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Abstract: The physiological loss of muscle mass and strength with aging is referred to as “sarcopenia”,
whose combined effect with osteoporosis is a serious threat to the elderly, accounting for decreased
mobility and increased risk of falls with consequent fractures. In previous studies, we observed a high
degree of inter-individual variability in paraspinal muscle fatty infiltration, one of the most relevant
indices of muscle wasting. This aspect led us to develop a computerized method to quantitatively
characterize muscle fatty infiltration in aging and diseases. Magnetic resonance images of paraspinal
muscles from 58 women of different ages (age range of 23–85 years) and physio-pathological status
(healthy young, pre-menopause, menopause, and osteoporosis) were used to set up a method based
on fractal-derived texture analysis of lean muscle area (contractile muscle) to estimate muscle fatty
infiltration. In particular, lacunarity was computed by parameter β from the GBA (gliding box
algorithm) curvilinear plot fitted by our hyperbola model function. Succolarity was estimated by
parameter µ, for the four main directions through an algorithm implemented with this purpose.
The results show that lacunarity, by quantifying muscle fatty infiltration, can discriminate between
osteoporosis and healthy aging, while succolarity can separate the other three groups showing similar
lacunarity. Therefore, fractal-derived features of contractile muscle, by measuring fatty infiltration,
can represent good indices of sarcopenia in aging and disease.

Keywords: aging; biocomplexity; biomarkers; fractal; fatty infiltration; lacunarity; magnetic
resonance imaging; muscle; sarcopenia; succolarity

1. Introduction

Aging is characterized by a progressive structural and functional decline at different
levels. Such a decline also affects the musculoskeletal apparatus. Quantitative and qualita-
tive changes occurring at skeletal muscles with aging account for increased prevalence of
disability, and increased risk of morbidity and mortality in old adults [1–4]. The combined
effect of sarcopenia and osteoporosis (osteosarcopenia, another main age-related disease) is
a devastating threat to the old adults, leading to reduced mobility and increased risk for
falls and subsequent fractures. The prevalence of osteosarcopenia varies in a range of 5–38%
in old people depending on the study design and on the classification of sarcopenia [5].
Sarcopenia is a generalized phenomenon affecting all skeletal muscles. It has been associ-
ated with osteoporosis in women following a hip fragility fracture, while the prevalence
of sarcopenia in patients with vertebral fragility fractures is poorly investigated [6,7]. In
previous studies on osteoporosis and vertebral fracture risk, we observed a high degree
of inter-individual variability in paraspinal muscle fatty infiltration. This aspect led us
to develop a computerized method to quantitatively characterize muscle fatty infiltration
of paraspinal muscle in aging and osteoporosis. The term sarcopenia was introduced by
Rosenberg in 1989 [8,9] to define the physiological loss of muscle mass with aging. More
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recently, sarcopenia has been defined as “a syndrome characterized by a progressive and
generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such
as physical disability, poor quality of life and death” [10,11]. Past the age of 50 years, the
rate of muscle loss ranges within 1–2% a year. It accounts for 25% and 40% sarcopenic
people after the age of 70 and 80 years, respectively [12,13]. The term myopenia has been
proposed to define a clinically relevant degree of muscle wasting characterized by a rapid
loss of muscle mass in a short time (i.e., more than 5% in 6–12 months) associated with
harmed functional capacity and increased risk of morbidity and mortality [14].

Several aspects other than muscle size lead to the loss of physical activity strength
in the etiology of disability. Both neurological and muscular factors lead to the decline of
muscle strength [15–18]: muscle atrophy, reduced contractile quality induced by impaired
myofibrillar machinery, and fatty infiltration of contractile muscle [3,4,15,19].

Among several techniques proposed for muscle assessment [20], three main medical
imaging systems are normally employed in the evaluation of muscle mass variation with
aging: computer tomography (CT), magnetic resonance imaging (MRI), and dual-energy
X-ray absorptiometry (DXA). Although CT and MRI represent the gold standards for muscle
mass estimate, their application has been limited to the research field, while DXA has been
chosen for clinical use [21,22]. In fact, DXA, in spite of supplying surrogate estimates of both
regional and whole-body skeletal muscle mass, is widely diffused as it is cheap and enables
limited radiation exposure. Ultrasonography (US) is another imaging technique widely used
for qualitative and quantitative assessment of muscle. US is a portable, non-ionizing and non-
invasive cheap technique for muscle properties’ estimation showing positive correlation with
muscle measurements obtained by the other imaging techniques. Nevertheless, US presents
the limitations of poor reproducibility and accuracy [23]. Both CT and MRI represent
imaging techniques very precise in differentiating fat from other soft tissues; however, MRI
has been recognized as the best tool for fatty infiltration assessment [24]. Numerous and
different techniques have been proposed to assess muscle fatty infiltration; nevertheless,
there is a lack of methods for its quantitative estimate [25–29].

The aim of this study was to set up a computerized method for quantitative charac-
terization of fatty infiltration of the contractile muscle. Considering that the term ‘fatty
infiltration’ has been using with a non-univocal meaning [30], it has to be stressed that
the term ‘fatty infiltration’ in this study identifies inter- and intra-non-contractile tissue
(mainly fat and connective tissue) that substitutes myofibrillar tissue portions within the
lean muscle area (contractile muscle).

Image texture analysis is a key approach to understand the relationships between the
microstructures of the tissues under consideration and their properties. Different approaches
can be used to extract image texture features [31] and the statistical approach based on the co-
occurrence matrix [32] is probably the most common approach. Paradigms such as complexity,
chaos, and fractality, introduced in the field of biomedicine and gerontology in particular, are
sources of new approaches and tools to their study. The proposed method, set up considering
the complexity of living beings and the fractality of many structures and functions of humans,
can be seen as a model-based approach; in fact, it aims to estimate the fractal features of
LeanCSA (lean muscle cross-sectional area) in MR images of paraspinal muscles. In particular,
the hyperbola-based method was used for lacunarity texture analysis; it provides three param-
eters (α, β, γ), for which α correlates with the fractal dimension and β quantifies the lacunarity
of the set, while γ represents the translation term on x axis [33–36]. Mandelbrot introduced
the term ‘lacunarity’ (from the Latin lacuna, which means ‘gap or hole’) to characterize fractal
objects with the same fractal dimension but differently appearing [37]. Later, lacunarity
analysis was also introduced as a more general texture analysis method to describe complex
patterns with or without fractal properties [38]. Succolarity, the other fractal-derived feature,
was also considered to complete the characterization of muscle fatty infiltration. Succolarity
(from the Latin succolare < sub + colare, which means ‘to filter, strain, purify’ and is associated
with percolare, which means ‘to strain or filter through, to percolate’) was introduced by
Mandelbrot [39] to discriminate fractals with the same lacunarity. Succolarity quantifies the
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capacity of a hypothetic fluid to percolate in a given direction such that it can estimate the
connectivity and the intercommunication in the structure of a set [40]. Parameter µ for the
four main directions was introduced to quantify succolarity by using a revised version of the
method proposed to compute succolarity [41]. While fractal dimension and lacunarity are
widely used, succolarity was not considered for a long time after its introduction in fractal
geometry. More recently, the concept of succolarity has been revisited and quantification has
been also proposed [42]. In the following, with the misuse of the terminology, we refer to such
parameters as fractal features for the sake of brevity as they were born to better characterize
fractal objects even if, later, they were also introduced as more general texture analyses to
characterize complex objects with or without fractal properties.

In this study, fractal-derived texture analysis was applied to lumbar paraspinal muscle
MRI axial images acquired by the multislice spin-echo technique from subjects of different
age and physio-pathological status to verify the potential of fractal parameters as new
indices of muscle wasting in aging (sarcopenia) and age-related pathology (osteoporosis).
Classic indices of muscle mass composition were also considered, together with a new one,
namely the Lean/Fat ratio. This new index, derived from classic measurements, relates
changes occurring at both lean and fatty muscle mass, thus allowing for a better comparison
between classic and fractal-based new methods.

2. Materials and Methods
2.1. Description of Dataset
2.1.1. Subjects

The data used in this study were from subjects enrolled in a previous study on
vertebral trabecular bone degeneration in aging and osteoporosis [33,34]. In particular,
the dataset considered in this study included women within the age range of 23–81 years
stratified in groups on the basis of their physio-pathological status (healthy young, pre-
menopause, menopause, osteoporosis). Table 1 summarizes the main demographic and
clinical characteristics of the subjects under study. MRI images of lumbar spine were used
to quantify paraspinal muscle degeneration with aging and pathology.

Table 1. Demographic and clinical characteristics of subjects’ sample.

Subjects Number Age Range Mean Age 1 Median Age

All 59 23–81 53 ± 15 50
Young 15 23–40 35 ± 5 37

Pre-menopause 15 42–50 45 ± 3 44
Menopause 14 51–81 64 ± 10 64

Osteoporosis 2 15 57–78 70 ± 6 71
Age-matched 3 10 56–81 68 ± 8 67

1 Mean age expressed as mean ± SD (standard deviation); 2 T-score ≤ −2.5 as defined by the World Health
Organization; 3 age-matched control group for comparison with osteoporosis group.

This study was carried out according to the Declaration of Helsinki. All subjects
included in this study gave their consent to use MRI scan data for research scope.

2.1.2. MRI Image Acquisition

High-resolution MRI, 1.5T whole-body system (Gyroscan Intera; Philips-Medical System,
Milano, Italy, ACR-Nema 1.0), was used for lumbar spine scans using a phased array dS Spine
coil. The spin-echo multislice technique was applied to acquire axial section images of L1–L4
lumbar spine (9 slices/vertebra with a thickness of 3 mm without a space gap between slices).
The pulse sequence used was TE of 15 ms, TR of 525 ms; the flip angle was of 90◦, matrix
512 × 512 pixel, and the pixel size equal to 0.469 mm. The scan time was shorter than 15 min.

2.2. Image Processing and Analysis

MR images of the 4th lumbar vertebra were used to characterize paraspinal muscles.
The MRI dataset was transferred to a personal computer for image texture analysis.
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2.2.1. Analysis of MR Images

The algorithms developed for the characterization of lumbar paraspinal muscles
start with an image area selection by a semi-automatic procedure to define the region of
interest (ROI) corresponding to the lumbar paraspinal muscle group considered. This
ROI was used to delimit lean muscle area (contractile area) and the surrounding fatty
muscle area. A simple count of pixel numbers belonging to these ROIs was performed for
muscle composition estimation by classic indices such as cross-sectional area of the whole
muscle mass (TotCSA), lean muscle mass (LeanCSA) and fatty muscle mass (FatCSA). The
percentage of lean and fatty mass, and the ratio between lean and fatty mass (Lean/Fat
ratio) were also calculated.

LeanCSA was considered to quantify fatty infiltration by three independent indices:

- ρ: the ratio between lean (contractile) and fatty (non-contractile) portions of muscle
tissue belonging to the lean muscle area (LeanCSA);

- β: the lacunarity of lean muscle area, where fatty infiltration is assumed as lacunae;
- µ: the succolarity of LeanCSA, where fatty infiltration is assumed as the empty space

within the muscle tissue which is percolated by a hypothetical fluid crossing the set in
four directions (down to up ↑; left to right→; up to down ↓; right to left←).

The computational procedures to obtain these indices from LeanCSA are described be-
low. These indices were compared with the classic indices of muscle composition described
above. Figure 1 shows details of paraspinal muscle MRI from subjects of different age
where the age-related increase in fatty infiltration is well observable. Figure 2 (left) shows a
sketch of ROIs’ selection for both muscle composition and fatty infiltration estimates.
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different age and physio-pathological status: (top) young, 31 years; (middle) old, 71 years; (bottom) 
osteoporotic, 71 years. The age-related increasing branching of fatty infiltration with a fractal tree 
like pattern is more evident in osteoporosis than in ‘healthy’ aging. 

 
Figure 2. Schematic representation of lacunarity method. (left) Paraspinal muscle MRI-spin-echo to 
visualize muscle CSA al level of the 4th lumbar vertebra with ROIs selection to delimit TotCSA 
(solid line) and separate LeanCSA and FatCSA (dotted line); (right) GBA curvilinear plot (dotted 
line) as fitted by our hyperbola model function L(b) (solid line) to compute the triplet of parameters 

Figure 1. Paraspinal muscle fatty infiltration. Examples of paraspinal muscle MRI from subjects of
different age and physio-pathological status: (top) young, 31 years; (middle) old, 71 years; (bottom)
osteoporotic, 71 years. The age-related increasing branching of fatty infiltration with a fractal tree like
pattern is more evident in osteoporosis than in ‘healthy’ aging.
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Figure 2. Schematic representation of lacunarity method. (left) Paraspinal muscle MRI-spin-echo
to visualize muscle CSA al level of the 4th lumbar vertebra with ROIs selection to delimit TotCSA
(solid line) and separate LeanCSA and FatCSA (dotted line); (right) GBA curvilinear plot (dotted
line) as fitted by our hyperbola model function L(b) (solid line) to compute the triplet of parameters
α*, β*, γ*; parameter α correlates with fractal dimension and parameter β describes the concavity of
the curve and gives a quantitative estimate of lacunarity. MRI: magnetic resonance imaging, CSA:
cross-sectional area, GBA: gliding box algorithm.

2.2.2. Computation of Index ρ (Lean/Fat Ratio)

The algorithm to compute ρ is based on a simple count of pixels nL (contractile muscle)
and the pixels nF (non-contractile muscle) belonging to the lean mass area (LeanCSA). The
ratio between these two numbers gives the value of the index ρ, which is as follows:

ρ =
nL
nF

(1)

At a first glance, the decision of whether a given pixel belongs to the lean mass
or to the fatty mass seems to be quite simple; in fact, fatty mass is characterized by a
lighter gray level than the lean mass. However, the non-uniform illumination in the im-
age can make it difficult to obtain a unique threshold to separate the lean mass from the
fatty mass. Therefore, a simple adaptive thresholding procedure is used. The bounding
box of the ROI is uniformly partitioned in M by N rectangles and a different thresh-
old is computed for the rectangles with a not empty intersection with the ROI. Let
R be the intersection of the ROI and one of such rectangles, and H the histogram of
gray levels in R; so, H(i) gives the number of pixels in R with a gray level i, where
i = 0, 1, . . ., 255. The following Algorithm 1 is used to compute the threshold τ in R.

Algorithm 1: (local threshold). Given the sub-image R, the histogram H of gray levels in R, and a tolerance T,
compute the threshold τ by the following steps

• let τ1 be the index of the relative maximum of H that is closest to i = 0;
• let τ2 be the index of the relative maximum of H that is closest to i = 255;
• let τ = (τ1 + τ2)/2;
• do

# τold = τ;
# let τ1 be the weighted average of gray levels less than τ with weights H(i), i = 0, 1, . . ., τ − 1;
# let τ2 be the weighted average of gray levels greater than τ with weights H(i), i = τ + 1, τ + 2, . . .,

255;
# let τ = (τ1 + τ2)/2;

until |τ − τold | < T.

In this way, every rectangle with a not empty intersection with the ROI has a different
threshold. Let Rj, j = 0, 1, . . ., J be the intersection of such rectangles and the ROI, and let τj,
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j = 0, 1, . . ., J be the corresponding thresholds. The following Algorithm 2 computes the
segmentation of the ROI in terms of nF, i.e., the number of pixels in the fat mass, and nL,
i.e., the number of pixels in the lean mass.

Algorithm 2: (image segmentation). Let d be the diagonal of the rectangles in the partition of the ROI, and cj
be the center of the j-th rectangle. Given the sub-images Rj, j = 0, 1, . . ., J, and the corresponding thresholds τj,
j = 0, 1, . . ., J; compute nF and nL as the total number of pixels in the fat mass and in the lean mass, respectively,
by the following steps

• nF = 0;
• nL = 0;
• for every pixel p in the ROI,

# let Rj be the sub-image containing p, and dj = |cj − p|;
# let Rl, l = 1, 2, . . ., L be all the sub-images such that |cl − p| < |cj − cl| and |cl − p| < d;
# let dl = |cl − p|, l = 1, 2, . . ., L and

τ =
djτj + ∑L

l=1 dlτl

dj + ∑L
l=1 dl

(2)

# if GL(p) > τ, increase nF by 1, else increase nL by 1.

We note that in Algorithm 2, GL(p) denotes the gray level of pixel p; moreover, index
L may be zero, for example, when sub-image Rj is near the boundary of the ROI; in this
case, the summations appearing in the definition of τ must be considered equal to zero and
τ = τj.

Therefore, the computation of parameter ρ is performed by Algorithm 1, Algorithm 2,
and, finally, Formula (1).

2.2.3. Computation of Index β (Lacunarity)

Lacunarity analysis was performed by adopting the method previously developed in
our laboratory as described in [33,34] and modified in [35,36].

Our method to estimate lacunarity is based on the gliding box algorithm (GBA). This
algorithm computes the lacunarity of a set by analyzing its mass distribution [43]. More
precisely, for a box (i.e., square) of side length b > 0, all the possible positions on the
set (i.e., the ROI) and the mass of the set within each box are considered. In this way, a
frequency distribution of the box mass is obtained and the lacunarity index β is computed
by considering the moments of this distribution for different values of b > 0.

In this particular case, the set is the ROI under analysis (LeanCSA) and the set mass
is the pixel gray level. So, an image segmentation is not strictly required for lacunarity
analysis; however, a preprocessing step with a sigmoid function can improve the quality of
the results. In particular, for each pixel p in the ROI, this step computes the new gray level
GP′(p) of p from the original value GP(p) by using the following formula:

GP′(p) =
1

1 + exp(−k(GP(p)− σ))
, p in the ROI, (3)

where k, σ > 0 are two given parameters. It is worth noting that the procedure goes toward
a complete binarization by increasing parameter k, related to sigmoid regularization.

For the sake of simplicity we assume that, for each b, only a finite number of masses
Mj, j = 1, 2, . . ., η(b) are encountered in the various gliding boxes of size b; therefore, a
discrete frequency distribution n(Mj,b), j = 1, 2, . . ., η(b) has to be considered. Note that
such an assumption holds for binary images, where the mass of a generic box on the image
is given by the number of white pixels in the box, i.e., the pixels associated with the value
one. From standard arguments on probability, the moments of order q of M are given by
the following formula:

Zq(M, b) =
1

N(b)

η(b)

∑
j=1

Mq
j n
(

Mj, b
)
, b > 0, (4)
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where the division by N(b), i.e., the total number of boxes, needs to convert n(Mj,b), j = 1, 2,
. . ., η(b) into a probability distribution. The definition of lacunarity function Λ uses only
the first and the second moments of M, as follows:

Λ(b) =
Z2(M, b)
Z1(M, b)2 , b > 0. (5)

We note that from the standard argument on probability theory, Λ(b) > 1, b > 0.
The GBA was implemented in software using MATLAB software package v. 7 (the

MatWorks, Inc., Natick, MA, USA). The program begins to elaborate the ROI. Then, for
each integer value of b between bmin and bmax, where bmin, bmax are given integer multiples
of the pixel size in the image under consideration, the program computes the lacunarity
function Λ(b), b = bmin, bmin + 1, . . ., bmax and shows the results on a graph.

As expected, for all images analyzed, the behavior of lacunarity function was a curvi-
linear plot resembling the hyperbola curve; therefore, the following model:

L(b) =
β

bα
+ γ, b ∈ [bmin, bmax] (6)

was chosen to approximate the lacunarity function Λ(b), where α, β, γ are suitable parameters.
This observation is consistent with the theoretical behavior of lacunarity function Λ

for self-similar fractals and for other different random sets. Moreover, for such fractals,
parameter α is related to the fractal dimension of the set and parameter β characterizes the
lacunarity of the set, while γ represents the translation term on x axis [33,34].

In each particular example considered in this study, the best fit of lacunarity Λ(b),
b = bmin, bmin + 1, . . ., bmax, by the model function L(b), b ∈ [bmin, bmax], was computed as the
solution of a least squares problem, where parameters α, β, γ are the independent variables.
In particular, the minimizer of this problem is a triplet of parameters (α*, β*, γ*) of the
model function that better represents the variation in mass density of pixels in that image.
Parameter β* gives the lacunarity of the considered ROI.

Figure 2 (right) shows a schematic representation of our lacunarity analysis method.

2.2.4. Computation of Index µ (Succolarity)

Succolarity [42] refers to the capacity to allow for the flow of a fluid. So, it gives a
further information with respect to fractal dimension and lacunarity since it depends on the
spatial organization of lacunae, for example, into filaments through the set. We note that
this fractal property is particularly relevant for the present analysis due to the geometrical
organization of fatty infiltration into muscle tissue. Succolarity analysis was performed
by refining the method presented in [41]. The proposed refinement is mainly based on the
management of the different box sizes used to compute the flow of an ideal fluid through
the ROI. Four main directions are considered, i.e., down to up, ↑; left to right,→; up to
down, ↓; and right to left,←; however, here, we describe only the computation in the up
to down case since the other ones can be obtained by proper rotations of the image. The
capacity of a pixel p in the image to contain the fluid is given by GL(p), i.e., the gray level
of pixel p. The succolarity algorithm starts by flowing the pixels p of the ROI perimeter
above the diagonals of the bounding box of the ROI. We note that the flowing operation is
just given by a labeling operation and it needs to compute the pressure; in fact, pressure
π(p) = 0 is assigned to these pixels. For each b between bmin and bmax, the following iterative
procedure is performed: let π be the pressure of the pixels flooded in the previous step;
from these pixels, the fluid flows to the pixels at (chessboard) distance less than or equal to
b; the pressure of these new flooded pixels is π + 1. When all the pixels are flooded, the
succolarity function S↓ is computed as follows:

S↓(b) =
∑p∈ROI GL(p)π(p)

∑p∈ROI π(p)
. (7)
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Proper rotations of the ROI can be used to compute the other succolarity functions S←,
S↑, S→ by the same procedure. From functions Sd, d ∈ {↓,←, ↑,→}, the succolarity indices
µ↓, µ←, µ↑, µ→ are computed as follows:

µd = max{Sd(b), b ∈ [bmin, bmax]}, d ∈ {↓,←, ↑,→}. (8)

3. Results
3.1. Mass Composition of Paraspinal Muscles

The results on paraspinal muscle composition confirm an age-related decreasing trend
for lean mass and an increasing trend for fatty mass. These results are consistent with
those reported in the literature for different muscles [19–24]. The Lean/Fat ratio results of
TotCSA show an age-related decreasing trend. In osteoporosis, the Lean/Fat ratio lower
than that of the age-matched control group reflects the higher fatty mass in disease than in
aging as both show similar amounts of lean mass. Table 2 summarizes classic measurement
results on paraspinal muscle composition (area in pixel, percentage, and ratio) expressed
as mean ± SD of the average of the right and left paraspinal muscle groups.

Table 2. Paraspinal muscle composition by classic estimates.

Subjects TotCSA LeanCSA * FatCSA † Lean/Fat Ratio

All 11,114 ± 1858 8507 ± 2608 (77%) * 1925 ± 1153 (23%) 4.40 ± 3.53
Young 11,222 ± 1939 9364 ± 1929 (84%) 1858 ± 1015 (16%) 7.17 ± 5.73

Pre-menopause 10,652 ± 1686 8481 ± 1105 (80%) 2171 ± 838 (20%) 4.34 ± 1.35
Menopause 11,062 ± 2043 8332 ± 1609 (75%) 2730 ± 1226 (25%) 3.50 ± 1.54

Age-matched 1 10,356 ± 1215 7714 ± 1364 (75%) 2642 ± 1018 (25%) 3.51 ± 1.87
Osteoporosis 2 11,517 ± 1865 7837 ± 1449 (68%) 3680 ± 1315 (32%) 2.52 ± 1.34

Values are mean ± standard deviation expressed in pixel; * percentage values within round brackets are % of
LeanCSA referred to TotCSA; † percentage values within round brackets are % of FatCSA referred to TotCSA;
CSA: cross-sectional area; 1 age-matched control group for comparison with Osteoporosis group; 2 osteoporosis:
bone mineral density T-score ≤ −2.5 as defined by the World Health Organization.

Figure 3 shows that osteoporotic subjects, when compared with age-matched controls,
have an opposite trend of Lean/Fat ratio that is in contradiction with muscle composition,
expressed as mean ± SD (Table 2). In fact, despite similar lean mass values, osteoporotic
subjects show a higher amount of fatty mass when compared with age-matched controls
(Figure 4). This would have to account for a more marked decreasing trend of Lean/Fat ratio.
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osteoporotic patients (black) and age-matched control group (gray) showing an increasing trend
(dashed line) for osteoporotic group vs. a decreasing trend (dotted line) for age-matched controls.
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Figure 4. Composition of paraspinal muscles in aging and osteoporosis. (a) Lean mass (black) and
fatty mass (gray) of paraspinal muscles, represented as mean values ± SEM (standard error of mean)
of right (R), left (L), and both (R + L) muscle groups, show comparable values between R and L
groups; (b) Lean/Fat ratio of paraspinal muscles represented as mean value of right (R), left (L), and
whole (R + L) muscle area.

3.2. Fractal Features of Paraspinal Muscle

To overcome this discrepancy, another index, lacunarity parameter β, was introduced
to analyze the fatty infiltration of lean mass. Lacunarity analysis, in fact, provides a holistic
estimate of muscle composition comprehensive of changes occurring at both lean and
fatty muscle mass. In addition, to better characterize the fatty infiltration of the muscle,
succolarity was also considered.

As comparable results of muscle composition were obtained for both right and left
paraspinal muscles (Figure 4), additional analyses were performed only on the right
paraspinal muscle group. In particular, parameter ρ (Lean/Fat ratio) and fractal features,
parameter β (Lacunarity) and parameters µ (Succolarity) were used to quantify the fatty
infiltration of lean muscle area, which are also potentially usable as indices of muscle
contractile function.

Table 3 summarizes the results related to the three new indices proposed to quan-
tify fatty infiltration. The results from the fractal analysis of right paraspinal muscles
show that lacunarity parameter β, related to fatty infiltration, increases with age and
physio-pathological status. In particular, osteoporosis and age-matched control groups
are statistically significantly different (p = 0.012), with β values higher in osteoporosis
than in ‘healthy’ aging. These results are consistent with fatty mass levels found higher in
osteoporosis than in age-matched controls in spite of comparable lean mass levels. Figure 5
shows the age-related distribution of fatty infiltration expressed as lacunarity (parameter β)
in the whole sample and in osteoporosis compared to the age-matched control group.

Lacunarity parameter α from our hyperbola model function-based lacunarity texture
analysis, by correlating with fractal dimension, provides an estimate of the complexity
of the lean muscle structure. Lacunarity parameter α values (Table 3) are higher in the
young group and statistically significantly differ from the others (p = 0.007, 0.017, 0.032
respectively vs. pre-menopause, menopause, and osteoporosis groups). Osteoporosis and
age-matched groups show similar values of parameter α (p = 0.420); nevertheless, they can
be separated by lacunarity parameter β (p = 0.012).
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Table 3. Fatty infiltration of paraspinal lean muscle mass.

Subjects Young Pre-Menopause Menopause Age-Matched Osteoporosis p Value 1

Lean mass 2 8586 ± 1778 7889 ± 1002 7277 ± 1638 6581 ± 1024 6890 ± 1402 0.286
Fatty mass 2 2234 ± 756 2444 ± 732 2894 ± 936 2813 ± 1041 3627 ± 1114 0.046

Lean/Fat ratio ρ 4.21 ± 1.33 3.57 ± 0.68 2.70 ± 0.76 2.61 ± 0.89 2.08 ± 0.67 0.057

Lacunarity α 0.900 ± 0.403 0.572 ± 0.350 0.639 ± 0.303 0.672 ± 0.316 0.639 ± 0.420 0.420
Lacunarity β 0.062 ± 0.039 0.113 ± 0.040 0.101 ± 0.044 0.092 ± 0.041 0.148 ± 0.062 0.012

Succolarity µ↑ 0.203 ± 0.075 0.243 ± 0.047 0.252 ± 0.070 0.253 ± 0.084 0.264 ± 0.077 0.371
Succolarity µ→ 0.240 ± 0.085 0.288 ± 0.050 0.308 ± 0.070 0.298 ± 0.077 0.298 ± 0.080 0.499
Succolarity µ↓ 0.243 ± 0.096 0.275 ± 0.042 0.276 ± 0.072 0.270 ± 0.086 0.283 ± 0.086 0.361
Succolarity µ← 0.218 ± 0.080 0.258 ± 0.042 0.267 ± 0.071 0.266 ± 0.084 0.263 ± 0.079 0.470

Results are mean ± standard deviation; 1 p values calculated by one-tail t-test for p ≤ 0.05 to compare differences
between osteoporosis and age-matched control groups; 2 lean and fatty mass related to lean muscle area (LeanCSA);
α and β: fractal parameters from our hyperbola model method where α correlates with fractal dimension and β
measures lacunarity, γ: the third coefficient from our hyperbola model method representing the translation term
on x axis assumed a mean value ± standard deviation in the whole sample equal to 0.9818 ± 0.0370; µ↓, µ←, µ↑,
µ→ are the succolarity indices for the directions considered.
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Figure 5. Lacunarity of lean muscle area to estimate muscle fatty infiltration. (a) Age-related increas-
ing trend of lacunarity parameter β in the whole sample; (b) age-related distribution of lacunarity
parameter β in osteoporotic patient (black circle) vs. age-matched controls (gray circle) shows similar
increasing trend but with values higher in osteoporotic patients than in age-matched controls.

Figure 6 compares the fractal features used to measure lean muscle fatty infiltration
(lacunarity parameter β and succolarity parameter µ for the four directions considered) in
the groups of different age and physio-pathological status. Lacunarity can discriminate
between osteoporosis and age-matched control groups (p = 0.012), while succolarity does
not statistically change between aging and disease. It is worth noting that the groups
showing similar lacunarity values (young, pre-menopause, and menopause) can be further
discriminated by succolarity that shows increasing values of parameters µ from young to
pre-menopause to menopause. In particular, the young group statistically significantly
differs from both pre-menopause and menopause groups when the succolarity µ↑, µ→, and
µ← values are considered (respectively, p values equal to 0.045, 0.035, and 0.049 in young vs.
pre-menopause; p values equal to 0.043, 0.014, and 0.049 in young vs. menopause groups).
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infiltration: lacunarity (black) discriminates between osteoporotic patients and age-matched controls
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light gray for the four directions, ↑,→, ↓,←, respectively) shows increasing values from young to
pre-menopause to menopause, the three age/physio-pathological groups showing similar lacunarity
values. Data are represented as mean ± SEM.

4. Discussion

In this study, we present a new method to quantify muscle fatty infiltration, an im-
portant index of muscle wasting usable in the diagnosis of sarcopenia. The method was
set up taking into consideration the complexity of human beings and the pseudo-fractality
of many biomedical structures and functions. It is worth noting that the mathematics of
fractals, introduced to describe fractals in nature, has been developed on ideal fractals,
characterized by self-similarity, and invariance of scale and fractal dimension was intro-
duced to characterize a fractal. When we deal with natural objects, we have to face the
problem of statistical similarity in a limited range of scale. Lacunarity and succolarity were
introduced to better characterize fractal objects with the same fractal dimension but with
a very different appearance. Lacunarity and succolarity analyses were then introduced
for a better featuring of fractals. These fractal analyses were later introduced with a more
general application as they represent texture analyses usable to describe complex patterns
with fractal, multifractal, or no fractal properties, thus overcoming the limits of the fractal
dimension applied to natural objects.

Given this premise and less strictly mathematically speaking, we show that fractal
analysis can characterize muscle wasting better than classic methods. In particular, we
found that lacunarity, as a tool to estimate the fatty infiltration of paraspinal muscles, is able
to distinguish between aging and age-dependent disease (osteoporosis). In fact, fatty infil-
tration, as estimated by lacunarity parameter β, from our hyperbola-based method [34,36],
increases with aging and it is statistically higher in osteoporotic patients than in heathy
individuals with similar age.

It is worth noting that, in spite of the age-related increasing trend of lacunarity parame-
ter β, lacunarity analysis fails to separate the other age/physio-pathological groups: young,
pre-menopause, and menopause. However, succolarity analysis is able to discriminate
among these three groups showing a similar lacunarity; parameter µ, used to quantify
succolarity of paraspinal muscle in the four directions, is statistically significantly different
among the three groups considered. These results are consistent with the use of succolarity
to better characterize fractals showing the same lacunarity [39].
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The need to consider new approaches to characterize muscle wasting with aging
and pathology also stems from the lack of consistency of results on muscle composition
based on classic measurements [44,45]. Our results on paraspinal muscle composition
by classic measurements confirm an age-related decreasing trend for lean mass and an
increasing trend for fatty mass. These results are consistent with those reported in the
literature for different muscles [19–23,46]. The high degree of inter-individual variability
observed, however, suggests introducing an alternative index able to correlate changes,
positive and/or negative, occurring at the levels of both lean and fatty muscle mass. In fact,
both inter- and intra-lean muscle infiltration of fatty tissue contribute to the reduction in
contractile muscle responsible for altered muscle strength. Mechanical consequences on
muscle function due to fat infiltration are not completely clear yet; however, it has been
hypothesized that fat physically limits the strength of the muscle by interfering with its
natural design [47]. It is known that mechanical stimulation induced by adequate training
can favor muscle function preservation by reducing the accumulation of fat and adipose
cells in the skeletal muscle [48].

In this study, we propose parameter ρ, an index representative of the ratio between
lean and fatty mass in the whole muscle area (TotCSA) and in the muscle contractile area
(LeanCSA), with the latter being used to obtain an index to provide an estimate of fatty
infiltration of contractile muscle from classic measurements and, therefore, being better
comparable with the new proposed fractal measurements. The Lean/Fat ratio results
from TotCSA show that parameter ρ is lower in the osteoporosis group than in the age-
matched control one. This is consistent with a higher fatty mass in osteoporotic patients
than in the heathy aging control group in spite of similar lean muscle mass in the two
groups. The results on parameter ρ from LeanCSA, as an estimate of fatty infiltration of
contractile muscle, confirm higher amounts of fatty tissue in LeanCSA of osteoporotic
patients than that of age-matched controls, showing similar amounts of lean tissue. This
aspect accounts for the lower Lean/Fat ratio of LeanCSA in the osteoporosis group than in
the age-matched control one. These results suggest that muscle contractile function could
be more compromised in osteoporosis than in ‘healthy’ aging. However, in spite of such
a difference between these two groups, parameter ρ is not able to separate osteoporotic
patients from age-matched controls in a statistically significant manner. These observations
need to be deepened in a larger sample where tests for muscle strength and function are
also considered. Once more, we confirm that classic methods for muscle composition
assessment lack a clear-cut conclusion by stressing the need for alternative and more
effective approaches to characterize skeletal muscle wasting in sarcopenia.

Several factors are already known to play a role in the physiopathology of sarcopenia;
nevertheless, its etiology has not been defined yet. From the literature, it emerges that
different mechanisms combine to affect skeletal muscle physiology and contribute to the
onset and progression of sarcopenia. Loss of regenerative capacity, denervation of muscle
fibers, and increased inter- and intra-muscular infiltration of fat together with endocrine
changes, mitochondrial dysfunction, oxidative stress, and inflammation are among the
mechanisms that participate in the etiopathogenesis of sarcopenia [49,50]. Interestingly,
as per other tissues or organs, most mechanisms involved in muscle wasting are strictly
related to the aging processes.

Aging is characterized by functional and structural impairments at different levels
and represents a critical risk factor for several chronic diseases. Different rates of aging
processes that drive the biological aging of individuals are responsible for the high variabil-
ity within and among individuals of a population even in the presence of homogeneous
endogen and hexogen environments. Good biomarkers of aging [51,52] are, therefore,
necessary to recognize physiological aging and separate normal from pathological aging,
two main targets of aging studies dealing with aging in good health. It is worth nothing
that gold-standard tools are not available yet to monitor physiological aging, nor have
single measurements been qualified yet as good biomarkers of aging, sensitive and specific
enough to distinguish normal aging from pathological aging [53].
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To enlighten the search of good biomarkers of aging, contradictions and/or phenom-
ena that appear incomprehensible can be clarified by paradigms such as complexity, chaos,
and fractality. As a matter of fact, the marked inter- and intra-individual heterogeneity
that characterizes the senescent phenotype can be justified by assuming the concept that
longevity is a ‘secondary product of evolution’ of a nonlinear dynamic system [54,55].

Considering that complex systems are strictly dependent on their initial state, living
beings in a cohort can be associated with complex systems [56] and any small perturbation
occurring at certain times can be responsible for larger differences in most individual
characteristics of the senescent phenotype later in the life. Therefore, from a practical
point of view, the life trajectories of individuals in a population, although they may be
close at birth, will progress with time following fluctuations that progressively increase
the variance in their phenotype characteristics, such as aging (for more details, see [55,57]).
The interindividual variability always present in an aging population is independent of
environmental changes and can be observed even in the case of genetically homogeneous
backgrounds. Genetic–environmental interactions induce unforeseeable behavior at critical
points where life trajectories can change. Bifurcations, therefore, can be considered the origin
of variability responsible for the heterogeneity that characterizes the senescent phenotype.

According to this setting, aging is the result of the time evolution of a complex system
whose behavior is governed by the laws of chaos. Aging systems evolve with time by
losing complexity [58]; this evolution is influenced by both endogenous and exogenous
environmental factors. Humans, as complex systems governed by the laws of chaos, can
generate so-called ‘strange attractors’ [59]. They are observable at bifurcations and can
be described by fractals. Indeed, fractal analysis can represent a usable tool to describe
biocomplexity and measure changes related to aging and pathology [60,61]. The senescent
phenotype, influenced by specific individual genetic–environmental interactions, follows
different trajectories with different kinetics rates, thus evolving as pathological aging (fast
rate), physiological aging (intermediate rate), or successful aging (low rate) [36,57,62].

In this study, we demonstrate once more that fractal-derived methods represent
powerful tools in the search of good biomarkers of aging since they can differentiate
between physiological and pathological aging. They could also have potential to distin-
guish age-dependent from age-associated diseases, another major task to address aging in
good health.

To the best of our knowledge, this is one among the rare studies aiming to quantify
muscle fatty infiltration [63], and the first study approaching fractal featuring of muscle
tissue. In fact, only muscle contractile function was previously described by fractal analysis
of myographic waveforms [64]. Our results are from the middle axial section of the fourth
lumbar vertebra based on our previous studies on vertebral trabecular bone performed in
this section [34,36,65,66]. The goodness of our choice is also supported by the literature
in the field, from which it emerges that, generally, fatty infiltration of paraspinal muscle
increases from cranial to caudal, and the highest values have been detected at L4 and
L5 [63,67,68]. Therefore, in the case of small variations in fatty infiltration, they could be
detected in this site better than in other spine sites where fatty tissue is less represented.

Further studies are in progress on muscle fractal features in osteosarcopenia and bone
fragility fracture risk. In this context, we have available data on muscle function and,
therefore, by comparing fatty infiltration with muscle contractile function, we could be able
to introduce our indices of lacunarity β and succolarity µ as usable in clinical settings to
monitor both muscle composition and function. Improvements in the succolarity analysis
method are also under consideration.

5. Conclusions

In this study, we demonstrate that fractal-derived methods can provide effective
approaches to characterize muscle better than classic methods. In fact, lacunarity, by
quantifying muscle fatty infiltration, is able to characterize age-related muscle wasting
(sarcopenia) and to discriminate between normal aging and pathological aging (osteoporo-
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sis). Succolarity, the other measure introduced to characterize fractal objects with the same
lacunarity, is able to discriminate among the three groups of age and physiological status
(young, pre-menopause, and menopause), showing similar lacunarity values.

The original and innovative method proposed to quantify muscle fatty infiltration in
MR images by fractal-derived indices such as lacunarity and succolarity can find applica-
tions in clinical settings as a sensitive tool to diagnose sarcopenia and monitor changes in
muscle fatty infiltration as an index of muscle contractile function.

Finally, with this study, we further stress the relevance of introducing paradigms such
as complexity, chaos, and fractality in the field of gerontology as they represent sources to
obtain effective tools in the search of good biomarkers of aging and diseases.
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