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Abstract: This study explores the use of unmanned aerial vehicles (UAVs) and machine learning
algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of
Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors,
necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution
sensors capture orthophotos, enabling the development of classification models using supervised
machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector
Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-
Based levels, across three study areas. The results reveal that RF consistently demonstrates strong
classification performance, followed by SVM and ML. The choice of algorithm and training approach
significantly impacts the outcomes, highlighting the importance of tailored selection based on project
requirements. These findings contribute to enhancing species identification accuracy in remote
sensing applications, supporting biodiversity conservation and ecological research efforts.

Keywords: species identification; remote sensing; classification algorithms

1. Introduction

Nothofagus alessandrii Espinosa (ruil) is an endangered species that is endemic to
the Mediterranean area of Chile. Since the beginning of the 20th century, its habitat has
been reduced because of the expansion of the agricultural frontier with wheat crops and,
since the 1970s, the substitution of forest plantations with non-native species. The current
area of N. alessandrii forest is approximately 314 ha [1]. In addition, these forests have
recently been affected by forest fires of great magnitude and intensity, and persistent
drought conditions [2].

The use of unmanned aerial vehicles (UAVs) has allowed for its application to various
activities, including those dedicated to forest resources. Recently, data sets based on
unmanned aerial vehicles (UAVs) have been found to be quite useful for identification of
forest features due to their relatively high spatial resolution [3]. Numerous studies have
demonstrated the potential of UAVs for sustainable forest planning, volume estimation,
pest infestation detection, tree counting, forest density determination, and canopy height
assessment [4]. UAVs are being used in several countries to control natural vegetation based
on information in the optical and infrared spectra to spatial resolutions of 5 cm [5]. The
imagery acquired with a UAV reaches sub-decimeter or even centimeter resolution, often
referred to as hyperspatial imagery, at flying height of 50 m and 18 mm focal length [6]. UAV
imagery can be captured on demand, enabling frequent imagery acquisition and efficient
monitoring, known as hypertemporal imagery [6]. UAVs are also being used to monitor
the state of drought in forests and natural areas to prevent fires [7]. Koh and Wich [8]
ran an application to map forest areas, where a UAV was used to map tropical forests in
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Indonesia. The authors suggested that the use of UAV remote sensing could save time, cost,
and manpower for these purposes. The number of trees or the composition of stands are
important parameters in sustainable forest planning and management [9]. Fast and accurate
determination of canopy cover can be achieved using UAVs [10], leading to decisions that
improve optimal stand quality and productivity. For example, Hassaan et al. [11] used a
UAV to count trees in urban areas and identified trees with the accuracy of 72%. Likewise,
Wallace et al. [12] successfully detected the number of trees using LiDAR (Light Detection
And Ranging) sensors mounted on a UAV.

Moreover, UAVs have been combined with Geographic Information Systems (GIS) to
gather data on the Earth’s surface and atmosphere. GIS data provide spatial information
on Earth’s features, along with their attributes and spatial relationships, and the integration
of machine learning techniques in GIS analysis has shown promise in enhancing the speed,
accuracy, automation, and repeatability of data processing [13].

Machine learning, as a subfield of Artificial Intelligence (AI), holds significant potential
for addressing complex spatial problems within Geographic Information Sciences [14]. Ma-
chine learning algorithms allow systems to learn from data, generating data-based predic-
tions by identifying patterns in historical data and applying them for future predictions [15].

Supervised learning, a form of machine learning, involves training models on labeled
data and testing them on unlabeled data, making it well suited for classification problems.
To address the need for robust species identification, we evaluate three classification
algorithms in this research: Maximum Likelihood, Random Forest, and Support Vector
Machine (SVM).

Random Forest, as proposed by Breiman [16], is a powerful ensemble learning tech-
nique that has gained popularity due to its versatility and minimal parameter-tuning
requirements, making it suitable for a wide range of prediction problems. RF leverages the
collective decision making of multiple decision trees, each trained on a random subset of
predictor variables. This approach yields highly accurate results and has demonstrated
exceptional performance in numerous ecological and remote sensing applications.

Support Vector Machine, on the other hand, is a set of machine learning algorithms
renowned for its effectiveness in data analysis [17]. SVM offers advantages such as fine-
grained control over error frequencies, decision rule transparency, and computational
efficiency [18]. SVM’s ability to achieve remarkable results with limited training samples
makes it particularly relevant for species identification from orthophotos [19].

Maximum Likelihood, often referred to as ML, is a classical classification method
that estimates membership probabilities for each class and assigns a pixel to the class
with the highest probability [20]. ML is grounded in two fundamental principles: the
assumption of normal distribution within each class in a multidimensional feature space
and the application of Bayes’ theorem for decision making [21].

To assess the classification accuracy of these three algorithms (RF, SVM, and ML),
we conducted an accuracy assessment. This step involves comparing predicted classifi-
cation results with reference data and provides valuable insights into the reliability of
the results [22]. The metrics we employ include the Kappa coefficient, user accuracy,
producer accuracy, and F1 score, which collectively offer a comprehensive evaluation of
the classification performance. These metrics illuminate the strengths and limitations of
each classification method, helping to determine the most suitable approach for species
identification in orthophotos.

Our selection of these algorithms is based on their popularity in solving classification
problems, their ability to enhance weaker methods, and their widespread application in
ecology, including neighborhood models [23-25].

In contrast to the broad utilization of UAVs in our country, their application in forestry
research, particularly in information-processing studies with machine learning tools, re-
mains limited. Therefore, this study aims to evaluate the effectiveness of a UAV-based
approach combined with machine learning algorithms in accurately identifying and classi-
fying the distribution of Nothofagus alessandrii.
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Overall, this study contributes to the growing body of research aimed at enhancing
the accuracy and reliability of species identification in remote sensing applications, with
the potential to support biodiversity conservation and ecological research efforts.

2. Materials and Methods
2.1. Study Area

The current area of N. alessandrii forest is just over 314 ha, with forest stands occurring
in four communities in 15 locations, for a total of 305 stands with an average stand size
of 1.03 ha [1]. Out of these 15 locations, we selected 3 (Figure 1) due to their significance
in hosting N. alessandrii populations and their unaltered state following the 2017 wild-
fires [26]. The variations in their sizes and altitudes offer a diverse set of data to analyze
and draw conclusions about the vegetation distribution and classification methods em-
ployed. According to the study conducted by Santelices et al. (2012) [1], the surface area of
N. alessandrii is 3.6 hectares, 1.5 hectares, and 10.2 hectares, respectively, in “14 Vueltas”,
“Agua Buena”, and “El Fin”. The polygons generated in that study serve as the basis for
the visual identification of the species in the generated orthophotos.
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Figure 1. Study area.

The study area “14 Vueltas” is located in the commune of Curepto (—72.066104°,
—35.119434°) at an approximate altitude of 196 m (above sea level) with an area of 69.95 ha,
while “Agua Buena” is located in the commune of Constitucion (—72.142403°, —35.273924°)
at an altitude of 333 m (above sea level) and an area of 141,33 ha; finally, “El Fin” is located
in the commune of Empedrado (—72.344827°, —35.629865°) at an altitude of 341 m (above
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Orthophotomosaic

sea level) with an area of 145.69 ha. The mean annual temperature is equal to 14.2 °C, and
the mean annual rainfall is 845 mm [9].

2.2. Data Acquisition

i

The images of the study areas “14 Vueltas”, “Agua Buena”, and “El Fin” were acquired
on 3 October, 14 November, and 25 November, respectively, using a Dji Matrice 300 RTK
and a Dji Zenmuse P1 sensor (SZ DJI Technology Co., Shenzhen, China). The sensor is
highly sensitive, has 45 MP and flexible vision with 35 mm lens (FOV 63.5°). The images
were acquired under ideal weather conditions, with low cloud cover and close to noon, in
order to avoid shady areas. The flight height was 120 m above ground level. The images
were registered in continuous mode at 2 s intervals and speed of 3.5 m s, resulting in
side and forward overlaps equal to 90% and 70%, respectively. On the other hand, it was
not necessary to use Ground Control Points (GCPs) due to the inclusion of GNSS-IMU
technology within the sensor. We used Agisoft Metashape software (Agisoft LLC., St.
Petersburg, Russia; version 1.7.3) for photogrammetric processing. The classification of
Nothofagus alessandrii was facilitated by the distinctive light-green hue exhibited by this
species compared with its companion species, including Nothofagus glauca (Phil.) Krasser,
Crytocarya alba (Molina) Looser, Lithraea caustica (Molina) Hook. et Arn., Peumus boldus
Molina, Azara dentata Ruiz and Pav., Luma apiculata (DC.) Burret, Aextoxicon punctatum
Ruiz et Pav, and Lomatia hirsuta (Lam.) Diels ex J.F. macbr. The conspicuous differences in
foliage coloration and spectral characteristics between N. alessandrii and these companion
species allowed for straightforward visual identification. In addition, since the flights were
conducted within an interval of less than two months, it is unlikely that phenological and
seasonal variations had a significant impact on the classification results. The supervised
classification and accuracy process was performed with Arcgis Pro V2.8 (ESRI, Redlands,
CA, USA).

2.3. Image Classification
Figure 2 depicts the workflow of this study, illustrating the execution of each stage.
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Figure 2. Workflow process.

Following the completion of the flights and the acquisition of orthophotomosaics for
each study area, the process proceeded with the classification type. Training data for the
classification process were collected in two manners: “Pixel Based” and “Object Based.”
For the “Pixel Based” approach, training samples were collected at the pixel level. A total
of 405 training samples were selected for each target class, which included N. alessandrii,
other species, and bare ground, across the three study areas, resulting in a combined total
of 1215 polygons per site. The training sample sizes are summarized in Table 1.
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Table 1. Training sample sizes for land cover classes in different study areas.
Training Sample Size
Study Area Class Minimum Maximum
Area (m?) No. Pixel Area (m?) No. Pixel

N. alessandrii 0.003 2 3.5 2612

14 Vueltas Other species 0.04 29 1.47 7825
Bare ground 0.038 28 48.41 36,190

N. alessandrii 0.001 2 59 1491

Agua Buena Other species 0.002 5 10.01 2541
Bare ground 0.049 12 0.049 18,442

N. alessandrii 0.005 2 0.525 258

El Fin Other species 0.019 9 9.87 4855
Bare ground 0.49 21 28.83 14,189

In the “Object Based” approach, object segmentation was performed to create training
samples based on image objects rather than individual pixels. Objects were defined using
the Segment Mean Shift function in ArcGis, and training samples were extracted from these
objects. A total of 405 training objects were created for each class and each study area. We
used Random Forest, Support Vector Machine, and Maximum Likelihood methods for
supervised image classification.

RF requires two parameters [27]: (1) mtry, the number of predictor variables that
partition the data at each node; (2) ntree, the total number of trees that are grown in the
model run. In the present study, 500 trees in ntree were used for all classification methods.
In SVM, a maximum number of samples per class equal to 500 was used [28,29].

2.4. Accuracy Assessment

Once individual class detection is obtained, it is important to determine the accuracy
assessment for each of the classification methods. Model accuracy assessment is defined in
terms of forecast error or difference between observed and predicted values [22]. To ensure
a genuine accuracy assessment, it is essential to have a reference data set with a high level
of precision [30]. In this study, a confusion matrix was constructed using 500 randomly
selected validation points, enabling the determination of the following accuracy metrics.

2.4.1. C. Kappa

The Kappa coefficient, a widely accepted metric in classification accuracy assess-
ment [31], is easily calculated from the confusion matrix. The Kappa statistic is consid-
ered highly reliable for assessing classification accuracy, as it considers all data points in
the confusion matrix, not just the diagonal elements [32]. The Kappa statistic yields a
value between 0 and 1, where 0 indicates no agreement beyond chance and 1 signifies
perfect agreement [33].

2.4.2. User Accuracy

User accuracy (1) is calculated as the ratio of correctly classified pixels within a category
to the total number of pixels classified within that category (Maxwell and Warner 2020).

Number of Correctly Classified Samples in Category

's A A) =
User's Accuracy (UA) Number of Samples Classified to that Category

)

where UA represents the probability measure indicating the likelihood that a sampled pixel
belongs to the class as per the reference data [34].
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2.4.3. Producer Accuracy

Producer accuracy (2) is a reference-based precision metric that quantifies the per-
centage of correct predictions for a given class [35]. It assesses errors of omission and the
classification performance of different land cover types [36].

Producer accuracy is computed by dividing the number of correctly classified pixels
of a specific class by the total number of reference points for that class [32,37].

_ Number of Correctly Classified Samples in Category
~ Number of Samples from Reference Data in Category”

Producer’s Accuracy (PA) )

2.4.4. F1 Score

The F1 score (3), ranging from 0 to 1, with 0 indicating poor performance and 1
indicating perfect classification [38], is used to evaluate the classification results. The F1
score formula incorporates Precision and Recall [37].

2 x Precision x Recall
F1 =
Score Precision + Recall ®)

where Precision represents the ratio of correctly classified positive examples to the total
examples labeled as positive by the system, while Recall is the ratio of correctly classified
positive examples to the total positive examples in the data set [39].

3. Results
3.1. Supervised Classification

The results of our study produced six maps for each study area, providing valuable
spatial information on pixel locations for each category using both Object-Based and Pixel-
Based supervised classification methods. In Table 2, we quantify the total area (in hectares)
for each class used in the supervised classification.

Table 2. Surface area (ha) for each class (N. alessandrii, other species, and bare soil), algorithm type
(Random Forests (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)), and training
approach (Object-Based or Pixel-Based).

Study Area Class RF SVM ML
Object Pixel Object Pixel Object Pixel
N. alessandrii 2.05 2.88 2.60 1.86 2.43 1.79
14 Vueltas Other species 52.58 52.40 56.11 53.33 43.50 50.36
Bare ground 15.26 14.62 11.18 14.71 23.96 17.75
N. alessandrii 7.53 11.01 10.39 13.00 9.32 9.78

Agua Buena Other species 104.02 103.07 96.61 98.56 99.58 103.14
Bare ground 29.92 27.43 34.47 29.96 32.58 28.60

N. alessandrii 2.99 4.82 2.94 3.59 4.94 9.78
El Fin Other species 84.53 88.03 83.78 88.47 80.24 103.14
Bare ground 58.24 52.93 59.03 53.71 60.57 28.60

As can be observed, Table 2 summarizes the surface areas (in hectares) for each
class (N. alessandrii, other species, and bare soil) by algorithm type (Random Forests (RF),
Support Vector Machine (SVM), and Maximum Likelihood (ML)) and training approach
(Object-Based or Pixel-Based approach) across the three study areas. The table provides a
clear overview of the variations in surface areas for different classes based on the selected
algorithms and training methods.

Figures 3-5 display the classification results in the three study areas.
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Figure 3. 14 Vueltas classification results: (A) RF, Object-Based approach; (B) RF, Pixel-Based ap-
proach; (C) SVM, Object-Based approach; (D) SVM, Pixel-Based approach; (E) ML, Object-Based
approach; (F) ML, Pixel-Based approach.
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Figure 4. Agua Buena classification results: (A) RF, Object-Based approach; (B) RF, Pixel-Based
approach; (C) SVM, Object-Based approach; (D) SVM, Pixel-Based approach; (E) ML, Object-Based
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(F) ML, Pixel-Based approach.
3.2. Accuracy Assessment
For the estimation of the accuracy assessment, 500 random points were used for each
class for validation in each of the study areas using a confusion matrix. These results allow
for a precise evaluation of the results obtained in each class for each classification approach
(Object- and Pixel-Based approaches).
Three confusion matrices are presented for three different classification algorithms
used in the same study areas and with the same training data sets (Object-Based and
Pixel-Based approaches). The algorithms are Random Forest (RF), Support Vector Machine
(SVM), and Maximum Likelihood (ML) (Tables 3-5).
Table 3. Confusion matrix for Random Forest classification by study area and training approach.
Object-Based Approach Pixel-Based Approach
Study Area Class N. alessandrii  Other Species  Bare Ground  N. alessandrii  Other Species  Bare Ground
N. alessandrii 442 25 0 447 52 0
Other species 58 473 1 50 441 2
14 Vueltas
Bare ground 0 2 499 3 7 498
Total 500 500 500 500 500 500
N. alessandrii 470 38 0 482 55 0
Agua Buena Other species 30 455 11 17 434 22
Bare ground 0 7 489 1 11 478
Total 500 500 500 500 500 500
N. alessandrii 489 0 0 497 1 6
El fin Other species 10 487 12 2 484 11
Bare ground 1 13 488 1 15 483
Total 500 500 500 500 500 500
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Table 4. Confusion matrix for SVM classification by study area and training approach.

Object-Based Approach Pixel-Based Approach
Study Area Class .. R .. .
N. alessandrii  Other Species  Bare Ground  N. alessandrii  Other Species  Bare Ground
N. alessandrii 423 25 0 439 47 0
Other species 77 474 1 61 447 1
14 Vueltas
Bare ground 0 1 499 0 6 499
Total 500 500 500 500 500 500
N. alessandrii 471 46 1 494 66 0
Other species 29 442 8 5 422 27
Agua Buena
Bare ground 0 12 491 1 12 473
Total 500 500 500 500 500 500
N. alessandrii 498 0 0 494 1 0
. Other species 2 485 11 5 485 6
El Fin
Bare ground 0 15 489 1 14 494
Total 500 500 500 500 500 500
Table 5. Confusion matrix for ML classification by study area and training approach.
Study Area Class Object-Based Al.oproach Pixel-Based Ap!oroach
N. alessandrii  Other Species  Bare Ground  N. alessandrii ~ Other Species  Bare Ground
N. alessandrii 434 32 0 420 40 0
Other species 66 463 0 80 455 0
14 Vueltas
Bare ground 0 5 500 0 5 500
Total 500 500 500 500 500 500
N. alessandrii 471 50 0 484 62 0
Other species 29 439 6 16 427 20
Agua Buena
Bare ground 0 11 494 0 11 480
Total 500 500 500 500 500 500
N. alessandrii 491 1 0 499 6 1
. Other species 9 478 5 1 470 2
El Fin
Bare ground 0 21 495 0 24 497
Total 500 500 500 500 500 500

In the RF confusion matrix, based on the percentages of correct predictions in each area,
we can observe that overall, the predictions are quite accurate in all cases, with percentages
exceeding 88%. These percentages indicate a high rate of success in classification.

Overall, the percentages of correct classification in all study areas are quite high,
exceeding 84% in all cases. The “Bare ground” class stands out for having classification rates
close to 100%, indicating an exceptional ability of the model to identify this particular class.

In general, the percentages of correct classification in all study areas are quite high,
with most categories exceeding 86%. The “Bare ground” class stands out for having
a classification rate of 100%, indicating an exceptional ability of the model to identify
this particular class. The “Other species” class in the “14 Vueltas” area has the lowest
classification rate, but it is still fairly high overall, exceeding 87%.

Below (Tables 6-8) are the results of the Kappa coefficient, user accuracy, producer
accuracy, and F1 score for three different classification algorithms used in the same study
areas and with the same training data sets (Object-Based and Pixel-Based approaches).
The algorithms are Random Forest (RF), Support Vector Machine (SVM), and Maximum
Likelihood (ML).
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Table 6. Random Forest classification performance metrics across study areas and training
approaches.
Object-Based Approach Pixel-Based Approach
TEEE T o e Ry FSore Com D R Fsco
N. alessandrii 442 0.946 0.884 0.914 447 0.896 0.894 0.895
14 Vueltas Other species 473 0.889 0.946 0.917 441 0.895 0.882 0.888
Bare ground 499 0.996 0.998 0.997 498 0.980 0.996 0.988
C. Kappa k=0914 k =0.886
N. alessandrii 470 0.925 0.94 0.933 482 0.898 0.964 0.930
Agua Buena Other species 455 0.917 0.91 0.914 434 0.918 0.868 0.892
Bare ground 489 0.986 0.978 0.982 478 0.976 0.956 0.966
C. Kappa k=0914 k =0.894
N. alessandrii 489 1.000 0.978 0.989 497 0.986 0.994 0.990
El fin Other species 487 0.957 0.974 0.965 484 0.974 0.968 0.971
Bare ground 488 0.972 0.976 0.974 483 0.968 0.966 0.967
C. Kappa k =0.964 k =0.964
Table 7. SVM classification performance metrics across study areas and training approaches.
Object-Based Approach Pixel-Based Approach
SRR T cm GO RNy Fsere com (D ROl Esor
N. alessandrii 423 0.944 0.846 0.892 439 0.903 0.878 0.890
14 Vueltas Other species 474 0.859 0.948 0.901 447 0.878 0.894 0.886
Bare ground 499 0.998 0.998 0.998 499 0.998 0.998 0.993
C. Kappa k =0.896 k =0.885
N. alessandrii 471 0.909 0.942 0.925 494 0.882 0.988 0.932
Agua Buena Other species 442 0.923 0.884 0.903 422 0.930 0.844 0.885
Bare ground 491 0.976 0.982 0.979 473 0.973 0.946 0.959
C. Kappa k =0.904 k =0.889
N. alessandrii 498 1.000 0.996 0.998 494 0.998 0.988 0.993
El Fin Other species 485 0.974 0.97 0.972 485 0.978 0.97 0.974
Bare ground 489 0.970 0.978 0.974 494 0.971 0.988 0.979
C. Kappa k=0.972 k=0.973
Table 8. ML classification performance metrics across study areas and training approaches.
Object-Based Approach Pixel-Based Approach
YRR o (G Reiey rsee com e RN Rser
N. alessandrii 434 0.931 0.868 0.899 420 0.913 0.84 0.875
Other species 463 0.875 0.926 0.900 455 0.850 0.91 0.879
14 Vueltas
Bare ground 500 0.990 1 0.995 500 0.990 1 0.995
C. Kappa k =0.897 k =0.875
N. alessandrii 471 0.904 0.942 0.923 484 0.886 0.968 0.925
Agua Buena Other species 439 0.926 0.878 0.901 427 0.922 0.854 0.887
Bare ground 494 0.978 0.988 0.983 480 0.978 0.96 0.969
C. Kappa k =0.904 k=0.891
N. alessandrii 499 0.986 0.998 0.992 491 0.998 0.982 0.990
El Fin Other species 470 0.994 0.94 0.966 478 0.972 0.956 0.964
Bare ground 497 0.954 0.994 0.974 495 0.959 0.99 0.974
C. Kappa k =0.966 k =0.964
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The performance metrics presented in Tables 6-8 highlight the robust classification per-
formance achieved across different study areas and training approaches using the Random
Forest (RF), Support Vector Machine (SVM), and Machine Learning (ML) algorithms.

4. Discussion

The results of our study demonstrate the effectiveness of three different classification
algorithms, namely, Random Forest (RF), Support Vector Machine (SVM), and Maximum
Likelihood (ML), in classifying land cover categories across three distinct study areas,
including “14 Vueltas”, “Agua Buena”, and “El Fin”. To assess the impact of the training
methodology on the classification outcomes, we employed both Object-Based and Pixel-
Based training approaches.

RF consistently exhibited high accuracy across all study areas and training approaches,
with user accuracy exceeding 88%, producer accuracy over 88%, and F-scores above 0.88.
These high values confirm RF’s robustness and versatility in remote sensing applications,
as supported by previous research findings [40]. Additionally, the Kappa coefficient values
consistently indicated substantial agreement between RF classification results and the
actual ground truth, reaffirming its classification accuracy [41].

Similarly, SVM displayed strong classification performance, consistently achieving
user accuracy of over 85%, producer accuracy exceeding 84%, and F-scores above 0.88 in
most cases [42]. SVM’s ability to identify optimal decision boundaries in complex feature
spaces [43] contributed to its effectiveness in classifying land cover categories. In certain
instances, SVM outperformed RF by achieving fewer false positives, suggesting a more
conservative classification approach.

ML also demonstrated competitive classification performance, with user accuracy
consistently above 85%, producer accuracy exceeding 84%, and F-scores above 0.87. Lever-
aging statistical probability, ML effectively discriminated among land cover classes and
performed comparably to SVM in terms of false positives and false negatives.

These findings underscore the significant impact of algorithm and training approach
choices on classification outcomes. Notably, the SVM algorithm with Pixel-Based training
consistently produced larger surface areas for designated classes across all three study
areas, while RF with Object-Based training generally resulted in smaller surface areas.
These variations emphasize the need for thoughtful selection of algorithms and train-
ing approaches, as they influence both the classification outcome and the delineation of
vegetation classes [44].

Our results are consistent with Adugna et al.’s [45]. In their study, the Random Forest
(RF) model outperformed Support Vector Machine (SVM) in accurately classifying four
distinct land cover types (built-up, forest, herbaceous vegetation, and shrub). Importantly,
both algorithms demonstrated nearly identical performance in distinguishing between
two classes, namely, bare/sparse vegetation and water bodies, when these classes exhib-
ited distinct spectral characteristics. However, RF showed superior effectiveness when
dealing with classes consisting of mixed pixels, including the aforementioned four cate-
gories. It is noteworthy to mention SVM’s susceptibility to mixed pixels and inaccurately
labeled training samples, which makes it more sensitive to noisy data compared with other
classification algorithms [46].

Additionally, our findings align with Sheykhmousa et al.’s [47], who assessed classifi-
cation accuracy for various study targets. They reported that RF achieved average accuracy
of approximately 95.5% in land use and land cover (LULC) classification and about 93.5%
in change detection using SVM classification. LULC classification, a common application
for both SVM and RF, showed less variability for the RF classifier, indicating higher stability
compared with SVM in classification tasks, including crop classification.

Moreover, in a related study by Yang et al. [48], the effectiveness of Random Forest
(RF) and Support Vector Machine (SVM) in land cover classification was emphasized.
Yang et al. [48] highlighted RF’s robustness and SVM’s ability to handle complex feature
spaces, in line with our observations. They also pointed out that compared with Pixel-Based
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(PB) classification, the Object-Based image analysis (OBIA) method, as Yang et al. [48]
indicated, can extract features of each element of remote sensing images, providing
certain advantages.

In the context of confusion matrices, all three algorithms (RF, SVM, and ML) demon-
strated strong performance in classifying classes across the study areas, with correct classi-
fication results, and minimal false positives and false negatives. Nevertheless, variations
in the number of false positives and false negatives were observed among the algorithms
in specific scenarios. RF appeared to exhibit a more balanced distribution between false
positives and false negatives, while SVM and ML tended to have fewer false positives in
particular cases.

The choice of classification algorithm (RF, SVM, or ML) should be based on the specific
requirements of the study and the weighting of false positives and false negatives in the
application. Each algorithm has its advantages and disadvantages, necessitating careful
consideration of project objectives and needs.

In order to perceive the quality of the classification, accuracy assessment is inevitable [32].
Carrying out a simple accuracy assessment, using overall accuracy (OA) and Kappa coeffi-
cient of agreement (K), with the inclusion of ground truth data, might be the most common
and reliable approach to reporting the accuracy of thematic maps. These accuracy measures
make classification algorithms comparable when independent training and validation data
are incorporated into the classification scheme [47]. In this regard, all three classification al-
gorithms (RE, SVM, and ML) demonstrated robust performance across different study areas
and training approaches. Minor differences in performance metrics among the algorithms
highlighted their effectiveness in land cover classification tasks. Variations in performance
may be attributed to the study areas’ complexity and the distribution of land cover classes.
Researchers and practitioners can confidently choose any of these algorithms based on their
specific project requirements, as they all offer reliable and consistent classification results.

These findings hold significant implications for land cover classification in remote
sensing applications. Researchers and practitioners can confidently select any of the three
algorithms (RF, SVM, or ML) based on their specific requirements and available resources, as
all three demonstrated strong performance. Additionally, the choice between Object-Based
and Pixel-Based training approaches can be made without compromising classification
accuracy, offering flexibility in methodological decisions.

However, it is essential to acknowledge some limitations of this study. Firstly, the
study areas were limited to three specific regions, and the findings may not generalize
to other geographic contexts. Additionally, other factors, such as feature selection and
preprocessing methods, could influence classification performance and warrant further
investigation [49]. Future research could explore the integration of additional machine
learning algorithms and advanced feature engineering techniques to improve classification
accuracy [50]. Moreover, assessing the scalability of these methods to larger study areas
and their performance under different environmental conditions should be considered.

Furthermore, it is imperative to recognize the critical role of remote sensing in the
conservation efforts of endangered species like Nothofagus alessandrii. Given its critically
endangered status, the detection and monitoring of Nothofagus alessandrii using remote
sensing sensors can provide vital information for its preservation and contribute to the
broader understanding of ecosystem conservation.

5. Conclusions

Our findings indicate that RF consistently demonstrated high accuracy and reliability,
aligning with its robustness in remote sensing applications. SVM also exhibited strong per-
formance, particularly in complex feature spaces, while ML delivered competitive results.
The choice of algorithm and training approach significantly influenced the classification
outcomes, underscoring their importance in method selection.

While our results are consistent with prior research, with RF generally outperforming
SVM, it is important to note that the selection of the appropriate classification algorithm
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should be tailored to the specific project requirements, considering the trade-off between
false positives and false negatives. These findings offer valuable insights for practitioners
and researchers in remote sensing and land cover classification.

To enhance the quality of the conclusions and potentially provide a more compre-
hensive assessment in the future, further verification and comparison of the results may
involve supplementing the algorithms with field data and considering the spatial distribu-
tion characteristics of vegetation in the study area. This information could potentially offer
insights into the advantages and disadvantages of each method.
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