T evaluates as true. If the conversion conditions are not fulfilled, the function
T evaluates as false. Otherwise, it evaluates as true and returns the search agents as the
best achieved.

3.2. Fractional-Order Derivative Moth Flame Optimization (FODMFO)

The suggested approach combines fractional calculus (FC) with the basic MFO to
create a fractional-order MFO algorithm. This integration aims to address the issue of
accelerated convergence and provide satisfactory outcomes. The MFO algorithm has a
favorable inclination toward global search, but its ineffective local search leads to a below-
average decrease in convergence time. In order to overcome the constraint described earlier,
the suggested technique incorporates FC into the core MFO approach. This integration
allows for the use of the FC retention feature seen in previous solutions, ensuring the
sharing of information across solutions throughout the exploitation phase. As a result,
both the precision of the outcome and the pace at which it converges are changed. FC is
particularly suitable for explaining complex events, such as irreversibility and chaos, due
to the characteristics it uncovers and its intrinsic memory component. According to this
theory, the constantly changing path of an MFO generates a distinct circumstance, where
FC instruments are a good addition.

The application of FC in several scientific areas, including engineering, computer
mathematics, and computational physics, has attracted the attention of many academics. FC
is a mathematical framework that extends the concepts of integer-order calculus, addressing
limitations that the latter could not overcome. Fractional derivatives, as an extension of
integer derivatives, provide an appropriate approach for characterizing the memory and
inherited characteristics of processes.

Multiple different methodologies exist for illustrating the concept of fractional-order
derivatives [56,57]. The Grünwald–Letnikov theory may be used to deduce the FC-based
mathematical equations for MFO by using fractional-order derivatives. Let us examine
an arbitrary signal s(t) for which the Grünwald–Letnikov fractional-order derivative is
expressed in the following equation:

Dδ(s(t) = lim
h→0

[
∞

∑
k=0

(−1)kτ(δ + 1)s(t − kh)
τ(δ − k + 1)τ(k + 1)

]
(19)

While an integer-order derivative involves a limited series, a fractional-order deriva-
tive requires an unlimited number of terms. Derivatives of integers are thus considered to
be “local” operators. Conversely, fractional derivatives possess an intrinsic ability to retain
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information about all previous occurrences. However, the impact of previous occurrences
decreases as time passes. The discrete time computation is derived from the equation
presented in Equation (17).

Dδ(s(t) =
1

Tδ

[
∞

∑
k=0

(−1)kτ(δ + 1)s(t − kh)
τ(δ − k + 1)τ(k + 1)

]
(20)

where the variable “T” represents the sample time, whereas “r” denotes the order of
truncation. The variable “[s(t)]” is discrete, and in a specific scenario when δ equals one,
the equation is converted to an integer order or ordinary first-order derivative and may be
represented as follows:

D1[s(t)] = s(t + 1)− s(t) (21)

To strengthen the local search capabilities of the conventional MFO, the location of
each moth is updated depending on its velocity, as indicated in Equation (18), using the
previously defined definition of FC.

Mn
p(t) = Mn

p(t − 1)+Mn
v(t) (22)

Moths demonstrate particle swarm optimization (PSO) movement, where the local
optima correspond to the moth’s specific flame position (LB. Fpos) and the global optima
reflect the optimal flame position (GB. Fpos). At each iteration, the location of each moth is
updated based on its current velocity and position. The initial velocity and cognitive and
social behavioral tendencies of moths align with the updated velocity. The mathematical
model of cognitive behavior may be defined as the spatial separation between the highest
intensity local fires and their present position.

Mv
n(t) = Mv

n(t − 1) + C1 ∗ r1 ∗ (LB.Fk
p(t − 1)− Mp

n(t − 1)) + C2 ∗ r2
∗(GB.(LB.Fk

p(t − 1)− Mp
n(t − 1)))

(23)

where Mv
n(t) represents the velocity of the nth particle at the current iteration t, whereas

Mv
n(t − 1) represents the velocity at the previous iteration t − 1, LB.Fk

p(t − 1) is the
local best position at time t − 1, LB.Fk

p(t − 1) represents the optimal position in the
global context at time t − 1. C1 and C2 are constant parameters that denote the cognitive
and social behavior of particles with regard to the local and global ideal positions of
particles, respectively. r1 and r2 are uniformly distributed random numbers between 0 and
1 that are used to ascertain the most advantageous positioning of particles. The formula
corresponding to Equation (20) is as follows:

Mv
n(t)− Mv

n(t − 1) = C1 ∗ r1 ∗ (LB.Fk
p(t − 1)− Mp

n(t − 1)) + C2 ∗ r2∗
(GB.(LB.Fk

p(t − 1)− Mp
n(t − 1)))

(24)

Here, the expression Mv
n(t)− Mv

n(t − 1) represents the first-order difference of the
integer variable with a fractional order derivative of 1, thereby making it a classical integer
order derivative n. Substituting T = 1 into Equation (21) yields the following equation:

Dδ[Mn
v(t)] = C1 ∗ r1 ∗ (LB.Fk

p(t − 1)− Mp
n(t − 1)) + C2 ∗ r2

∗(GB.(LB.Fk
p(t − 1)− Mp

n(t − 1)))
(25)

The order of a velocity derivative may be extended to a real number between 0 and
1, leading to a more gradual variation and a longer-lasting memory effect, based on the
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concept of fractional calculus. By taking into account the discrete-time fractional differential,
Equation (22) may be restated as

Mn
v(t) = −

[
r
∑

k=0

(−1)kτ(δ+1)s(t−kh)
τ(δ−k+1)τ(k+1) + C1 ∗ r1 ∗ (LB.Fk

p(t − 1)− Mp
n(t − 1)) + C2 ∗ r2

∗(GB.(LB.Fk
p(t − 1)− Mp

n(t − 1)))
]

(26)
The expression of fractional velocity for the nth moth particle with the rth term is as

follows: tr = 1, 2, 3, r

Mn
v(t) = δMv

n(t − 1) + 1
2 δ(1 − δ)Mv

n(t − 2)
+ 1

τ(k+1) δ(1 − δ) . . . (k − 1 − δ(M v
n(t − k) + C1 ∗ r1

∗(LB.Fk
p(t − 1)− Mp

n(t − 1)) + C2 ∗ r2
∗(GB.(LB.Fk

p(t − 1)− Mp
n(t − 1)))

(27)

Considering only four terms, Equation (23) can be rewritten as follows:

Mn
v(t) = δMv

n(t − 1) + 1
2 δ(1 − δ)Mv

n(t − 2)
+ 1

6 δ(1 − δ)(2 − δ)Mv
n(t − 3)

+ 1
24 δ(1 − δ)(2 − δ)(3 − δ)Mv

n(t − 4) + C1 ∗ r1
∗(LB.Fk

p(t − 1)− Mp
n(t − 1)) + C2 ∗ r2

∗(GB.(LB.Fk
p(t − 1)− Mp

n(t − 1)))

(28)

The steps of this algorithm as well as the pseudocode for FODMFO may be found in
Algorithm 1.

Step 1: Random initialization of search agent’s (moths) population. Introduce a set of n
search agents with dimensions corresponding to the controllable factors of the dimension
into the population of moths, denoted as “M”.
Step 2: Fitness evaluation. The fitness value of each search agent is determined by
submitting it to the necessary objective function related to the entire operational time.
Step 3: Sorting initial search agent population. The search agents are ranked based on
their unique fitness function scores and then assigned to the flame population “F” according
to their individual fitness function values “OF”.
Step 3: Updating position of search agents. A logarithmic spiral function is used to
precisely modify the location of a moth in relation to the optimum flame.
Step 4: Velocity calculation of each search agent based on fractional-order strategy. The
velocity for each nth month is determined using fractional order.
Step 5: Fractional-order velocity strategy adopted to further update position. The location
of each moth is updated using the following equation, which takes into account the moth’s
fractional velocity relative to its previous position: Mnp(t) = Mnp(t − 1) + Mnv(t).
Step 6: Stopping criteria. The stopping criteria of the FODMFO algorithm rely on a set
number of iterations.
Step 7: Storage of results. The control variables of the DOCR issue are determined by the
minimum active total operational time, which is based on the best result achieved by the
moths or search agent.
Step 8: Statistical analysis. Statistical analysis is conducted on one hundred independent
trials utilizing histogram, box-plot, and CDF-based analysis.
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Algorithm 1: FODMFO

1: Randomly initialize each individual in moths using (8);
2: Initialize the iteration count t = 1;
3: while t < t + 1;
4: Update fno using (17);
5: OM= Fitness Function (M);
6: If t=1;
7: F = sort(M);
8: OF = sort(OM);
9: else
10: F = sort ((Mtl, Mt);
11: OF = sort (Mt1, Mt);
12: end if
13: for i in range(n): # loop through moths
14: for j in range(d): # loop through dimensions
15: Update r and t; (These parameters might be predefined or updated based on a schedule)
Calculate D using Equations (11) and (13) with respect to the corresponding moth;
16: Calculate the fractional-order velocity using Equations (27) and (22) with respect to the
corresponding moth
17: end for
18: if r < 0.5:
vel_ij = F[i][j] − r × D
19: else:
20: vel_ij = F[i][j] + r × D
Update the position of the moth using the fractional-order velocity
Assuming M[i][j] represents the position and vel_ij represents the velocity in dimension j for moth
i
21: End if
22: M[i][j] = M[i][j] + t × vel_ij
23: OFM= Fitness Function (FM);
24: Update the best solution;
25: t = t + 1;
26: end while

4. Results and Discussion

In this section, the execution and testing of FODMFO is carried out on uni- and
multimodal benchmark functions as well as on an IEEE test bench system.

The evaluation of optimization technique performance on standard uni- and multi
model benchmark functions is a widely used approach [55]. The optimizer that exhibits
the lowest error is regarded as the most optimal and considered a good optimizer. A
comprehensive set of 11 benchmark functions is used in this study to facilitate the evaluation
of various optimization approaches across diverse scenarios. The first seven functions,
denoted as F1 to F7, are classified as unimodal functions, and functions from F8 to F11
are regarded as multimodal functions. FODMFO yields optimal outcomes in all distinct
test conditions. The numerical results are shown in Tables 1 and 2, which display the
performance of FODMFO in terms of the average fitness value over 100 separate runs. All
three algorithms were outperformed by FODMFO.
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Table 1. Performance comparison with benchmark functions.

Functions Dim
MFO [55] PSO [55] GSA [55] BA [55] FODMFO

Mean STD Mean STD Mean STD Mean STD Mean STD

F1(x) =
n
∑

i=1
x2

i
100 0.000117 0.00015 1.32115 1.15388 608.232 464.654 20,792.4 5892.40 4.23 × 10−34 4.20 × 10−34

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 100 0.000639 0.000877 7.71556 4.13212 22.7526 3.36513 89.785 41.9577 4.02 × 10−17 1.80 × 10−17

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
100 696.730 188.527 736.393 361.781 135,760. 48,652.6 62,481.3 29,769.1 3.64 × 10−33 4.64 × 10−33

F4(x) = max
i

{|xi|, 1 ⩽ i ⩽ n} 100 70.6864 5.27505 12.9728 2.63443 78.7819 2.81410 49.7432 10.14363 1.77 × 10−17 6.40 × 10−18

F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
] 100 139.148 120.260 77,360.83 51,156.15 741.003 781.2393 199,512 125,238 7.3340 0.1542

F6(x) =
n
∑

i=1
([xi + 0.5])2 100 0.00011 9.87 ×

10−5 286.651 107.079 3080.96 898.635 17,053.4 4917.56 0.1210 0.0821

F7(x) =
n
∑

i=1
ix4

i + random [0, 1) 100 0.091155 0.04642 1.037316 0.310315 0.112975 0.037607 6.045055 3.045277 2.34 × 10−4 1.73 × 10−4

F8(x) =
n
∑

i=1
−xisin

(√
|xi|
)

100 8496.78 725.8737 −3571 430.7989 −2352.32 382.167 65,535 0 −2.51 × 103 317.3344

F9(x) =
n
∑

i=1

[
x2

i − 10cos (2πxi) + 10
] 100 84.600 16.1665 124.29 14.2509 31.0001 13.6605 96.2152 19.5875 0.2530 1.9868

F10(x) =

−20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑

i=1
cos (2πxi)

)
+ 20 + e

100 1.2603 0.72956 9.1679 1.56898 3.74098 0.17126 15.9460 0.77495 3.98 × 10−15 1.20 × 10−15

F11(x) =
1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

100 0.0190 0.02173 12.418 4.16583 0.04978 0.04978 220.281 54.7066 0.0055 0.0291
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Table 2. Performance comparison with benchmark functions.

Functions Dim
FPA [55] SMS [55] FA [55] GA [55] FODMFO

Mean STD Mean STD Mean STD Mean STD Mean STD

F1(x) =
n
∑

i=1
x2

i
100 203.638 78.3984 120 0 7480.74 894.849 21,886.0 2879.58 4.23 × 10−34 4.20 × 10−34

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 100 11.1687 2.91959 0.0205 0.00471 39.3253 2.46586 56.5175 5.66085 4.02 × 10−17 1.80 × 10−17

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
100 237.56 136.6463 37,820 0 17,357.3 1740.11 37,010.2 5572.21 3.64 × 10−33 4.64 × 10−33

F4(x) = max
i

{|xi|, 1 ⩽ i ⩽ n} 100 12.5728 4 2.29 69.1700 3.87666 33.9535 1.86966 59.14331 4.648526 1.77 × 10−17 6.40 × 10−18

F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
] 100 10,974. 12,057.2 638,224 729,967 3,795,009 759,030. 3,132,141 5,264,496 7.3340 0.1542

F6(x) =
n
∑

i=1
([xi + 0.5])2 100 175.38 63.4525 41,439. 3295.23 7828.72 975.210 20,964.8 3868.10 0.1210 0.0821

F7(x) =
n
∑

i=1
ix4

i + random [0, 1) 100 0.13594 0.061212 0.04952 0.024015 1.906313 0.460056 13.37504 3.08149 2.34 × 10−4 1.73 × 10−4

F8(x) =
n
∑

i=1
−xisin

(√
|xi|
)

100 −8086.74 155.346 −3942.82 404.160 −3662.05 214.163 −6331.19 332.566 −2.51 × 103 317.3

F9(x) =
n
∑

i=1

[
x2

i − 10cos (2πxi) + 10
] 100 92.6917 14.2239 152.844 18.5535 214.895 17.2191 236.82 19.03359 0.2530 1.9868

F10(x) =

−20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑

i=1
cos (2πxi)

)
+ 20 + e

100 6.84483 1.24998 19.1325 0.23852 14.5676 0.46751 17.8461 0.53114 3.98 × 10−15 1.20 × 10−15

F11(x) =
1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

100 2.7160 0.72771 420.525 25.25612 69.65755 12.11393 179.9046 32.43956 0.0055 0.0291
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In order to demonstrate the importance of FODMFO, the obtained outcomes in each
scenario for addressing the coordination issue, namely the total operation time for DOCRs
in three separate test cases (the IEEE 3, 8, and 15 bus test systems), are compared with
other highly regarded and newly suggested algorithms. The effectiveness of the proposed
FODMFO is confirmed for both discrete (specifically mixed integer) and continuous PTS-
based models. The coordination problem in the research work is addressed by using phase
relays. It is noteworthy that a similar approach is also used to coordinate ground relays.
In this case, simulations are performed only for phase relays due to their comparable
properties with the earth relay in terms of the typical IDMT curves, nonlinearity/linearity
of the fitness function, and accompanying constraints.

4.1. Case Study 1: IEEE 3-Bus System

The 3-bus system comprises three buses, three generators, three lines, and six relays,
as seen in Figure 3. A three-phase fault occurring at the midway of each line is taken into
account. The CT ratio, the primary/backup relay combinations, and the three-phase fault
current of each line is provided in Table 3. All of the relays possess the IDMT attribute. This
system is evaluated using MINLP formulations to ensure a fair comparison with previous
research found in the literature.
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The design variables in this scenario are TDS and PTS, which have a range of values
between 0.1 and 1.1 for TDS, and between 1.5 and 5.0 for PTS. The coordination issue of
the directional overcurrent relay is resolved using a mixed integer nonlinear programming
function, wherein both variables are assigned continuous values. The optimized TDS and
PTS of the proposed results obtained from the MFO and FODMFO algorithms are presented
in Table 4. Additionally, Table 5 displays the net total operating time achieved by the MFO,
FODMFO, and other state-of-the-art algorithms. It is evident that the FODMFO algorithm
outperforms the other algorithms in minimizing the total operating time of DOCRs for an
IEEE 3-bus system. The obtained result provides validation for integrating this research
with more advance control strategies [58] and with the use of FACTS controllers observed
by [59] to improve the optimization procedure.
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Table 3. Parameters for IEEE 3-bus system [22].

Primary Relay Fault
Current (A)

Backup
Relay

Fault
Current (A)Relay No CTR PTS

1 300/5 5 1978.90 5 175.00
2 200/5 1.5 1525.70 4 545.00
3 200/5 5 1683.90 1 617.22
4 300/5 4 1815.40 6 466.17
5 200/5 2 1499.66 3 384.00
6 400/5 2.5 1766.30 2 145.34

Table 4. Optimized TDS and PTS values for case 1.

Relay
No MFO Relay No FODMFO

TDS PTS TDS PTS
1 0.1021 1.500 1 0.1001 1.500
2 0.1000 3.000 2 0.1000 3.000
3 0.1000 3.000 3 0.1000 3.500
4 0.1120 3.000 4 0.1000 2.500
5 0.1000 2.000 5 0.1000 2.000
6 0.1009 1.500 6 0.1002 1.500

Objective function (s) 1.5696 1.5222

Table 5. Comparison with literature for case 1

Algorithm Objective Function (s)

TLBO [37] 5.3349
MDE [31] 4.7806
PSO [30] 1.9258
SA [22] 1.599

BBO-LP [36] 1.59871
ABC [42] 1.9258
MFA [42] 1.78039
GA [42] 1.78047

FAGA [42] 1.78039
MFO 1.5696

FODMFO 1.5222

Moreover, it can be shown from Table 4 that the suggested MFO and FODMFO
successfully meet all constraints. Comparatively, it is clear that FODMFO outperforms
other algorithms in providing the desired optimum settings for DOCRs. For example, for
the IEEE 3-bus system, the total advantage in terms of net gain in total operating time is
of 3.81 s compared to the TLBO algorithm, 3.2584 s for MDE, 0.40 s for PSO, 0.07 s for SA
and BBO-LP and 0.4036 s, 0.25819 s, 0.25287 s, and 0.2518 s for ABC, MFA, GA, and FAGA,
respectively, with 0.04 s for MFO algorithms, while the improvements with respect to TLBO,
modified differential (MDE), particle swarm optimization (PSO), seeker algorithm (SA),
BBO-LP, ABC, GA, FAGA, and MFO are of 71.47%, 68.1588%, 20.9575%, 4.803%, 4.78573%,
20.9575%, 14.5019%, 14.5057%, 1.78039%, and 3.01%, respectively. Figure 4 illustrates the
convergence properties of MFO and FODMFO as observed during the simulation. It is
evident that FODMFO attained a rapid convergence rate. The overall net gain improvement
in total operating time achieved in seconds and in percentage by the proposed algorithm
against other optimization techniques is shown in Figures 5 and 6, demonstrating the
dominancy and improvement in the results. Figure 7 shows the optimized total operating
time obtained by the proposed algorithm compared with those found in the literature. By
comparing the suggested algorithms, it has been observed that the provided algorithms
possess superiority and benefits compared with current up-to-date algorithms.
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Figure 7. Optimized total operating time: FODMFO vs. literature for IEEE 3-bus system.

4.2. IEEE 8-Bus System for DOCRs

The 8-bus system is regarded as a MINLP formulation. The system consists of eight
busses, two generators, two transformers, seven lines, and fourteen relays, as seen in
Figure 8. The analysis focuses on a three-phase failure occurring close to the source, with a
coordination interval of 0.2 s. The CT ratio and three-phase short circuit current for each
primary-to-secondary (P/B) pair are provided in Tables 6 and 7, respectively.
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Table 6. CTR ratio for IEEE 8-bus system [22].

Relay No CTR Relay No CTR

1 1200/5 8 1200/5
2 1200/5 9 800/5
3 800/5 10 1200/5
4 1200/5 11 1200/5
5 1200/5 12 1200/5
6 1200/5 13 1200/5
7 800/5 14 800/5

The optimal values generated by the suggested MFO and FODMFO algorithms are
shown in Table 8. The results demonstrate that FODMFO effectively minimized the overall
operating time and achieved optimal values. Table 9 presents a comparison between MFO
and FODMFO algorithms and other algorithms used for the same DOCR coordination
issue. It demonstrates that FODMFO surpasses other existing algorithms in lowering
the overall operating time to a minimal value, with a rapid convergence rate, as seen in
Figure 7. For the IEEE 8-bus system, the proposed FODMFO achieved a net gain of 2.34 s
for GA, 2.40 s for LM, 2.744 s for BH, 3.1033 s for HS, 2.2 s for GA-LP, 1.89 s for BBO,
and 1.57 s for JAYA. For DJAYA, OJAYA, MFO, and TLBO (MOF), a net gain of 1.30 s was
obtained. The assessment of the optimal parameters identified through FODMFO with
GA, GA-LP, LM, BH, HS, BBO, JAYA, DJAYA, OJAYA, and MFO reveals improvements
of 21.30%, 20.94%, 21.76%, 24.07%, 26.38%, 17.94%, 15.4%, 13.13%, 12.13%, and 9.31%,
respectively. Additionally, FODMFO achieves the best value for the objective function in a
smaller number of iterations. Figure 9 illustrates the convergence characteristic of MFO
and FODMFO throughout the simulations, and it was shown that FODMFO is capable
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of achieving optimum values with a high convergence rate, even with only a couple of
iterations. The net gain improvement in total operation achieved by the proposed algorithm
in seconds is shown in Figure 10, depicting the superiority of the proposed algorithm in
terms of net gain advantage in the total operating time. The outcomes acquired from
this study indicate that the suggested algorithm has shown enhanced performance in the
case of the IEEE 8-bus test system as well. Moreover, the performance of the proposed
algorithm can be seen in Figure 11 in terms of net percentage improvement in total net
gain of time, while Figure 12 shows the optimized total operating time achieved by the
proposed algorithm compared with those obtained in the literature. The findings indicate
that the suggested algorithm provided in this study exhibits a superior performance in
terms of net gain in time compared to other methodologies, hence providing satisfying and
improved results.

Table 7. Primary/backup sequence of relays and three-phase fault current for IEEE 8 [23].

Primary Relay Fault Current (A) Backup Relay Fault Current (A)

1 3232 6 3232
2 5924 1 996
2 5924 7 1890
3 3556 2 3556
4 3783 3 2244
5 2401 4 2401
6 6109 5 1197
6 6109 14 1874
7 5223 5 1197
7 5223 13 987
8 6093 7 1890
8 6093 9 1165
9 2484 10 2484
10 3883 11 2344
11 3707 12 3707
12 5899 13 987
12 5899 14 1874
13 2991 8 2991
14 5199 1 996
14 5199 9 1165

Table 8. Optimized TDS and PTS values for case 2.

Relay No MFO Relay No FODMFO

TDS PTS TDS PTS
1 0.1000 2.5000 1 0.1001 2.5000
2 0.3600 1.5000 2 0.2300 2.5000
3 0.3010 2.0000 3 0.2021 2.5000
4 0.1700 2.0000 4 0.1523 2.5000
5 0.1031 2.5000 5 0.1030 2.5000
6 0.2000 1.5000 6 0.2209 2.0000
7 0.2601 2.5000 7 0.3000 1.5000
8 0.2501 2.0000 8 0.2000 2.5000
9 0.2201 1.5000 9 0.1700 2.5000
10 0.3106 1.0000 10 0.2110 2.0000
11 0.2300 2.0000 11 0.1744 2.5000
12 0.3100 2.5000 12 0.3500 1.0000
13 0.2405 1.0000 13 0.1999 1.0000
14 0.3005 2.0000 14 0.3700 1.0000

Objective
function (s) 9.5455 8.6567
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Table 9. Comparison with literature for case 2

Method Objective Function (s)

GA [13] 11.001
GA-LP [13] 10.9499

LM [5] 11.0645
BH [20] 11.401
HS [20] 11.760

BBO [36] 10.5495
JAYA [6] 10.2325

DJAYA [6] 9.9661
OJAYA [6] 9.8520

MFO 9.5455
FODMFO 8.6567
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4.3. IEEE 15-Bus System for DOCRs

The 15-bus system is used as an NLP formulation, comprising 15 buses, 21 branches,
42 DOCRs, and 82 P/B relay combinations, as seen in Figure 13. A 3ϕ close-in fault is
assumed to occur in all the lines. In this case, there is a significant presence of distributed
generation (DG) in the distribution networks. The CTI value is assumed to be 0.2 s, while
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the TDS ranges from 0.1 to 1.1 and the PS ranges from 0.5 to 2.5. The CTR ratios, P/B relay
pairs, and currents for three-phase faults may be found in Tables 10 and 11.

The optimal values achieved by the suggested MFO and FODMFO methods are
shown in Table 12. The table demonstrates that FODMFO successfully minimized the total
operating time and achieved optimal values. Table 13 presents a comparison of FODMFO
with other methods used to solve the identical DOCR coordination issue. It demonstrates
that FODMFO outperforms other existing algorithms in reducing the overall operating
time to a minimal value with a rapid convergence rate, as seen in Figure 14. Additionally,
FODMFO achieves the optimal value for the objective function in a smaller number of
iterations. The optimum solutions determined by FODMFO were compared with MINLP,
BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO interms of net gain
of times and percentages. In the IEEE 15-bus system, the FODMFO yields a net gain
over MINLP, BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO at
2.63 s, 3.59 s, 39.8 s, 1.25 s, 2.57 s, 5.20 s, 3.21 s, 6.14 s, 2.82 s, and 1.54 s, respectively. The
results show improvements of 17.18%, 22.05%, 50.80%, 6.99%, 16.87%, 29.07%, 20.18%,
32.59%, 18.19%, and 10.85%, respectively. The net gain improvement in total operating
time achieved by the proposed algorithm in seconds is shown in Figure 15, depicting
the superiority of the proposed algorithm in terms of net gain advantage in the total
operating time. Furthermore, the performance of the proposed algorithm can be seen in
Figure 16 in terms of net percentage improvement in total net gain of time, while Figure 17
shows the optimized total operating time achieved by the proposed algorithm compared
with those obtained in the literature. Based on the mentioned case studies, it can be
inferred that the recommended algorithm provides a significant benefit in respect to overall
time improvement in contrast to other methodologies, hence providing satisfying and
improved outcomes.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 25 of 33 
 

 

 
Figure 13. Single-line diagram of IEEE 15-bus system. 

The optimal values achieved by the suggested MFO and FODMFO methods are 
shown in Table 12. The table demonstrates that FODMFO successfully minimized the total 
operating time and achieved optimal values. Table 13 presents a comparison of FODMFO 
with other methods used to solve the identical DOCR coordination issue. It demonstrates 
that FODMFO outperforms other existing algorithms in reducing the overall operating 
time to a minimal value with a rapid convergence rate, as seen in Figure 14. Additionally, 
FODMFO achieves the optimal value for the objective function in a smaller number of 
iterations. The optimum solutions determined by FODMFO were compared with MINLP, 
BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO as percentages. In 
the IEEE 15-bus system, the FODMFO yields a net gain over MINLP, BSA, MTLBO, GSO, 
GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO at 2.63 s, 3.59 s, 39.8 s, 1.25 s, 2.57 s, 5.20 
s, 3.21 s, 6.14 s, 2.82 s, and 1.54 s, respectively. The results show improvements of 17.18%, 
22.05%, 50.80%, 6.99%, 16.87%, 29.07%, 20.18%, 32.59%, 18.19%, and 10.85%, respectively. 
The net gain improvement in total operating time achieved by the proposed algorithm in 
seconds is shown in Figure 15, depicting the superiority of the proposed algorithm in 
terms of net gain advantage in the total operating time. Furthermore, the performance of 
the proposed algorithm can be seen in Figure 16 in terms of net percentage improvement 
in total net gain of time, while Figure 17 shows the optimized total operating time 
achieved by the proposed algorithm compared with those obtained in the literature. Based 
on the mentioned case studies, it can be inferred that the recommended algorithm pro-
vides a significant benefit in respect to overall time improvement in contrast to other meth-
odologies, hence providing satisfying and improved outcomes. 

Figure 13. Single-line diagram of IEEE 15-bus system.



Fractal Fract. 2024, 8, 251 23 of 31

Table 10. Current transformer ratio for IEEE 15-bus system [22].

Relay No CT Ratio

18-20-21-29 1600/5
2-4-8-11-12-14-15-23 1200/5

1-3-5-10-13-19-36-37-40-42 800/5
6-7-9-16-24-25-26-27-28-31-32-33-35 600/5

17-22-30-34-38-39-41 400/5

Table 11. Primary/backup sequence of relays and related parameters [22].

Primary
Relay

Fault
Current (A)

Backup
Relay

Fault
Current (A)

Primary
Relay

Fault
Current (A)

Backup
Relay

Fault
Current (A)

1 3621 6 1233 20 7662 30 681
2 4597 4 1477 21 8384 17 599
2 4597 16 743 21 8384 19 1372
3 3984 1 853 21 8384 30 681
3 3984 16 743 22 1950 23 979
4 4382 7 1111 22 1950 34 970
4 4382 12 1463 23 4910 11 1475
4 4382 20 1808 23 4910 13 1053
5 3319 2 922 24 2296 21 175
6 2647 8 1548 24 2296 34 970
6 2647 10 1100 25 2289 15 969
7 2497 5 1397 25 2289 18 1320
7 2497 10 1100 26 2300 28 1192
8 4695 3 1424 26 2300 36 1109
8 4695 12 1463 27 2011 25 903
8 4695 20 1808 27 2011 36 1109
9 2943 5 1397 28 2525 29 1828
9 2943 8 1548 28 2525 32 697
10 3568 14 1175 29 8346 17 599
11 4342 3 1424 29 8346 19 1372
11 4342 7 1111 29 8346 22 642
11 4342 20 1808 30 1736 27 1039
12 4195 13 1503 30 1736 32 697
12 4195 24 753 31 2867 27 697
13 3402 9 1009 31 2867 29 1828
14 4606 11 1475 32 2069 33 1162
14 4606 24 753 32 2069 42 907
15 4712 1 853 33 2305 21 1326
15 4712 4 1477 33 2305 23 979
16 2225 18 1320 34 1715 31 809
16 2225 26 905 34 1715 42 907
17 1875 15 969 35 2095 25 903
17 1875 26 905 35 2095 28 1192
18 8426 19 1372 36 3283 38 882
18 8426 22 642 37 3301 35 910
18 8426 30 681 38 1403 40 1403
19 3998 3 1424 39 1434 37 1434
19 3998 7 1111 40 3140 41 745
19 3998 12 1463 41 1971 31 809
20 7662 17 599 41 1971 33 1162
20 7662 22 642 42 3295 39 896



Fractal Fract. 2024, 8, 251 24 of 31

Table 12. Optimized TDS and PTS values for case 3.

Relay No MFO Relay No FODMFO

TDS PTS TDS PTS
1 0.1000 1.9800 1 0.1000 2.5000
2 0.1024 0.5120 2 0.1000 0.5000
3 0.1793 1.0011 3 0.1532 1.4999
4 0.1000 1.9810 4 0.1000 2.0000
5 0.1800 1.2100 5 0.1100 1.3120
6 0.1246 1.8000 6 0.1300 1.7990
7 0.1117 2.5000 7 0.1018 1.9998
8 0.1140 1.5900 8 0.1200 0.6000
9 0.1016 0.5011 9 0.1021 0.5000
10 0.1213 0.5000 10 0.1021 0.5000
11 0.1730 0.5000 11 0.1800 0.5000
12 0.1067 1.3010 12 0.1080 1.2990
13 0.1006 1.9000 13 0.1000 2.0000
14 0.1000 1.8000 14 0.1000 1.7990
15 0.1000 2.5000 15 0.1000 2.5000
16 0.1073 0.8423 16 0.1090 0.5999
17 0.1855 0.5002 17 0.1900 0.5000
18 0.1000 1.5670 18 0.1000 1.6999
19 0.1054 0.5001 19 0.1060 0.5000
20 0.1000 1.7000 20 0.1001 1.6988
21 0.1000 1.7001 21 0.1000 1.6988
22 0.1000 2.5000 22 0.1000 2.5000
23 0.1011 1.2000 23 0.1000 1.3120
24 0.1045 2.5000 24 0.1001 2.4999
25 0.1447 1.7740 25 0.1500 1.8000
26 0.1630 1.3010 26 0.1500 1.4100
27 0.1633 0.5000 27 0.1701 0.5000
28 0.2000 1.8000 28 0.1990 1.9800
29 0.1000 2.5000 29 0.1002 1.7532
30 0.1000 2.5000 30 0.1000 2.5000
31 0.1000 2.5000 31 0.1001 2.5000
32 0.1000 2.5000 32 0.1111 2.5000
33 0.3000 0.5000 33 0.2901 0.5000
34 0.1762 1.4000 34 0.1800 1.5000
35 0.3007 0.5000 35 0.1000 0.5000
36 0.1015 2.5000 36 0.1001 2.5000
37 0.3000 0.5000 37 0.1000 0.5000
38 0.2007 0.5000 38 0.1910 0.5000
39 0.1410 1.3990 39 0.1000 1.5000
40 0.2000 1.2000 40 0.1000 0.5000
41 0.1444 1.8010 41 0.1003 1.9000
42 0.1000 2.5000 42 0.1000 2.5000

Objective function (s) 14.2456 12.6992

Table 13. Comparison with literature for case 3

Algorithm Objective Function

MINLP [22] 15.335
BSA [38] 16.293

MTLBO [39] 25.8154
GSO [41] 13.6542
GWO [20] 15.277
EFO [20] 17.906

ER-WCA [20] 15.910
DJAYA [6] 18.840
OJAYA [6] 15.523

MFO 14.2456
FODMFO 12.6992



Fractal Fract. 2024, 8, 251 25 of 31
Fractal Fract. 2024, 8, x FOR PEER REVIEW 27 of 33 
 

 

0 20 40 60 80 100 120 140 160 180 200
10

15

20

25

30

35

40

45

50
FODMFO
MFO

O
b
je

ct
iv

e 
fu

n
ct

io
n
 (

s)

Iterations  

Figure 14. Convergence characteristics for MFO and FODMFO for IEEE 15-bus system. 

Table 13. Comparison with literature. 

Algorithm  Objective Function 

MINLP [22] 15.335 

BSA [38] 16.293 

MTLBO [39] 25.8154 

GSO [41] 13.6542 

GWO [20] 15.277 

EFO [20] 17.906 

ER-WCA [20] 15.910 

DJAYA [6] 18.840 

OJAYA [6] 15.523 

MFO 14.2456 

FODMFO 12.6992 

Figure 14. Convergence characteristics for MFO and FODMFO for IEEE 15-bus system.

 

 

 

 

 

Figure 15. Comparative analysis of net improvement in total operating time (s) 
for IEEE 15-bus system. 

 

2.6358
3.5938

13.1162

0.955
2.5778

5.2068
3.2108

6.1408

2.8238
1.5464

0
2
4
6
8

10
12
14

Total net improvement obtained by FODMFO with other 
algorithms 

∆𝑡𝑠𝑒
𝑐 

Commented [EE1]: Please revise «algortihms» into 
«algorithms» in the figure image. 
Revised updated and confirmed as well 

Figure 15. Comparative analysis of net improvement in total operating time (s) for IEEE 15-bus system.



Fractal Fract. 2024, 8, 251 26 of 31

Fractal Fract. 2024, 8, x FOR PEER REVIEW 28 of 33 
 

 

 
Figure 15. Comparative analysis of net improvement in total operating time (s) for IEEE 15-bus sys-
tem. 

 
Figure 16. Comparative analysis in percentage improvement in net gain compared to other algo-
rithms IEEE 15-bus system. 

2.6358
3.5938

13.1162

0.955

2.5778

5.2068

3.2108

6.1408

2.8238
1.5464

0

2

4

6

8

10

12

14

MINLP  BSA MTLBO GSO GWO EFO ER-WCA DJAYA OJAYA MFO

Total net improvement obtained by FODMFO with other 
algortihms 

∆(𝑡)(𝑠𝑒
𝑐) 

0

10

20

30

40

50

60

MINLP BSA MTLBO GSO GWO EFO ER-WCA DJAYA OJAYA MFO

%
 Im

pr
ov

em
en

t 

Percentage improvement in Net gain obtained by FODMFO against other algorithms 

Figure 16. Comparative analysis in percentage improvement in net gain compared to other algorithms
IEEE 15-bus system.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 29 of 33 
 

 

 
Figure 17. Optimized total operating time: FODMFO vs. literature for IEEE 15-bus system. 

5. Comparative and Statistical Analysis 
The MFO and FODMFO algorithms were implemented to solve the DOCR coordina-

tion issue for the IEEE benchmark 3, 8, and 15 bus systems. The obtained results obtained 
with the findings in the literature [4,6,13,20,22,31–34,39,41,42]. The suggested method ob-
tained the optimal solution for resolving the issue in the DOCRs with the shortest possible 
response time. The findings validate that FODMFO has a greater capacity for fault detec-
tion and a faster rate of convergence in comparison to other optimization methodologies. 
Upon comparing the suggested FODMFO with all the strategies mentioned in the litera-
ture, it is evident that the proposed algorithm surpasses all other algorithms. For an accu-
rate comparison with the other approaches, the same boundary conditions and parame-
ters were used. The convergence characteristic graphs shown in Figures 4, 9, and 14 
demonstrate that the convergence occurs more rapidly and reaches the optimal value with 
less iterations. For the IEEE 3-bus system, the total advantage in terms of net gain in total 
operating time is of 3.81 s compared to TLBO algorithms, 3.2584 s for MDE, 0.40 s for PSO, 
0.07 s for SA and BBO-LP while 0.04 s is obtained for the MFO algorithm, respectively. In 
terms of percentage, there was a 71.4671% improvement observed in the TLBO algorithm, 
68.15% in the MDE, 20.95% in the PSO, 4.80% in the SA and BBO-LP, and 3.01% in the 
MOF algorithm. The IEEE 8-bus system achieved a net gain of 2.34 s for GA, 2.40 s for LM, 
2.744 s for BH, 3.1033 s for HS, 2.2 s for GA-LP, 1.89 s for BBO, and 1.57 s for JAYA. For 
DJAYA, OJAYA, MFO, and TLBO (MOF), a net gain of 1.30 s was obtained. These results 
correspond to percentage improvements of 21.30%, 20.94%, 21.76%, 24.07%, 26.38%, 
17.94%, 15.4% and 13.13%, 12.13%, and 9.31%. In the IEEE 15-bus system, FODMFO yields 
a net gain over MINLP, BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and 
MFO at 2.63 s, 3.59 s, 39.8 s, 1.25 s, 2.57 s. 5.20 s, 3.21 s, 6.14 s, 2.82 s, and 1.54 s, respectively. 
In this case, the comparison of optimal settings determined by FODMFO with MINLP, 
BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO shows 17.18%, 
22.05%, 50.80%, 6.99, 16.87%, 29.07%, 20.18%, 32.59%, 18.19%, and 10.85% improvement, 
respectively. The convergence figures obtained during the course of the simulation for all 
IEEE case studies reveal that the convergence rate is rapid, resulting in a satisfactory so-
lution with few iterations. In order to assess the dependability, steadiness, and uniformity 
of the suggested FODMFO algorithm, a thorough statistical analysis was conducted on 
the IEEE 15-bus networks, taking into account the most feasible fractional order. In order 

0

5

10

15

20

25

30

To
ta

l O
pe

ra
tin

g 
Ti

m
e 

(s
) 
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5. Comparative and Statistical Analysis

The MFO and FODMFO algorithms were implemented to solve the DOCR coordina-
tion issue for the IEEE benchmark 3, 8, and 15 bus systems. The obtained results obtained
with the findings in the literature [4,6,13,20,22,31–34,39,41,42]. The suggested method ob-
tained the optimal solution for resolving the issue in the DOCRs with the shortest possible
response time. The findings validate that FODMFO has a greater capacity for fault detection
and a faster rate of convergence in comparison to other optimization methodologies. Upon
comparing the suggested FODMFO with all the strategies mentioned in the literature, it
is evident that the proposed algorithm surpasses all other algorithms. For an accurate
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comparison with the other approaches, the same boundary conditions and parameters were
used. The convergence characteristic graphs shown in Figures 4, 9 and 14 demonstrate that
the convergence occurs more rapidly and reaches the optimal value with less iterations.
For the IEEE 3-bus system, the total advantage in terms of net gain in total operating time
is of 3.81 s compared to TLBO algorithms, 3.2584 s for MDE, 0.40 s for PSO, 0.07 s for
SA and BBO-LP while 0.04 s is obtained for the MFO algorithm, respectively. In terms of
percentage, there was a 71.4671% improvement observed in the TLBO algorithm, 68.15% in
the MDE, 20.95% in the PSO, 4.80% in the SA and BBO-LP, and 3.01% in the MOF algorithm.
The IEEE 8-bus system achieved a net gain of 2.34 s for GA, 2.40 s for LM, 2.744 s for BH,
3.1033 s for HS, 2.2 s for GA-LP, 1.89 s for BBO, and 1.57 s for JAYA. For DJAYA, OJAYA,
MFO, and TLBO (MOF), a net gain of 1.30 s was obtained. These results correspond to
percentage improvements of 21.30%, 20.94%, 21.76%, 24.07%, 26.38%, 17.94%, 15.4% and
13.13%, 12.13%, and 9.31%. In the IEEE 15-bus system, FODMFO yields a net gain over
MINLP, BSA, MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO at 2.63 s,
3.59 s, 39.8 s, 1.25 s, 2.57 s. 5.20 s, 3.21 s, 6.14 s, 2.82 s, and 1.54 s, respectively. In this case,
the comparison of optimal settings determined by FODMFO with MINLP, BSA, MTLBO,
GSO, GWO, EFO, ER-WCA, DJAYA, OJAYA, and MFO shows 17.18%, 22.05%, 50.80%,
6.99%, 16.87%, 29.07%, 20.18%, 32.59%, 18.19%, and 10.85% improvement, respectively.
The convergence figures obtained during the course of the simulation for all IEEE case
studies reveal that the convergence rate is rapid, resulting in a satisfactory solution with few
iterations. In order to assess the dependability, steadiness, and uniformity of the suggested
FODMFO algorithm, a thorough statistical analysis was conducted on the IEEE 15-bus
networks, taking into account the most feasible fractional order. In order to obtain accurate
data, we performed 100 independent simulations and used the median of the final response
as a reference point to determine the optimal fractional order. The statistical analysis relies
on several tools such as the empirical cumulative distribution function, histograms, plots,
box-plot demonstrations, quantile–quantile plots, and the minimal fitness development in
each independent simulation, as shown in Figure 18a–e. Figure 18a demonstrates that the
probability of finding an optimal solution using FODMFO is much greater than that using
conventional MFO. The data shown in Figure 18b indicate that the median of the final
solution in 100 trials tends to be lower for FODMFO compared to MFO. The histograms in
Figure 18c illustrate that several trials resulted in the lowest fitness score. The suggested
FODMFO has a very desirable minimal fitness when compared to the quantiles of the
normal distribution, as seen in Figure 18d. The graph in Figure 18e demonstrates that
FODMFO exhibits lower fitness levels than MFO throughout several independent execu-
tions. Considering these visual representations, it can be inferred that fractional calculus
is a novel mathematical instrument that may be used to develop a modified version of
traditional optimization approaches.
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Figure 18. FODMFO comparison with MFO during time of operation minimization in MINLP model
of IEEE 15-bus system. (a) CDF; (b) box-plot illustration; (c) histogram; (d) quantile–quantile plot;
(e) minimum fitness.

6. Conclusions

An innovative optimization methodology, FODMFO, is designed to solve the coor-
dination issue in DOCRs in standard IEEE benchmark systems by using the concept of
fractional calculus in the conventional MFO, making it an alternate, efficient, and precise
solution. The proposed FODMFO aims to integrate the idea of fractional derivatives into
the mathematical model of MFO, specifically focusing on the velocity update mechanism
throughout each iteration. This collaboration has enhanced the optimization properties of
the conventional method by accelerating the pace at which it reaches a solution and pre-
venting it from prematurely converging. FODMFO is effectively evaluated in three distinct
IEEE standard bus systems to reduce the overall operating time of DOCRs by adjusting
the control parameters, such as the PS and TDS of the main and backup relays, to achieve
near-optimal values. The results obtained by FODMFO are compared to those obtained
from other recently developed algorithms such as TLBO, MDE, PSO, SA, BBO-LP, GA, BSA,
MTLBO, GSO, GWO, EFO, ER-WCA, DJAYA, and others. The FODMFO algorithm has
achieved superior performance compared to the algorithms stated earlier by substantially
lowering the operational time of DOCRs in MINLP models in all case studies. This is an
endorsement of FODMFO’s reliability, constancy, and stability, and is further supported by
statistical analyses, such as cumulative distribution function plots, minimum fitness value
plots, box-plots, standard normal quantile plots and histogram illustrations, and evolution
in each independent simulation for the IEEE 15-bus system. The findings demonstrate that
the combination of the fractional calculus tool with MFO has enhanced the optimizer’s
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performance in terms of rate of convergence speed during the MFO execution. The col-
lected findings provide justification for the efficacy of FODMFO in identifying superior
and optimal solutions for DOCRs, thereby demonstrating its effectiveness as a tool for relay
coordination and optimization.

The proposed FODMFO will be utilized in the future on the protection coordina-
tion problem for micro-grids, both in grid-connected and islanded modes of operation.
This includes line, substation, and distributed generation outages, as well as micro-grid
operation modes.
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