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Abstract: Based on an adaptive neural control scheme, this paper investigates the consensus problem
of random Markov jump multi-agent systems with full state constraints. Each agent is described by
the fractional-order random nonlinear uncertain system driven by random differential equations,
where the random noise is the second-order stationary stochastic process. First, in order to deal
with the unknown functions with Markov jump parameters, a radial basis function neural network
(RBFNN) structure is introduced to achieve approximation. Second, for the purpose of keeping
the agents’ states from violating the constraint boundary, the tan-type barrier Lyapunov function is
employed. By using the stochastic stability theory and adopting the backstepping technique, a novel
adaptive neural control design method is presented. Furthermore, to cope with the differential
explosion problem in the design course, the extended state observer (ESO) is developed instead of
neural network (NN) approximation or command filtering techniques. Finally, the exponentially
noise-to-state stability in the mean square is analyzed rigorously by the Lyapunov method, which
guarantees the consensus of the considered multi-agent systems and all the agents’ outputs are
bounded in probability. Two simulation examples are provided to verify the effectiveness of the
suggested control strategy.

Keywords: fractional-order multi-agent systems; adaptive control; consensus tracking; Markov jump;
state constraints

1. Introduction

Over the past two decades, collaborative control of multi-agent systems (MASs)
has received increasing attention due to its wide range of applications in the fields of
unmanned aerial vehicle formation, intelligent robotics, and sensor networks [1–3]. MASs
are collections of multiple agents, the essence of which is to transform large and complex
systems into easily manageable systems that communicate and coordinate with each
other [4]. Particularly, as a fundamental research area in collaborative control, the consensus
problem focuses on investigating whether agents with different initial states can achieve
an agreement under the designed control protocols [5,6]. Existing research on the multi-
agent consensus problem is distributed across various system models, where each agent
system can be described by first- [7,8], second- [9,10], high-order dynamics [11,12] or a
fractional-order dynamics model [13]. It is worth noting that the study of fractional-order
multi-agent systems (FOMASs) have recently received increasing attention due to their
ability to accurately describe the dynamical properties of physical systems.

For the actual applications, it is worth considering that practical engineering systems
are subject to sudden environmental changes and random changes in structure or param-
eters during operation. Due to the ability to effectively model these complex situations,
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Markov jump systems [14] have stimulated research interest among scholars and yielded
many useful results. Ref. [15] discussed the stochastic stability of linear Markov jump sys-
tems with time delay. Ref. [16] studied feedback control of continuous-time linear Markov
jump systems with singular regimes. Up to now, it is clear that most existing studies
of Markov jump systems tend to use stochastic differential equations (SDEs) with white
noise [17,18]. However, dynamical models based on SDEs driven by Wiener processes
are not applicable to many practical situations. It is pointed out in [19,20] that Wiener
processes are non-differential almost everywhere, and ideal white noise with infinite band-
width cannot occur in the real world. Therefore, it is reasonable to describe Markov jump
systems by random differential equations (RDEs), which contain second-order moment
random noises [21,22]. Utilizing the improved backstepping method, an adaptive tracking
controller is proposed for the random pure-feedback nonlinear Markov switching systems
in [21]. A backstepping controller is developed to deal with the tracking control problem
for the random nonlinear Markov switching systems in [22].

Furthermore, due to the good nonlinear approximation ability, the NN technique and
fuzzy logic systems (FLSs) are becoming more widely used, respectively [23–25]. Combined
with the backstepping approach, many adaptive control strategies have been applied to
Markov jump nonlinear systems. For example, in [26], an adaptive fuzzy tracking controller
is designed for a class of strict feedback Markov jump systems with multi-source uncertainty.
In [27], a neural network-based adaptive controller is designed for high-order nonlinear
stochastic switching systems containing Markov jump parameters. In [28], a fractional
power-based adaptive command filtering backstepping algorithm is designed, taking into
account the Markov jump structure. Note that the relevant results obtained apply only to
the single systems with Markov jump parameters. Particularly, with regard to Markov jump
MASs, various control strategies have been proposed to deal with the consensus problem of
Markov jump MASs, such as event-triggered control [29,30], output feedback control [31],
and robust control [32]. For high-order nonlinear Markov jump MASs, how to achieve
target control through the adaptive neural control method needs to be further explored.
In addition, how to address the differential explosion problem that obtains during the
backstepping design of high-order systems while ensuring the stability of the system is
also a challenge research area. In [33], NNs are used to globally approximate the nonlinear
functions and the derivatives of the virtual control laws. In [34], the command filter is
introduced into the control system to obtain the derivatives of the virtual control function.
However, as an easier computational and parametric estimation method, devising the ESO
to deal with the differential explosion problem is potentially promising.

All of the above studies are based on integer-order Markov jump MASs; actually,
the adaptive control methods are also often applied to fractional-order systems to achieve a
wide range of control objectives [34–36]. Introducing fractional-order Markov jump MASs
and then developing an adaptive strategy for such systems has remained unaddressed so
far. Moreover, in engineering practice, constraints on the system state are necessary to avoid
a wide range of vibrations and to obtain smooth control performance. The barrier Lyapunov
function (BLF) [37] is usually constructed and widely used to keep the state variables within
constraints. The common BLFs, such as log-type BLF [38] and integral-type BLF [39], always
fail in the case of infinite constraint requirements. To solve this problem, tan-type BLF
(TBLF) is proposed [40]. Regardless of whether the state has constraint requirements or not,
the system still works properly. So how to design the tracking controller for fractional-order
Markov jump MASs with state constraints is meaningful.

Based on previous analysis, this paper aims to investigating the consensus tracking
problem of FOMASs with Markov jump parameters. Considering the disturbances of
Markov jump factors, the adaptive RBFNN and ESO estimation methods are finally inte-
grated in the context of the backstepping technique. An adaptive neural controller based
on TBLF is designed to ensure that all signals in the closed-loop system are bounded under
Markov jump signals and that state constraints are not violated. Compared with previous
research, the main contributions of this paper are as follows.
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(1) In contrast to the consensus studies for MASs [41,42], to enhance the system per-
formance, we take a novel fractional-order state-constrained multi-agent system
with Markov jump parameters driven by random differential equations into account,
in which the random noise is the second-order stationary stochastic process.

(2) Unlike [27], for a class of state-constrained FOMASs with Markov jump structures,
this paper proposes the approximation tracking method of adaptive neural control,
combining NNs and the backstepping technique together to achieve the consensus
control target and ensure the system’s noise-to-state stability.

(3) Different from [33,34], in which the NN technique and the command filtering method
are adopted to handle the derivatives of the virtual control laws, respectively, in this
paper, to cope with the differential explosion problem in the design course, the ESO
estimation method is developed.

The remainder of this study is constructed as follows. Section 2 gives the preliminaries
and formulation of this paper, such as the basic theory of fractional multi-agent and Markov
jump systems. In Section 3, an adaptive backstepping control scheme and the stability
analysis are presented. In Section 4, the obtained theoretical results are verified by two
examples. Section 5 gives the conclusions. The abbreviations used in this article are
summarized in the Abbreviations.

2. Problem Formulation and Preliminaries
2.1. Fractional Calculus

The Caputo fractional derivative [43] is defined as

C
0 Dα

t f (t) =
1

Γ(ν − α)

∫ t

0

f (ν)(τ)

(t − τ)1+α−ν
dτ (1)

where ν ∈ N and ν − 1 < α ≤ ν, Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function. In this paper,
we examine the fractional order within the range of [0, 1].

Lemma 1 ([44]). For real numbers α, v and κ satisfying α ∈ (0, 1)

πα

2
< v < min{π, πα} (2)

and for all integers ν ≥ 1, we obtain

Eα,κ(ς) = −
∞

∑
j=1

1
Γ(κ − αj)

+ o

(
1

|ς|ν+1

)
(3)

when |ς| → ∞, v ≤ |arg(ς)| ≤ π.

Lemma 2 ([44]). If v satisfies the condition of Lemma 1, the inequality relation holds:

|Eα,κ(ς)| ≤
µ

1 + |ς| (4)

where α ∈ (0, 2) and κ is an arbitrary real number, µ > 0, υ ≤ |arg(ς)| ≤ π, and |ς| ≥ 0.

2.2. Graph Theory

This paper employes a connected undirected W = (v, δ, Ā) where v = {n1, . . . , nN}
and Ā =

{
aij
}

∈ RN×N is the adjacency matrix. For agent i, define the edge set as

δ =
{(

ni, nj
)}

∈ v × v and the neighbor set as Ni =
{

j
∣∣(ni, nj

)
∈ δ

}
.

For matrix Ā =
{

aij
}

, aij is represented as if
(
ni, nj

)
/∈ δ, aij = 0; otherwise, aij ̸= 0,

and it is supposed that aii = 0. We utilize Q = diag(q1, . . . , qN) as the diagonal matrix
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where qi = ∑j∈n=Ni
aij and define the Laplacian matrix as L = [lij] = Q − Ā ∈ RN×N ,

in which lii = ∑N
j=1 aij and lij = −aij for i ̸= j.

2.3. Random Nonlinear Markov Jump Multi-Agent System

The random nonlinear FOMASs with Markov jump parameters is considered as follows:
Dαxi,1 = xi,2 + hi,1(x̄i,1, t, r(t)) + gi,1(x̄i,1, t, r(t))ξi,1(t)
Dαxi,p = xi,p+1 + hi,p(x̄i,p, t, r(t)) + gi,p(x̄i,p, t, r(t))ξi,p(t), p = 2, · · · , n − 1
Dαxi,n = ui + hi,n(x̄i,n, t, r(t)) + gi,n(x̄i,n, t, r(t))ξi,n(t)
yi = xi,1

(5)

in which yi is the system output and hi,p(·) are unknown nonlinear functions. ui represents
the control input. Design the system state vectors x̄i,p = (xi,1, · · · , xi,p)

T ∈ Rp. The stochas-
tic process ξ(t) is defined on the complete probability space (Ω,Ft, P), where Ft(t ≥ t0)
satisfies the usual conditions. r(t) is a right continuous homogeneous irreducible Markov
process with values in a finite mode space S = {1, 2, . . . , M} and the matrix P = (pkm)M×M.

Pkm(∆) = Pkm{r(t + ∆) = m|r(t) = k} =

{
pkm∆ + o(∆), k ̸= m
1 + pkk∆ + o(∆), k = m

(6)

where pkk = −∑M
m=1,m ̸=k pkm, pkm ≥ 0 denotes the transition rate from k to m.

Definition 1. For V(x(t), r(t)) ∈ C(R+ ×R× S;R+), similar to [45], we introduce the in-
finitesimal generator by

LV(x, t, k) = Vt(x, t, k) + Vx(x, t, k)ẋ(t) + ΠV (7)

where Vt(x, t, k) = ∂V
∂t , Vx(x, t, k) = ∂V

∂x , ΠV =
M
∑

m=1
qkmV(x, t, m), k ∈ S.

According to Definition 1, considering that the FOMAS is designed in this paper,
we present

LV(x, t, k) = Dα
t V(x, t, k) + Vx(x, t, k)Dαx(t) + ΠV. (8)

Assumption 1. Due to continuous and Ft− adapted characteristics of the random process ξt

composed of the second-order moment, a positive constant K satisfies supt≥t0
E|ξ(t)|2 ≤ K.

Assumption 2 ([36]). In control engineering, the RBFNN technique is utilized to compensate for
the unknown nonlinearities in MASs. Specifically, the unknown nonlinear functions hi,p

(
x̄i,p
)

can
be expressed as

hi,p
(
x̄i,p|θi,p

)
= θT

i,p φi,p
(

x̄i,p
)
, 1 ≤ p ≤ n (9)

in which φi,p
(
x̄i,p
)

delegates Gaussian basis function vector, and θi,p represent the vectors of
the unknown ideal constant. Given a continuous unknown function h(x) defined on the com-
pact set Ωx, there exist the neural networks θ∗T φ(x) and the arbitrary accuracy ε(x) satisfy-
ing h(x) = θ∗T φ(x) + ε(x), where θ∗is the ideal weight vector defined by θ∗ = arg minθ∈Ωθ[
supx∈Ωx

∣∣h(x)− θT φ(x)
∣∣], and the parameter estimation error is θ̃i,p = θ∗i,p − θi,p. ε(x) denotes

the minimum approximation error. There exists a positive constant ε0, such that ε(x) ≤ ε0, ε0 > 0.

Lemma 3 ([22]). For any mode k, there exists a positive continuously differentiable function
V(x, t, k) satisfying

LV(x, t, k) ≤ −γ(|x(t)|) + c|ξ(t)|2 (10)

γ1(|x(t)|) ≤ V(x(t), k) ≤ γ2(|x(t)|) (11)
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∂V(x(t))
∂x

hp(x(t), t) + d
∣∣∣∣∂V(x(t))

∂x
gp(x(t), t)

∣∣∣∣2 ≤ −γ(|x(t)|) (12)

where γ1 and γ2 are functions of class κ∞, and c is a positive constant. A unique global solution
exists in system (5). If γ(γ−1

2 (·)) is convex, then system (5) demonstrates noise-to-state stability in
probability. Additionally, the state of system (5) exhibits an asymptotic gain in probability, implying
an ultimate bound for the state in probability.

Lemma 4 ([22]). Under Assumption 1, if there exists a positive function V(t, x, r), constants D
and c0 > 0, such that for ∀t ≥ t0,

lim
n→∞

inf V(t, x, r) = ∞

EV(t ∧ λn, x(t ∧ λn), r(t ∧ λn)) ≤ Dec0t
(13)

Thus, system (5) possesses a unique solution x(t) when t ≥ t0.

Lemma 5 ([46]). For any θ, ϑ ∈ Rn, one obtains

θTϑ ≤ ωr

r
|θ|r + 1

υωυ
|ϑ|υ (14)

where r > 1, υ > 1, ω > 0, and (υ − 1)(r − 1) = 1.

2.4. Tan-Type BLFs

Lemma 6 ([47]). To deal with performance constraints, the TBLF of the ith agent is considered
as follows:

Vi,m =
k2

i,bm

π
tan

(
πz2

i,m

2k2
i,bm

)
(15)

where i = 1, . . . , N, m = 1, . . . , n. By using L’Hospital rule, we have

lim
ki,bm→∞

k2
i,bm

π
tan

(
πz2

i,m

2k2
i,bm

)
=

z2
i,m

2
. (16)

Therefore, the proposed TBLF will be turned into the conventional Lyapunov function
and the design method is also effective for systems without constraints.

3. Main Results

Theorem 1. For the Markov jump FOMASs (5) where Assumptions 1–2 hold, designing the
virtual control laws (29), (42), (53), and combining the adaptive laws (30), (31), (43), (54), (63)
and control input (62) together, signals xi,1 converge to the consensus of considered nonlinear
FOMASs asymptotically. It can be verified that the tracking error of the closed-loop system in
the mean-square sense can be converged to a zero neighborhood that is arbitrarily small without
violating the constraints we set.

Proof. Specify the error variables in the following manner:

zi,1 = ∑
j∈Ni

aij
(
yi − yj

)
+ bi(yi − yd)

zi,p = xi,p − αi,p−1, p = 2, · · · , n
(17)

where si,p represents the tracking error, and αi,p−1 is the virtual controller.
Step 1. First, let z1 = [z1,1 · · · zN,1]

T , ȳ = [y1 · · · yN ]
T , A = diag{bi}, H = A+ L,

s1 = ȳ − yd (18)
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z1 = Hs1 (19)

where s1 = [s1,1 · · · sN,1]
T . Referring to Lemma 6, construct the first Lyapunov function:

V1 =
N

∑
i=1

(
k2

i,b1

π
tan

(
πz2

i,1

2k2
i,b1

)
+

1
2σi,1

θ̃T
i,1θ̃i,1 + ∑

j∈Ni

aij

2σj,1
θ̃T

j,1θ̃j,1

)
(20)

where ki,b1, σi,1 and σj,1 are the parameters we set. Define ∑
j∈Ni

aij = di, according to the

system (5), and we have

Dαzi,1 =

(
bi + ∑

j∈Ni

aij

)
Dαyi − ∑

j∈Ni

aijDαyj − biDαyr

=(bi + di)(αi,1 + zi,2 + hi,1 + gi,1ξi,1)− ∑
j∈Ni

aij
(
xj,2 + hj,1 + gj,1ξ j,1

)
− biDαyr.

(21)

To simplify the equation, we set ϖi,1 =
zi,1

cos2

(
πz2

i,1
2k2

i,b1

) , and then we can obtain

LV1 =
N

∑
i=1

(
ϖi,1Dαzi,1 −

1
σi,1

θ̃T
i,1Dαθi,1 − ∑

j∈Ni

aij

σj,1
θ̃T

j,1Dαθ j,1

)
+ ΠV1

=
N

∑
i=1

(
ϖi,1

[
(bi + di)(αi,1 + zi,2 + hi,1 + gi,1ξi,1)− ∑

j∈Ni

aij
(

xj,2 + hj,1 + gj,1ξ j,1
)
− biDαyr

])

−
N

∑
i=1

(
1

σi,1
θ̃T

i,1Dαθi,1 + ∑
j∈Ni

aij

σj,1
θ̃T

j,1Dαθ j,1

)
+ ΠV1

=
N

∑
i=1

[
ϖi,1

(
(bi + di)(αi,1 + zi,2 + hi,1 + gi,1ξi,1 −

1
di + bi

∑
j∈Ni

aij
(
xj,2 + hj,1 + gj,1ξ j,1

)
)

− biDαyr

)]
−

N

∑
i=1

(
1

σi,1
θ̃T

i,1Dαθi,1 + ∑
j∈Ni

aij

σj,1
θ̃T

j,1Dαθ j,1

)
+ ΠV1.

(22)

Adopting the RBFNNs to approximate the unknown nonlinear function hi,1, hj,1 and
referring to Assumption 2, we thus have

hi,1 −
1

di + bi
biDαyr = θT

i,1 φi,1 + θ̃T
i,1 φi,1 + εi,1

hj,1 = θT
j,1 φj,1 + θ̃T

j,1 φj,1 + ε j,1.
(23)

According to Lemma 5, we have

ϖi,1(bi + di)zi,2 ≤ 1
2

ϖ2
i,1 +

(bi + di)
2

2
z2

i,2 (24)

ϖi,1(bi + di)εi,1 + ϖi,1(−di)ε j,1 ≤ ϖ2
i,1 +

(bi + di)
2

2

(
∥εi,1∥2 +

∥∥ε j,1
∥∥2
)

(25)

ϖi,1(bi + di)gi,1ξi,1 ≤ (bi + di)
2

4di,11
ϖ2

i,1g2
i,1 + di,11|ξi,1|2 (26)

ϖi,1(−di)gj,1ξ j,1 ≤ di
4dj,11

ϖ2
i,1g2

j,1 + didj,11
∣∣ξ j,11

∣∣2. (27)
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Substituting (24)–(27) into (22), (22) can be rewritten as

LV1 ≤
N

∑
i=1

[
ϖi,1

(
αi,1 + θT

i,1 φi,1 + θ̃T
i,1 φi,1

)]
+

N

∑
i=1

(
3
2
+

(bi + di)
2

4di,11
g2

i,1

)
ϖ2

i,1

+ di

(
4dj,11ϖ2

i,1g2
j,1 + dj,11

∣∣ξ j,11
∣∣2)+ N

∑
i=1

(bi + di)
2

2

(
z2

i,2 + ∥εi,1∥2 +
∥∥ε j,1

∥∥2
)

+
N

∑
i=1

di,11|ξi,1|2 −
N

∑
i=1

(
1

σi,1
θ̃T

i,1Dαθi,1 + ∑
j∈Ni

aij

σj,1
θ̃T

j,1Dαθ j,1

)
+ ΠV1.

(28)

Design the virtual controller αi,1 and the adaptive law θi,1, θj,1 as

αi,1 =
1

di + bi

−ci,1

sin
(

πz2
i,1

2k2
i,b1

)
cos
(

πz2
i,1

2k2
i,b1

)
zi,1

− 3
2

ϖi,1 + ∑
j∈Ni

aij

(
xj,2 + θT

j,1 φj,1

)
− di

4dj,11
ϖi,1gj,1

2


− θT

i,1 φi,1 −
(bi + di)

4di,11
ϖi,1gi,1

2

(29)

Dαθi,1 = (di + bi)ϖi,1σi,1 φi,1(x̄i,1)− ρi,1θi,1 (30)

Dαθ j,1 = −σj,1 φj,1(x̄j,1)ϖi,1 − ρj,1θj,1. (31)

Substituting (29)–(31) into (28), we have

LV1 ≤
N

∑
i=1

{
−ci,1 tan

(
πz2

i,1

2k2
i,b1

)
+

(bi + di)
2

2
z2

i,2 +
1
2

ε2
i,1 + di,11|ξi,1|2 + dj,11

∣∣ξ j,1
∣∣2}

+
N

∑
i=1

(
ρi,1

σi,1
θ̃T

i,1θi,1 + ∑
j∈Ni

aijρj,1

σj,1
θ̃T

j,1θj,1

)
+ ΠV1

(32)

where ci,1, ρi,1, di,11 and dj,11 are the parameters we set.

Remark 1. Since the formula

sin
(

πz2
i,1

2k2
i,b1

)
cos
(

πz2
i,1

2k2
i,b1

)
zi,1

in virtual controller αi,1 can be regarded as 0/0, according to L’Hospital rule, we can obtain

lim
zi,1→0

sin
(

πz2
i,1

2k2
i,b1

)
cos
(

πz2
i,1

2k2
i,b1

)
zi,1

= 1

So the singular phenomenon in this paper can be avoided.

Remark 2. Different from the switching stochastic nonlinear system described by Itô stochastic
differential equations, because there is no Itô diffusion term, there is no need for the second derivative
term of the Lyapunov function, that is, the Hessian term
Tr
{

gT(x, t) ∂2V
∂x2 g(x, t)

}
.
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Step 2. In accordance with (17), design zi,2 = xi,2 − αi,1, ϖi,2 =
zi,2

cos2

(
πz2

i,2
2k2

i,b2

) . The second

candidate Lyapunov function is constructed as

V2 = V1 +
N

∑
i=1

Vi,2

= V1 +
N

∑
i=1

(
k2

i,b2

π
tan

(
πz2

i,2

2k2
i,b2

)
+

1
2σi,2

θ̃T
i,2θ̃i,2

) (33)

where ki,b2 and σi,2 are parameters we set.
By a simple computation, the infinitesimal generator of V2 satisfies

LV2 =LV1 +
N

∑
i=1

[
ϖi,2

(
zi,3 + αi,2 + θT

i,2 φi,2 + θ̃T
i,2 φi,2 + εi,2 + gi,2ξi,2 −

∂αi,1

∂θi,1
Dαθi,1

− ∂αi,1

∂xi,1
(xi,2 + hi,1 + gi,1ξi,1)− ∑

j∈Ni

aij
∂αj,1

∂xj,1
(xj,2 + hj,1 + gj,1ξ j,1)

)
+

1
σi,2

θ̃T
i,2Dα θ̃i,2

]
+ ΠV2.

(34)

According to Lemma 5, we obtain

ϖi,2εi,2 ≤ 1
2

ϖ2
i,2 +

1
2

ε2
i,2 (35)

ϖi,2zi,3 ≤ 1
2

ϖ2
i,2 +

1
2

z2
i,3 (36)

ϖi,2gi,2ξi,2 ≤ 1
4di,22

ϖ2
i,2g2

i,2 + di,22|ξi,2|2 (37)

−ϖi,2
∂αi,1

∂xi,1
gi,1ξi,1 ≤ 1

4di,21

(
∂αi,1

∂xi,1

)2
ϖ2

i,2g2
i,1 + di,21|ξi,1|2 (38)

−ϖi,2
∂αi,1

∂xj,1
gj,1ξ j,1 ≤ 1

4dj,21

(
∂αi,1

∂xj,1

)2

ϖ2
i,2g2

j,1 + dj,21
∣∣ξ j,1

∣∣2. (39)

Substituting (35)–(39) into (34), we have

LV2 ≤LV1 +
N

∑
i=1

[
ϖi,2

(
αi,2 + θT

i,2 φi,2 + θ̃T
i,2 φi,2 + gi,2ξi,2 −

∂αi,1

∂θi,1
Dαθi,1

)
+ ϖ2

i,2 +
1
2

(
z2

i,3 + ε2
i,2

)
− ϖi,2

∂αi,1

∂xi,1
(xi,2 + hi,1 + gi,1ξi,1)−

1
σi,2

θ̃T
i,2Dαθi,2 − ϖi,2 ∑

j∈Ni

aij
∂αj,1

∂xj,1
(xj,2 + hj,1 + gj,1ξ j,1)

]
+ ΠV2.

(40)

Then, we use ri to represent the unknown nonlinear term, ri,1 = − ∂αi,1
∂xi,1

hi,1 − di
∂αi,1
∂xj,1

hj,1.
Due to ri being unknown, an ESO is constructed for estimating this unknown term:

z̃i,2 = ẑi,2 − zi,2

Dα ẑi,2 = r̂i,1 − vi,1z̃i,2 + xi,3 + θT
i,2 φi,2 + θ̃T

i,2 φi,2 + εi,2 + gi,2ξi,2 −
∂αi,1
∂θi,1

Dαθi,1

− ∂αi,1
∂xi,1

(xi,2 + gi,1ξi,1)− di
∂αi,1
∂xj,1

(
xj,2 + gj,1ξ j,1

)
Dα r̂i,1 = −vi,2sigωi (z̃i,2)

(41)

with ωi ∈ (0, 1), the ESO’s gains vi,1 > 0 and vi,2 > 0, z̃i,2 is the estimation error, and r̂i,1 is
the estimation value of ri,1. And then, we establish the following virtual control law:
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αi,2 =− ci,2

sin
(

πz2
i,2

2k2
i,b2

)
cos
(

πz2
i,2

2k2
i,b2

)
zi,2

− ϖi,2 − θT
i,2 φi,2 +

∂αi,1

∂xi,1
xi,2 + ∑

j∈Ni

aij
∂αi,1

∂xj,1
xj,2 − r̂i,1

− 1
4di,22

ϖi,2gi,2
2 − 1

4di,21

(
∂αi,1

∂xi,1

)2
ϖi,2gi,1

2 − ∑
j∈Ni

aij
1

4dj,21

(
∂αi,1

∂xj,1

)2

ϖi,2gj,1
2 +

∂αi,1

∂θi,1
Dαθi,1

(42)

Dαθi,2 = σi,2 φi,2(x̄i,2)ϖi,2 − ρi,2θi,2. (43)

where di,21, di,22, dj,21, ci,2, ρi,2 are the positive parameters we designed. Accordingly,
(40) can be rewritten as

LV2 ≤

−
N

∑
i=1

ci,1 tan

(
πz2

i,1

2k2
i,b1

)
− c2

N

∑
i=1

tan

(
πz2

i,2

2k2
i,b2

)
+

N

∑
i=1

(
ρi,1

σi,1
θ̃T

i,1θi,1 + ∑
j∈Ni

aijρj,1

σj,1
θ̃T

j,1θj,1

)
+

N

∑
i=1

ρi,2

σi,2
θ̃T

i,2θi,2

+
N

∑
i=1

(
1
2

z2
i,3 +

1
2

ε2
i,1 +

1
2

ε2
i,2

)
+

N

∑
i=1

(
di,22|ξi,2|2 + di,11|ξi,1|2 + di,21|ξi,1|2 + ∑

j∈Ni

aijdj,21
∣∣ξ j,1

∣∣2)
+ ΠV2.

(44)

Remark 3. Neural networks or fuzzy neural networks, as a commonly used approximation method,
are widely used in the design of controllers for some nonlinear systems with unknown uncertain
functions. However, this method increases the complexity of the controller design, and the derivatives
of the virtual control law are difficult to derive due to the iterative differentiation of the neural or
fuzzy basis functions. Therefore, according to the construction principle of the ESO [48], an ESO is
proposed to address the problem of the derivative of the virtual control law, which is regarded as the
estimated nonlinear term.

Step m. The mth Lyapunov function is constructed as

Vm = Vm−1 +
N

∑
i=1

Vi,m

= Vm−1 +
N

∑
i=1

(
k2

i,bm

π
tan

(
πz2

i,m

2k2
i,bm

)
+

1
2σi,m

θ̃T
i,m θ̃i,m

) (45)

where ki,bm and σi,m are parameters we set.
Design zi,m = xi,m − αi,m−1, ϖi,m =

zi,m

cos2

(
πz2

i,m
2k2

i,bm

) . The infinitesimal generator of Vm

satisfies

LVm =LVm−1 +
N

∑
i=1

[
ϖi,m

(
zi,m+1 + αi,m + θT

i,m φi,m + θ̃T
i,m φi,m + εi,m + gi,mξi,m −

m−1

∑
l=1

∂αi,m−1

∂θi,l
Dαθi,l

−
m−1

∑
l=1

∂αi,m−1

∂xi,l
(xi,l+1 + hi,l + gi,lξi,l)−

m−1

∑
l=1

di
∂αi,m−1

∂xj,l
(xj,l+1 + hj,l + gj,lξ j,l)

)
+

1
σi,m

θ̃T
i,mDα θ̃i,m

]
+ ΠVm.

(46)

Then, we use ri,m−1 to represent the unknown nonlinear term, ri,m−1 = −
m−1
∑

l=1

∂αi,m−1
∂xi,l

hi,l −
m−1
∑

l=1
di

∂αi,m−1
∂xj,l

hj,l. Then, an ESO is constructed as follows:
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z̃i,m = ẑi,m − zi,m

Dα ẑi,m = r̂i,m−1 − vi,1z̃i,m + xi,m+1 + θT
i,m φi,m + θ̃T

i,m φi,m + εi,m + gi,mξi,m −
m−1
∑

l=1

∂αi,m−1
∂θi,l

Dαθi,l

−
m−1
∑

l=1

∂αi,m−1
∂xi,l

(xi,l+1 + gi,lξi,l)−
m−1
∑

l=1
di

∂αi,m−1
∂xj,l

(
xj,l+1 + gj,lξ j,l

)
Dα r̂i,m−1 = −vi,2sigωi (z̃i,m)

(47)

with ωi ∈ (0, 1), vi,1 > 0, vi,2 > 0, and r̂i,m−1 being the estimation value of ri,m−1. According
to Lemma 5, we obtain

ϖi,mεi,m ≤ 1
2

ϖ2
i,m +

1
2

ε2
i,m (48)

ϖi,mzi,m+1 ≤ 1
2

ϖ2
i,m +

1
2

z2
i,m+1 (49)

ϖi,mgi,mξi,m ≤ 1
4di,mm

ϖ2
i,mg2

i,m + di,mm|ξi,m|2 (50)

−
m−1

∑
l=1

ϖi,m
∂αi,m−1

∂xi,l
gi,lξi,l ≤

m−1

∑
l=1

1
4di,ml

(
∂αi,m−1

∂xi,l

)2
ϖ2

i,mg2
i,l +

m−1

∑
l=1

di,ml
∣∣ξi,l

∣∣2 (51)

−
m−1

∑
l=1

ϖi,mdi
∂αi,m−1

∂xj,l
gj,lξ j,l ≤

m−1

∑
l=1

di
4dj,ml

(
∂αi,m−1

∂xj,l

)2

ϖ2
i,mg2

j,l +
m−1

∑
l=1

didj,ml

∣∣∣ξ j,l

∣∣∣2. (52)

And then, we design the virtual controller αi,m and the adaptive law θi,m as

αi,m =− ci,m

sin
(

πz2
i,m

2k2
i,bm

)
cos
(

πz2
i,m

2k2
i,bm

)
zi,m

− ϖi,m − θT
i,m φi,m +

m−1

∑
l=1

∂αi,m−1

∂xi,l
xi,l+1

+
m−1

∑
l=1

di
∂αi,m−1

∂xj,l
xj,l+1 − r̂i,m−1 +

m−1

∑
l=1

∂αi,m−1

∂θi,l
Dαθi,l −

m−1

∑
l=1

1
4di,ml

(
∂αi,m−1

∂xi,l

)2
ϖi,mgi,l

2

−
m−1

∑
l=1

di
1

4dj,ml

(
∂αi,m−1

∂xj,l

)2

ϖi,mgj,l
2 − 1

4di,mm
ϖi,mgi,m

2

(53)

Dαθi,m = σi,m φi,m(x̄i,m)ϖi,m − ρi,mθi,m. (54)

where di,mm, di,ml , dj,ml , ci,m, ρi,m are the positive parameters we designed. Accordingly,
substituting (48)–(54) into (46), (46) can be rewritten as

LVm ≤− cm

N

∑
i=1

m

∑
l=1

tan

(
πz2

i,l

2k2
i,bl

)
+

N

∑
i=1

m

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l +
N

∑
i=1

∑
j∈Ni

aijρj,1

σj,1
θ̃T

j,1θj,1

+
N

∑
i=1

m

∑
l=1

(
1
2

z2
i,l+1 +

1
2

ε2
i,l

)
+

N

∑
i=1

(
m

∑
l=1

l

∑
k=1

di,lk
∣∣ξi,k

∣∣2 + ∑
j∈Ni

aij

m−1

∑
l=1

l

∑
k=1

dj,lk

∣∣∣ξ j,k

∣∣∣2)+ ΠVm.

(55)

Step n. The nth Lyapunov function is constructed as

Vn = Vn−1 +
N

∑
i=1

Vi,n

= Vn−1 +
N

∑
i=1

(
k2

i,bn

π
tan

(
πz2

i,n

2k2
i,bn

)
+

1
2σi,n

θ̃T
i,n θ̃i,n

) (56)

where ki,bn and σi,n are parameters we set.
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Design zi,n = xi,n − αi,n−1, ϖi,n =
zi,n

cos2

(
πz2

i,n
2k2

i,bn

) . The infinitesimal generator of Vn

satisfies

LVn = LVn−1 +
N

∑
i=1

[
ϖi,n

(
u + θT

i,n φi,n + θ̃T
i,n φi,n + εi,n + gi,nξi,n −

n−1

∑
l=1

∂αi,n−1

∂θi,l
Dαθi,l

−
n−1

∑
l=1

∂αi,n−1

∂xi,l
(xi,l+1 + hi,l + gi,lξi,l)−

n−1

∑
l=1

di
∂αi,n−1

∂xj,l
(xj,l+1 + hj,l + gj,lξ j,l)

)
+

1
σi,n

θ̃T
i,nDα θ̃i,n

]
+ ΠVn.

(57)

Then, ri,n−1 = −
n−1
∑

l=1

∂αi,n−1
∂xi,l

hi,l −
n−1
∑

l=1
di

∂αi,n−1
∂xj,l

hj,l is defined to estimate the unknown

nonlinear term. The following is the ESO we construct:



z̃i,n = ẑi,n − zi,n

Dα ẑi,n = r̂i,n−1 − vi,1z̃i,n + ui + θT
i,n φi,n + θ̃T

i,n φi,n + εi,n + gi,nξi,n −
n−1
∑

l=1

∂αi,n−1
∂θi,l

Dαθi,l

−
n−1
∑

l=1

∂αi,n−1
∂xi,l

(xi,l+1 + gi,lξi,l)−
n−1
∑

l=1
di

∂αi,n−1
∂xj,l

(
xj,l+1 + gj,lξ j,l

)
Dα r̂i,n−1 = −vi,2sigωi (z̃i,n)

(58)

with ωi ∈ (0, 1), vi,1 > 0, vi,2 > 0, and r̂i,n−1 being the estimation value of ri,n−1. According
to Lemma 5, we obtain

ϖi,nεi,n ≤ 1
2

ϖ2
i,n +

1
2

ε2
i,n (59)

ϖi,ngi,nξi,n ≤ 1
4di,nn

ϖ2
i,ng2

i,n + di,nn|ξi,n|2 (60)

−
n−1

∑
l=1

ϖi,n
∂αi,n−1

∂xi,l
gi,lξi,l ≤

n−1

∑
l=1

1
4di,nl

(
∂αi,n−1

∂xi,l

)2
ϖ2

i,ng2
i,l +

n−1

∑
l=1

di,nl
∣∣ξi,l

∣∣2. (61)

Design the virtual controller ui and the adaptive law θi,n as

ui =− ci,n

sin
(

πz2
i,n

2k2
i,bn

)
cos
(

πz2
i,n

2k2
i,bn

)
zi,n

− 1
2

ϖi,n − θT
i,n φi,n +

n−1

∑
l=1

∂αi,n−1

∂xi,l
xi,l+1 +

n−1

∑
l=1

di
∂αi,n−1

∂xj,l
xj,l+1

− r̂i,n−1 −
1

4di,nn
ϖi,ngi,n

2 −
n−1

∑
l=1

1
4di,nl

(
∂αi,n−1

∂xi,l

)2
ϖi,ngi,l

2 −
n−1

∑
l=1

1
4dj,nl

di

(
∂αi,n−1

∂xj,l

)2

ϖi,ngi,l
2

+
n−1

∑
l=1

∂αi,n−1

∂θi,l
Dαθi,l

(62)

Dαθi,n = σi,n φi,n(x̄i,n)ϖi,n − ρi,nθi,n (63)

where di,nl , dj,nl , di,nn, ci,n, ρi,n are the positive parameters we designed. Accordingly,
(57) can be rewritten as

LVn ≤− cn

N

∑
i=1

n

∑
l=1

tan

(
πz2

i,l

2k2
i,bl

)
+

N

∑
i=1

n

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l +
N

∑
i=1

∑
j∈Ni

aijρj,1

σj,1
θ̃T

j,1θj,1 + ηn

+
N

∑
i=1

(
n

∑
l=1

l

∑
k=1

di,lk
∣∣ξi,k

∣∣2 + ∑
j∈Ni

aij

n−1

∑
l=1

l

∑
k=1

dj,lk

∣∣∣ξ j,k

∣∣∣2)+ ΠVn

(64)
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where ηn = ηn−1 +
1
2 ∑N

i=1 ε2
i,n.

According to Lemma 5, we obtain

θ̃T
l θl ≤ −1

2
θ̃T

l θ̃l +
1
2

θl
∗Tθl

∗. (65)

Substituting (65) into (64), we have

LVn ≤−
N

∑
i=1

n

∑
l=1

ci,ltan

(
πz2

i,l

2k2
i,bl

)
−

N

∑
i=1

[
n

∑
l=1

ρi,l

2σi,l
θ̃T

i,l θ̃i,l + ∑
j∈Ni

aijρj,1

2σj,1
θ̃T

j,1θj,1

]
+ Υn + ΠVn

+
N

∑
i=1

(
n

∑
l=1

l

∑
k=1

di,lk
∣∣ξi,k

∣∣2 + ∑
j∈Ni

aij

n−1

∑
l=1

l

∑
k=1

dj,lk

∣∣∣ξ j,k

∣∣∣2) (66)

where Υn = ηn +
N
∑

i=1

n
∑

l=1

ρi,l
2σi,l

θ∗T
i,l θ∗i,l +

N
∑

i=1
∑

j∈Ni

aijρj,1
2σj,1

θ∗T
j,1 θ∗j,1.

Then we prove that the system is bounded. First, for simplicity, define

LVn ≤− c̄Vn + Υn + ΠVn + Dξ2 (67)

where c̄ = min

{
2ci,l ,

ρi,l
σi,l

,
ρj,1
σj,1

}
, Dξ2 =

N
∑

i=1

(
n
∑

l=1

l
∑

k=1
di,lk

∣∣ξi,k
∣∣2 + ∑

j∈Ni

aij
n−1
∑

l=1

l
∑

k=1
dj,lk

∣∣∣ξ j,k

∣∣∣2).

Provided that the expectations involved exist and are limited, according to [49], un-
der the irreducibility of the Markov process,

Ω(t, r(t)) = (s1(x1, yr, r(t)), . . . , sn(xn, yr, r(t))) (68)

ELVn(Ω(tR, r(tR))) =
M

∑
k=1

πkELVn(Ω(tR, p)) (69)

ELVn ≤ −c̄
M

∑
k=1

πkEVn(Ω(tR, k)) +
M

∑
k=1

M

∑
m=1

πkqkmEVn(Ω(tR, l)) + DE|ξ(tR)|2 (70)

ELVn ≤ −
(

c̄ min
1≤k≤M

{πk} − max
1≤k≤M

{πk} max
1≤k≤M

{
M

∑
k=1

qkm

})
M

∑
k=1

EVn(Ω(tR, l)) + DE|ξ(tR)|2. (71)

Thus, we obtain

ELVn(Ω(tR, r(tR))) ≤ −cEVn(Ω(tR, r(tR))) + DK (72)

where c = c̄ min
1≤k≤M

{πk} − max
1≤k≤M

{πk} max
1≤k≤M

{
M
∑

k=1
qkm

}
> 0. According to Assumption 1,

supt≥t0
E|ξ(t)|2 ≤ K, so referring to the Gronwall–Bellman inequality, we can obtain

EVn(Ω(tR, r(tR))) ≤ e−c(t−t0)Vn(Ω(0, r(t0))) +
DK

c
(73)

By Lemmas 3 and 4, we can see that the closed-loop systems (5) achieve noise-to-state
stability in probability and the solution of system (5) is bounded in probability for any
x(t0) ∈ Rn and r(t0) ∈ S. This completes the proof of Theorem 1.

4. Simulation Example

In this section, two examples are shown to verify the effectiveness of the proposed
control method for the nonlinear fractional-order Markov jump MASs with state con-
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straints. Figure 1 illustrates the block diagram of the system controller design. Consider the
MASs composed of four agents with an undirected communication topology in Figure 2.
The system order is α = 0.98, and the detailed parameters in Examples 1 and 2 are listed in
Table 1.

ℎ𝑖𝑖,𝑝𝑝 = 𝜃𝜃 𝑇𝑇𝜑𝜑 �̅�𝑥𝑖𝑖,𝑝𝑝
RBFNN

Fractional-order 
adaptive laws 𝑫𝑫𝜶𝜶𝜽𝜽𝒊𝒊,𝒑𝒑

Communication topology

Extended state observer 
�𝒓𝒓𝒊𝒊,𝒑𝒑−𝟏𝟏

Markov jump random noise

Nonlinear multi-agent system

𝑦𝑦𝑖𝑖

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝑎𝑎𝑖𝑖𝑗𝑗

Error transformation 
𝒛𝒛𝒊𝒊,𝒑𝒑

𝒛𝒛𝒊𝒊,𝟏𝟏

Fractional-order virtual control law 𝜶𝜶𝒊𝒊,𝒑𝒑

Control input

𝑢𝑢𝑖𝑖

Figure 1. Block diagram of the system controller design.

Figure 2. Communication topology.

Table 1. Parameters.

Simulation Parameters Example 1 Example 2

ci,1 1 1
ci,2 5 3
σi,1 0.5 0.6
σi,2 0.5 0.6
ρi,1 1 1.5
ρi,2 1 1.5
ki,b1 0.7 0.5
ki,b2 1 2
di,11 0.1 0.1
di,21 0.5 0.4
dj,11 0.6 0.6

bi 2 2
vi,1 50 60
vi,2 80 80
ωi 0.8 0.8
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Example 1. The dynamic of each agent is given as follows:
Dαxi,1 = xi,2 + hi,1(x̄i,1, t, r(t)) + gi,1(x̄i,1, t, r(t))ξi,1(t)
Dαxi,2 = ui + hi,2(x̄i,2, t, r(t)) + gi,2(x̄i,2, t, r(t))ξi,2(t)
yi = xi,1

(74)

and

hi,1 = 0.2r(t)× (xi,1 + 0.5xi,2), gi,1 = −r(t)× sin(xi,1)

hi,2 = 0.2x2
i,1 + r(t)x2

i,2, gi,2 = r(t)xi,1xi,2
(75)

where gi(x̄i, t, r(t)) represents the strength coefficient of the random disturbance. Affected by
Markov jump parameters, the elements in the matrix P = (pkm)2×2 are selected as p1,1 = −4,
p1,2 = 4, p2,1 = 3, p2,2 = −3, then one obtains τ1 = 3

7 , τ2 = 4
7 . Consider that the states are

constrained in x1. The initial states of four agents in Figure 2 are set as x1(0) = [0.05, 0.05],
x2(0) = [0.1, 0.1], x3(0) = [0.15, 0.15], x4(0) = [0.2, 0.2]. The trajectory of the reference signal is
yr = 0.5 ∗ sin(t).

In this example, the stochastic processes ξ1 and ξ2 are generated by

0.5Dαξ1(t) = −ξ1(t) + w(t)
2Dαξ2(t) = −ξ2(t) + w(t)

(76)

where w(t) is a zero-mean white noise with A = 0.1, ξi,1(0) = ξi,2(0) = 0, then Eξ2
i,1(t) = 0.1,

Eξ2
i,2(t) = 0.025. According to the virtual controller (29), adaptive law (30)–(31),(63) and

control input (62), we design

ui = −ci,2

sin
(

πz2
i,2

2k2
i,b2

)
cos
(

πz2
i,2

2k2
i,b2

)
zi,2

− 1
2

ωi,2 − θT
i,2 φi,2 +

∂αi,1

∂xi,1
xj,2 + di

∂αi,1

∂xj,1
xj,2

− r̂i,1 −
1

4di,22
ϖi,2gi,2

2 − 1
4di,21

(
∂αi,1

∂xi,1

)2
αi,2gi,1

2 − 1
4dj,21

di

(
∂αi,1

∂xj,1

)2

αi,2gi,1
2

+
∂αi,1

∂θi,1
Dαθi,1

(77)

and the parameters are set in Table 1.
In Example 1, Figures 3 and 4 display trajectories of r(t) and ξ(t), which clearly show

the Markov jump process between mode 1 and mode 2 and fluctuations of random noises
with Eξ2

1(t) = 0.1 and Eξ2
2(t) = 0.025, respectively. Figure 5 shows that the outputs of four

agents reach consensus, tracking the reference signal yd = 0.5 ∗ sin(t). In Figures 6 and 7,
the trajectories of si,1 and si,2 are the error surfaces under the constraint of state, which are
subjected to ki,b1 and ki,b2, respectively. The control scheme based on BLF transforms the
original state constraints into a new boundary for tracking error, achieving state constraints
through a constrained error surface. Figure 8 gives the trajectories of ui, which shows that
control inputs quickly converge to near zero. From Figures 3–8, it can be concluded that
the proposed distributed control protocol makes sure that all signals of the Markov jump
FOMASs are bounded. And the tracking error in the mean-square sense can be converged
to a near zero neighborhood without violating the constraints
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Figure 3. The evolution of Markov process r(t) in Example 1.
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Figure 4. Stochastic disturbance ξ in Example 1.
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Figure 5. Trajectories of xi,1 in Example 1.
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Figure 6. Tracking error si,1 in Example 1.
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Figure 7. Tracking error si,2 in Example 1.

0 5 10 15 20 25 30

time(s)

-200

-150

-100

-50

0

50

100

150

200

C
on

tr
ol

 in
pu

t

0 0.2 0.4 0.6 0.8
-100

-50

0

Figure 8. Trajectories of control input ui in Example 1.

Example 2. Consider a robotic pendulum suspended from a randomly vibrating ceiling; the dynamic
model is described below:

Miτ̈i + Ii(τi, τ̇i) = ui + Θi(τi)ξi (78)

where τi represents the angle with vertical direction, τ̇i is the velocity, ui is the control input for
i = 1, 2, 3, 4. The random force generated by the random vibration exerts an excitation on the
mechanical pendulum, which is described by ξi, where ξi,1 and ξi,2 denote the random excitation at
the reference point in the horizontal and vertical directions, respectively. The detailed parameters of
the robotic pendulum are listed in Table 2.

Table 2. Parameters of robotic pendulum.

Parameter Description Value

m̄i the mass of load 0.5 + 0.001 × (−1)r(t) kg
l length 0.8 m
g the acceleration of gravity 9.8 m/s2

We set Mi(r(t)) = m̄i(r(t))l2, r(t) jumps between modes 1 and 2, and the elements
of P = (pkm)2×2 are selected as p1,1 = −2, p1,2 = 2, p2,1 = 3, p2,2 = −3. Then, extending
to the fractional-order system, we obtain xi,1 = τi, xi,2 = Dατi, and system (78) can be
modeled as: {

Dαxi,1 = xi,2
Dαxi,2 = M−1

i (r(t))ui − M−1
i (r(t))hi,2 + Θi,2ξi(t)

(79)

where hi,2 = m̄i(r(t))gl sin xi,1, Θi,2 = [−m̄i(r(t))l cos xi,1,−m̄i(r(t))l sin xi,1], ξi = [ξi,1, ξi,2]
T,

m̄i(r(t)) = 0.5 + 0.001 × (−1)r(t) kg, g = 9.8 m/s2, l = 0.8 m. The initial states of four
agents in Figure 2 are as follows: x1(0) = [0.05, 0.05], x2(0) = [0.1, 0.1], x3(0) = [0.15, 0.15],
x4(0) = [0.2, 0.2]. Define yd = sin(t) as the reference signal.
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The second moment stationary processes ξ1 and ξ2 are generated by the following
dynamic equation:

Dαξ(t) = −ξ(t) + w(t) (80)

where w(t) is a zero-mean white noise, and its spectral function A = 0.1, ξi,1(0) = ξi,2(0) = 0,
Eξ2

i,1(t) = Eξ2
i,2(t) = 0.05. According to the virtual controller αi,1 (29), adaptive laws

(30)–(31), (63), control input ui like (77), we choose the parameters shown in Table 1. In the
example, Figures 9 and 10 display trajectories of r(t) and ξ(t), which clearly show the
Markov jump process between mode 1 and mode 2 and a zero-mean widely stationary
process with Eξ2(t) = 0.05. Figure 11 shows that the outputs of four agents reach consensus,
tracking the reference signal yd = sin(t). In Figure 12, the trajectories of si,1 are the error
surfaces under the constraint of state, which are subjected to ki,b1. Figure 13 gives the
trajectories of ui in Example 2, which shows that control inputs also quickly converge to
near zero.

0 5 10 15

time(s)

0

0.5

1

1.5

2

2.5

3

r(
t)

Figure 9. The evolution of Markov process r(t) in Example 2.

0 5 10 15

time(s)

-0.5

0.5

st
oc

ha
st

ic
 d

is
tu

rb
an

ce
s

Figure 10. Stochastic disturbance ξ in Example 2.
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Figure 11. Trajectories of xi,1 in Example 2.
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Figure 12. Tracking error si,1 in Example 2.
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Figure 13. Trajectories of control input ui in Example 2.

5. Conclusions

This article investigates the consensus problem of random fractional-order Markov
jump multi-agent systems with full state constraints. For a class of random FOMASs
with Markov jump structure, an adaptive tracking controller is constructed by adopting
the backstepping control method based on the neural network approximation technique.
Considering the information interaction between multiple agents, in the design of the
virtual control law and the control input, for each agent, we treat the partial derivative
information of its neighboring agents as the unknown nonlinear term, using the ESO to
address them. Through constructing the TBLF, the exponential noise-to-state stability in
the mean square is analyzed rigorously, which guarantees the consensus of the considered
FOMASs. Moreover, there are many related issues that deserve further research in the
future, for example, how to extend the algorithms in this paper to stochastic systems
containing time-delay phenomena or containing states subject to time-varying constraints,
which are widely used in engineering practice.
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Abbreviations

Symbol Definition
NNs Neural networks
RBFNNs Radial basis function neural networks
ESO Extended state observer
MASs Multi-agent systems
FOMASs Fractional-order multi-agent systems
SDEs Stochastic differential equations
RDEs Random differential equations
FLSs Fuzzy logic systems
BLF Barrier Lyapunov function
TBLF Tan-type barrier Lyapunov function
R Real number space
RN×N N × N-dimensional vector space
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