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Abstract: Unmanned Aerial Vehicles (UAVs) are able to provide instantaneous visual cues and a high-
level data throughput that could be further leveraged to address complex tasks, such as semantically
rich scene understanding. In this work, we built on the use of Large Language Models (LLMs)
and Visual Language Models (VLMs), together with a state-of-the-art detection pipeline, to provide
thorough zero-shot UAV scene literary text descriptions. The generated texts achieve a GUNNING
Fog median grade level in the range of 7–12. Applications of this framework could be found in the
filming industry and could enhance user experience in theme parks or in the advertisement sector.
We demonstrate a low-cost highly efficient state-of-the-art practical implementation of microdrones in
a well-controlled and challenging setting, in addition to proposing the use of standardized readability
metrics to assess LLM-enhanced descriptions.

Keywords: scene understanding; large language models; visual language models; CLIP; GPT-3;
YOLOv7; UAV

1. Introduction and Motivation

Unmanned Aerial Vehicles (UAVs) have proven to be an essential asset for practically
addressing many challenges in vision and robotics. From surveillance and disaster response
to the monitoring of satellite communications, UAVs perform well in situations where
seamless mobility and high-definition visual capture are necessary. In this work, we
focused on tasks that require a semantic understanding of visual cues and that could
guide initial estimates in proposing an adequate characterization of a certain environment.
Problems that are of interest include semi-adaptive filming [1] and automatic literary
text description. In this setting, we propose a complete pipeline that provides real-time
original text descriptions of incoming frames or a general scene description given some
pre-recorded videos. The descriptions are well-suited to creating an automatic storytelling
framework that can be used in theme parks or family trips alike.

Foundation models are techniques based on neural networks that are trained on
large amounts of data and that present good generalization capabilities across tasks. In
particular, Natural Language Processing (NLP) has seen a dramatic improvement with
the appearance of GPT-2 [2] and its subsequent improvements (GPT-3 [3]). Indeed, Large
Language Models (LLMs) and Visual Language Models (VLMs) have recently arisen as a
resource for determining widespread problems in disciplines from robotics manipulation
and navigation to literary text description, completion, and question answering. We attempt
to introduce these techniques in the field of UAVs by providing the vehicle with enhanced
semantic understanding. Our approach uses a captioning technique based on CLIP [4,5],
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along with the YOLOv7 detector [6], which enhances the captioning output with the object
annotations detected and then wires the text into GPT-3.

The descriptions provided are accurate and show a detailed understanding of the
scene, and they introduce hallucinated elements that yield sound and consistent seed
captions. The literary style allows for the system to be used in a wide variety of situations;
for example, a human companion can use the generated text for assistance in writing
a script.

The system can be used without fine-tuning in a wide variety of environments, as
the base models are trained on large amounts of data. However, to further improve the
consistency of the descriptive text, a proper fine-tuning of the detector could be useful when
the objects that the system would normally encounter are not present in the COCO object
classes [7,8], or when one wants to emphasize certain aspects of the visual cues; for instance,
in an amusement park, a fine-tuning of the data could add specificity to the descriptions,
e.g., providing captions that include trademark imaginary characters or specific attractions,
rides, or games.

This article proposes, from the point of view of system integration, a novel zero-shot
literary text description system using state-of-the-art large-language modules through
the use of microdrones (RYZE Tello) and UAVs; additionally, a proposed set of measures
is newly introduced in this context to assess the adequacy of the output text for the
target audience.

One of the main technical issues of applying LLMs to UAVs is that the data have to
be relayed to the computer, where either computation has to take place or a query has to
be formulated to use an API. On-board processing is possible, but it is limited due to the
amount of GPU memory that state-of-the-art models need. A high-definition camera, well-
calibrated and possibly stabilized, is crucial for the optimal behavior of the overall system,
as it mainly relies on visual cues for processing the entire pipeline. Another limitation is
due to the object detector (YOLOv7) that is used to improve the query formulation prior to
using GPT-3; in this particular setting, we used a pretrained model trained on the COCO
dataset, but specific training data may be needed for a target application. Furthermore, the
object detector could be integrated into the on-board processing using a CORAL board.

The main goal of this manuscript is to propose a system that could be used in many
real-life applications. The majority of the techniques used have been thoroughly tested
in standard datasets before, but there has been little experimentation in real settings with
varying conditions and equipment. For testing the system, we used standardized measures
originally used to assess texts written by human instructors in the context of the military,
education, and so on.

2. Contribution and Paper Organization

A low-cost, highly efficient practical implementation of the system was performed
through the use of microdrones (e.g., RYZE Tello), which perform real-time video streaming
on a ground computer that controls the vehicle. The level of autonomy of the system could
be further enhanced by performing part of the computation on-device; for example, by
the attachment of a CORAL Dev Board Mini (Google), which only adds 26 g of payload,
to the body of the microdrone. This endows the UAV with a TPU (2GB) that can process
on-device real-time detections, for instance, through the use of state-of-the-art models such
as SSD MobileNet V2 [9] and EfficientDet-Lite3x [10].

The RYZE Tello drone is a compact and lightweight quadrotor drone designed for use
in educational and recreational applications. It is equipped with an Intel processor and a
variety of sensors, including a camera, an IMU, and ultrasonic range finders. The drone
is capable of autonomous flight using a pre-programmed set of commands and can be
controlled remotely using a compatible device, such as a smartphone. It is also equipped
with a number of interactive features, such as gesture control and throw-to-fly, which allow
users to easily interact with the drone in a variety of ways; that is, the RYZE Tello drone is
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a versatile and user-friendly platform that is well-suited for a wide range of applications,
including education, entertainment, and research.

A more professionally driven, inexpensive prototype appropriate for outdoor use was
attempted by the use of an NXP Hover Games Drone Kit with a CORAL Dev Board Mini
(Google) and a high-definition camera (see Figure 1). It also includes GPS and a Flight
Management Unit (FMU) that supports the PX4 autopilot flight stack. Autonomy could
be enhanced by the use of a LiDAR lite-v3 for navigation purposes, a lightweight 23 g
light-ranging device with a high accuracy and range (40 m). In a well-controlled situation,
such as a film studio, a tethered UAV could be used to eliminate the limitation of the battery
capacity of the vehicle.

Figure 1. RYZE Tello Microdrones and the NXP Hover Games Drone Kit.

The NXP Hover Games Drone Kit is a hardware and software platform designed for the
development and evaluation of autonomous drone systems. It includes a quadrotor drone
equipped with an NXP S32 processor, a variety of sensors including an IMU, ultrasonic
range finders, and stereo cameras, and a range of peripherals such as LED lights and a
buzzer. The kit also includes a software library and sample code for implementing various
autonomous flight behaviors such as hovering, takeoff, and landing. It is intended for use
by researchers and developers working in the field of autonomous drone systems, and can
be used for a wide range of applications, including drone racing, search and rescue, and
aerial photography. Overall, the NXP Hover Games Drone Kit is a comprehensive and
versatile tool for exploring the capabilities and limitations of autonomous drone systems.

Experimental results based on a UAV testbed show that the proposed pipeline is able
to generate accurate state-of-the-art zero-shot UAV literary text descriptions.

The remainder of the paper is structured as follows: an overview of state-of-the-art
approaches that entail the use of foundation models is provided. Next, Section 4 addresses
the proposed methodology, as well as the background for the prior knowledge needed
for the experimental assumptions, while experiments are presented in Section 5. Section 6
proposes standardized readability metrics to evaluate LLM-generated descriptions. Finally,
Section 7 provides the conclusions and describes further work.

3. Overview and State of the Art

Large Language Models (LLMs) [11–13] and Visual Language Models (VLMs) [5] have
emerged as an indispensable resource to characterize complex tasks and bestow intelligent
systems with the capacity to interact with humans in an unprecedented way. These models,
also called foundation models, are able to perform well in a wide variety of tasks, e.g., in
robotics manipulation [14–16], and can be wired to other modules to act robustly in highly
complex situations, such as in navigation and guidance [17,18].

LLMs are ML models that are trained on very large datasets of text and are capable
of generating human-like text. These models are typically based on neural networks,
which are composed of interconnected processing units that are able to learn and adapt
through training. The goal of large language models is to learn the statistical patterns and
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relationships present in the training data and use this knowledge to generate coherent and
plausible text.

One of the key features of large language models is their ability to generate text that
is difficult to distinguish from text written by humans. These models are trained on vast
amounts of text and, as a result, are able to capture a wide range of linguistic patterns and
structures, including syntax, grammar, and vocabulary. This enables them to generate text
that is highly coherent and grammatically correct, and these models can thus be used for a
variety of tasks, such as translation, summarization, and text generation.

In addition to their language generation capabilities, large language models have also
been shown to be effective at a variety of natural language processing tasks, including
language translation, question answering, and text classification. In essence, LLMs are a
powerful and versatile tool for understanding and working with natural language data.

Visual Language Models (VLMs) are ML models that are trained on large datasets of
text and images and are capable of generating natural language text that is coherent and
grammatically correct. The goal of VLMs is to learn the statistical patterns and relationships
present in the training data and use this knowledge to generate text that is descriptive and
informative about the visual content of an image or a set of images.

One of the key features of visual language models is their ability to generate text that
is grounded in the visual content of an image or a set of images. This means that the text
generated by these models is specifically related to the objects, people, and events depicted
in the image and provides descriptive and informative details about these elements. For
example, a VLM could be used to generate a caption for an image depicting the occurrence
of a particular action.

In addition to generating descriptive text, visual language models can also be used for
a variety of other tasks, such as image classification, object detection, and image captioning.
These models can be trained to recognize and classify different types of objects and events
in an image and can also be used to generate coherent and grammatically correct captions
that describe the content of an image.

VLMs are a powerful and versatile tool for understanding and working with both
text and image data. By enabling the generation of descriptive and informative text that is
grounded in the visual content of an image, these models have the potential to facilitate a
wide range of applications, including image and video analysis, content generation, and
natural language processing.

Drones, also known as unmanned aerial vehicles (UAVs), have the potential to be used
for a wide range of applications involving semantic scene understanding, which refers to
the ability of a system to analyze and interpret the meaning or significance of the objects,
people, and events present in a scene. This capability is important for many applications,
including robotics, surveillance, and autonomous driving.

One way in which drones can be used for this particular purpose is through the use
of on-board sensors and cameras to capture visual data and other types of data about the
environment. These data can then be processed and analyzed using ML algorithms to
identify and classify the objects and events present in the scene. For example, a drone
equipped with a camera and an object recognition algorithm could be used to identify and
classify different types of objects in a scene, such as vehicles, pedestrians, and buildings.

In addition to object recognition, drones can also be used for other types of tasks, such
as event detection and tracking. For example, a drone equipped with a camera and an event
detection algorithm could be used to identify and track the movements of people or vehicles
in a scene. This could be useful for applications such as surveillance or traffic monitoring.
By enabling the analysis and interpretation of the meaning or significance of objects and
events in a scene, drones can provide valuable insights and information for a variety of tasks
and scenarios. In this work, we built on the improvements in object detection [19,20] and
model reparameterization [21,22] to apply LLMs and VLMs in the field of Unmanned Aerial
Vehicles (UAVs) [1]. State-of-the-art techniques of captioning [23–25] have allowed computers
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to semantically understand visual data, while advances in automated storytelling can now
generate realistic storylines from visual cues [26,27].

4. Methodology

UAV real-time literary storytelling refers to the use of Unmanned Aerial Vehicles
(UAVs), also known as drones, to generate narrative stories in real-time based on data they
collect. This could involve using the UAVs to capture visual data and other types of data
about the environment and then processing and analyzing these data using ML algorithms
to identify the objects and events present in the scene. The resulting data could then be
used to generate a narrative story that describes and explains the objects and events in the
scene coherently and grammatically.

One potential application of UAV real-time literary storytelling is in the field of jour-
nalism, where UAVs could be used to capture newsworthy events and generate narratives
about these events in real time. For example, a UAV could be used to capture images
and video of a natural disaster and then generate a narrative story about the disaster that
is based on the data collected by the UAV. This could provide a more immersive and
interactive way of reporting on events and could enable journalists to generate stories more
quickly and efficiently.

Another potential application is in the field of entertainment, where UAVs could be
used to capture data about live events and generate interactive narratives about these
events in real time. For example, a UAV could be used to capture data about a sports game
and then generate a narrative story about the game that is based on the data collected by the
UAV. This could provide a more engaging and interactive way of experiencing live events
and could enable users to experience events in a more immersive and interactive way.

UAV real-time literary storytelling offers potential for a wide range of applications,
including journalism, entertainment, and education. By enabling the generation of narrative
stories in real time based on data collected by UAVs, this technology has the potential to
facilitate a more immersive and interactive way of experiencing and understanding events
and situations.

CLIP (Contrastive Language-Image Pre-training) is a neural network architecture
developed by researchers at OpenAI that can be used for image captioning and other
natural language processing tasks. It is based on the idea of pre-training a model on
a large dataset of images and text and then fine-tuning it for a specific task, such as
image captioning.

CLIP uses a transformer architecture, which is a type of neural network that is particu-
larly well-suited for tasks involving sequential data, such as natural language processing.
The model is trained to predict the next word in a sentence given the previous words, using
the images as additional context. One key feature of CLIP is that it is able to learn a con-
tinuous space of image and text representations, which allows it to generate high-quality
captions for a wide range of images. It is also able to learn from a large amount of data,
which helps it to generalize to new images and improve the performance in the image
captioning task.

The problem of captioning can be formulated as follows: given a dataset of paired
images and captions {xz, cz}N

z=1, the aim is to be able to synthesize adequate captions given
an unseen sample image. In our approach, we built on recent work that uses the embedding
of CLIP as a prefix to the caption and that is based on the next objective, where the captions
can be understood as a sequence of tokens cz = cz

1, . . . , cz
`, padded to a maximum length `:

max
θ

N

∑
z=1

`

∑
w=1

log pθ(cz
w| xz, cz

1, . . . , cz
w−1). (1)

We consider, as in [4], an autoregressive language model that predicts the consequent
token without considering future tokens.
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The CLIP embedding is then projected by a mapping network, denoted as F:

pz
1, . . . , pz

k = F(CLIP(xz)). (2)

where pz
w is a vector with the same dimension as a word embedding and then concatenated

with the caption embedding. A cross-entropy loss is used to train the mapping F.
YOLO (You Only Look Once) [19,20] is a real-time object detection algorithm. It is

an end-to-end neural network model that is able to detect and classify objects in images
and videos. YOLO works by dividing the input image into a grid of cells and predicting
the class and location of objects within each cell. The model uses anchor boxes to make
predictions at multiple scales, so it can detect objects of different sizes. The model also
predicts the confidence of each detection, which helps to filter out false positives.

One of the main advantages of YOLO is its speed. It is able to process images and
videos in real time, making it suitable for use in applications such as video surveillance and
autonomous vehicles. YOLO has undergone several versions, with each version improving
the accuracy and efficiency of the model. YOLOv7 is the latest version of YOLO and
includes several enhancements over previous versions.

We propose a general pipeline for UAV real-time literary storytelling (see Figure 2)
that is based on the previously described captioning technique that utilizes CLIP prefix
captioning [4,5,28] and that combines the obtained sentence trained with Conceptual
Captions [29] with detections given by YOLOv7 [6]. The output of the object detector is
processed by a module of sentence formation such that it can be fed into a GPT-3 module,
which provides an enhanced literary description. A query formulating the task to be
determined by GPT-3 is needed. The system can work in real time on the streaming frames
of the vehicle or as a post-processing module once the UAV has landed.

Figure 2. UAV real-time literary storytelling.

The pipeline does not require fine-tuning to specific tasks, although it would benefit
from such tuning if used in a particular environment where some specific objects need to
be identified, e.g., when there is a need to be specific in terms of trademark names.

The main blocks of the architecture are CLIP Prefix for Image Captioning, YOLOv7,
and GPT-3.

CLIP Prefix for Image Captioning is a transformer-based architecture that enables
the generation of captions while the CLIP and GPT-2 model are frozen. It consists of the
training of a lightweight mapping network based on a transformer [30,31] that translates
from the CLIP embedding space to GPT-2.

YOLOv7 is the state-of-the-art object detector in terms of speed and accuracy. It is a
generalization of previous YOLO-based architectures with the use of Extended Efficient
Layer Aggregation Networks (E-ELANs) [6]. E-ELANs address the problem of control-
ling the shortest longest gradient path so that the network converges effectively. It uses
expand, shuffle, and merge cardinality to continue learning without losing the original
gradient path.
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GPT-3 is used to enhance the captions by the natural language instruction and prompt
engineering. All of our experiments used the API of OpenAI, and the model is surprisingly
effective with zero-shot prompts.

Having said that, the manuscript has the goal of deploying state-of-the-art LLMs
to accomplish the task of zero-shot semantic scene understanding through the use of a
low-cost UAV (RYZE Tello or a NXP Hover Games Drone Kit) that incorporates a high-
definition camera. Further integration by the use of a Raspberry Pi Zero W or a CORAL
board can move some of the computation on-device with the proper module adaptation,
both for object detection and also for the LLM API. In the latter case, a call to OpenAI API is
necessary at this stage but advances on the field will soon make it possible to test the trained
models directly on-board (e.g., pruning the LLM model to make it fit on memory) without
the need to relay the video frames to the computer for further processing. In either way,
model pruning can be used to reduce the model size and thus reduce the computational
requirements. Another technique would be to use model quantization to reduce the
precision of the model and make it more efficient. Additionally, another viable approach is
knowledge distillation, where the knowledge of a large teacher model is transferred to a
smaller student model for the purpose of using it on a resource-constrained environment.

5. Results and Experiment Set-Up

Experiments were conducted on a well-controlled challenging environment with the
use of RYZE Tello, streaming the data in real time to a ground computer that processes the
frames one by one. Figures 3–6 illustrate all of the stages of the used methodology for a
number of UAV captured stream frames, with contrasting levels of descriptive goodness.
The drone captures a particular visual scene that is consequently sent to the ground
computer, where a first caption is generated using CLIP Prefix for Image Captioning with
beam search. The caption is improved by the output of a YOLOv7 object detector after
sentence formation. Finally, a query is formulated together with the resultant caption to
generate an enhanced text description by the GPT-3 module. The results are consistent and
robust and exhibit original and genuine descriptions of the imagery, and the modules of
captioning and object detection are effective and efficient.

CLIP Prefix for Image Captioning presents an average runtime of 206 ms and the
YOLOv7 Object Detector presents one of 556 ms, using a GPU Tesla V100-SXM2 (16GB)
and a two-core Intel(R) Xeon(R) CPU @ 2.00 GHz. Prompts to the OpenAI API take an
average of 3.9 s using the completion model text-davinci-002, where max_tokens = 401 and
temperature = 0.9.

Figure 3 shows the methodology when the CLIP captioning module and the YOLOv7
object detection produce accurate outputs, and the GPT-3 module produces a very good
enhanced literary description.

Figure 4 shows the methodology when the CLIP captioning module and the YOLOv7
object detection produce relatively good outputs (detection of the majority of objects—not
all or not completely accurate), and the GPT-3 generates a realistic literary description but
with the presence of hallucinated elements that provide realism but are not actually in
the scene.

Figure 5 shows the methodology when the CLIP captioning module and the YOLOv7
produce somewhat adequate outputs, but they are not particularly accurate, e.g., detecting
objects but misclassifying some of them, or generating overly general caption descriptions.
The GPT-3 then produces an enhanced description, but not a very accurate one.

Finally, Figure 6 shows the methodology when the CLIP captioning module or
YOLOv7 object detection fail to describe the scene accurately, and the GPT-3 module
generates an erroneous text description.
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(a)

(b)

(c)

Figure 3. UAV captured frame processing and GPT-3. Very good GPT-3 descriptions of the scene.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. UAV captured frame processing and GPT-3. Adequate literary GPT-3 descriptions.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. UAV captured frame processing and GPT-3. Somewhat good descriptions, but the CLIP
captioning module and the YOLOv7 produce inaccurate outputs.

(a)

(b)

Figure 6. UAV captured frame processing and GPT-3. Failure cases.

6. Readability Analysis

GPT-3 (short for “Generative Pre-training Transformer 3”) is a large language model
developed by OpenAI that is trained on a very large dataset of text and is capable of
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generating human-like text. It is based on a type of neural network called a transformer,
which is composed of interconnected processing units that are able to learn and adapt
through training. The goal of GPT-3 is to learn the statistical patterns and relationships
present in the training data and use this knowledge to generate coherent and plausible text.

One of the key features of GPT-3 is its ability to generate text that is difficult to
distinguish from text written by humans. It is trained on a dataset of billions of words and,
as a result, is able to capture a wide range of linguistic patterns and structures, including
syntax, grammar, and vocabulary. This enables it to generate text that is highly coherent
and grammatically correct, and it can thus be used for a variety of tasks, such as translation,
summarization, and text generation.

Readability measures are tools that are used to evaluate the complexity of written
text and determine how easy or difficult it is for readers to understand. One common
readability measure, for instance, is the GUNNING Fog index, which is a formula that
estimates the number of years of education a reader would need to understand a piece of
text. The GUNNING Fog index is based on the average number of words per sentence and
the percentage of complex words (those with three or more syllables) in the text.

To calculate the GUNNING Fog index, the following steps are followed:

• Count the number of words in a sample of the text;
• Count the number of sentences in the sample;
• Divide the total number of words by the total number of sentences to calculate the

average number of words per sentence;
• Count the number of complex words (those with three or more syllables) in the sample;
• Divide the number of complex words by the total number of words, and multiply the

result by 100 to calculate the percentage of complex words in the sample;
• Add the average number of words per sentence and the percentage of complex words.

The result is the GUNNING Fog index.

The GUNNING Fog index is typically used to evaluate the readability of written
materials, such as reports, documents, and articles. It is a useful tool for determining
the level of difficulty of a piece of text and ensuring that it is appropriate for a particular
audience. For example, a text with a GUNNING Fog index of 8 would be considered
suitable for readers with an eighth-grade education or higher.

Such readability measures are useful tools for evaluating the complexity of written
text and ensuring that it is appropriate for a particular audience. This can help writers and
editors to produce written materials that are clear, concise, and easy to understand and can
help readers to more easily comprehend and retain information presented in a text.

A readability analysis of the GPT-3-enhanced text is provided by the use of standard-
ized measures, the one introduced earlier being the most effective. In this manuscript,
we propose analyzing LLM texts by the following metrics: FLESCH reading ease, DALE
CHALL readability, the Automated Readability Index (ARI), the COLEMAN LIAU index,
GUNNING Fog, SPACHE, and Linsear Write. The scores obtained by the use of these
formulas were designed by linguists to assess the readability of texts to approximate their
usability and have been extensively used by, for example, the Office of Education of the
United States of America to calibrate the readability of textbooks for the public school
system, daily newspapers and monthly magazines to target the appropriate audience, the
Department of Defense to help assess the adequacy of technical manuals, and, in general,
many US Government Agencies to evaluate the difficulty of a reading passage written
in English.

FLESCH reading ease [32] is a simple approach used to assess the grade level of the
reader. It is based on the average sentence length and the average number of syllables
per word. It is a score in the set [0, 100]; the higher the number, the easier the text is to
read. According to the scale, [0, 30] means a text is easily understood by a college graduate,
[60, 70] means it is easily understood by eighth and ninth graders, and [90, 100] means it is
easily understood by a fifth grader.
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DALE CHALL readability [33] calculates the grade level of a text sample based on
the average sentence length in words and the number of difficult words according to a
designated list of common words familiar to most fourth-grade students. Adjusted scores
are as follows: <5: Grade 4 and below; [5, 6): Grades 5–6; [6, 7): Grades 7–8; [7, 8): Grades
9–10; [8, 9): Grades 11–12; [9, 10): College; ≥ 10: College Graduate.

The Automated Readability Index (ARI) consists of a weighted sum of two ratio
factors: the number of characters per word, and the average number of words per sentence.
It assesses the understandability of a text and outputs a value that approximates the grade
level needed to grasp the text. For example, the tenth grade corresponds to 15–16 years
old, the eleventh grade corresponds to 16–17 years old, the twelfth grade corresponds to
17–18 years old, and greater than twelve corresponds to the level of college.

The COLEMAN-LIAU index [34] is similarly based on the average number of letters
per 100 words and the average number of sentences per 100 words. It is like the ARI, but
unlike most of the other metrics that predict the grade level, it relies on characters instead
of syllables per word.

GUNNING Fog [35] is based on the scaled sum of the average sentence length and
the percentage of hard words. It measures the readability of a text passage, and the ideal
value is 7 or 8. Texts with a score above 12 are too hard for most people to understand. The
measure scores highly with short sentences written in simple language but penalizes long
sentences with complicated words.

The SPACHE readability formula [36] is based on the average sentence length and the
number of difficult words according to a third grader. It is similar to Dale Chall, but for
primary texts until the third grade. To assess the readability of a text, SPACHE is first used,
and if the result is higher than third grade, Dale Chall is used.

Linsear Write is a readability formula based on sentence length and the number of
words with three or more syllables. Analogous to the previous formulations, it scores a text
passage according to the grade level.

Table 1 shows the proposed metrics on several example frames. The metrics are
computed on unique frames in Row 1–3 and on multi-frame configurations in Row 4–8. We
can observe that the storylines generated exhibit a relatively consistent behavior among the
statistical indices, where unique frames tend to be ranked at a lower grade level and multi-
frame configurations are closer to college level. All SPACHE readability indices are higher
than third grade, so Dale Chall has to be considered, where the frames are consistently
ranked with a median grade level of [7, 8]. Among the measures, GUNNING Fog presents
an ideal behavior, as all values are in the range of [7–12], which means that the level of
generated texts is comparable to that of established publications in magazines and books,
and therefore can be understood by the general public while presenting a rich vocabulary.

Table 1. Readability analysis of a random stream of data captured by RYZE Tello. Score (upper row)
and grade level (lower row) for each metric.

Frame(s)
Metric FLESCH Reading Ease Dale Chall ARI Coleman Liau GUNNING Fog SPACHE Linsear Write

00
68.36 6.56 6.29 9.10 9.47 4.56 6.1
[8, 9] [7, 8] [7] [9] [9] [5] [6]

01
84.22 6.06 3.63 4.36 8.18 3.91 7.14

[6] [7, 8] [9, 10] [4] [8] [4] [7]

02
84.57 5.67 3.80 5.04 7.40 4.18 6.46

[6] [5, 6] [9, 10] [5] [7] [4] [6]

03–05
71.11 6.82 10.27 7.89 11.81 5.82 13.14

[7] [7, 8] [16, 17] [8] [12] [6] [13]

06–07
82.08 6.82 4.36 7.89 7.56 3.64 6.94
[7, 8] [5] [8] [8] [4] [7]

08–10
74.30 6.35 7.05 7.53 10.58 4.87 9.0

[7] [7, 8] [13, 14] [8] [11] [5] [9]

11–13
75.94 6.33 8.54 7.47 10.76 5.33 11.5

[7] [7, 8] [9] [7] [11] [5] [12]
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7. Conclusions

An RIZE Tello drone is a small, lightweight, and low-cost quadrotor drone that is
equipped with a camera and is capable of autonomous flight. In this system, the drone is
used to capture video footage of a scene and transmit it to a ground computer in real time.

On the ground computer, the video stream is processed using state-of-the-art LLMs
together with a module of object detection to produce accurate text descriptions of a scene
in the form of captions. These captions can be used to provide a verbal description of the
scene for individuals who are deaf or hard of hearing, or to provide additional context for
individuals who are able to see the video footage.

A pipeline for semantic scene understanding given a stream of UAV data frames was
proposed. The methodology does not require fine-tuning; rather, it provides zero-shot text
descriptions. The modules consist of state-of-the-art architectures. A captioning module
based on CLIP Prefix for Image Captioning is wired through sentence formation to a
YOLOv7 object detector, and the generated text is enhanced by prompting GPT-3 natural
language instructions. We are the first to provide zero-shot UAV literary storytelling that
can stream to a ground computer in real time or after landing (in this latter case, the video
would be stored on an SD card, and the RYZE Tello drone needs to be equipped with
a board computer, e.g., a Raspberry Pi Zero W or a CORAL board) and that provides
state-of-the-art accurate literary text descriptions. Metrics used to assess the readability of
LLM texts are proposed, leveraging standardized measures from linguistics.

The system combines the capabilities of an RIZE Tello drone (or an NXP Hover
Games Drone) with advanced techniques of computer vision to provide a rich and detailed
description of a scene in real time. The system has potential applications in a wide range of
fields, including surveillance, search and rescue, and environmental monitoring.

As further work, the trajectory of the drone could be optimized for a certain filming
style to help the text description module to obtain better shots for particularly interesting
events that need to be addressed in the storyline. That being said, in the current work, we
did not take planning and trajectory issues into consideration and assumed that the UAV is
being remotely controlled or is flying using an adequate autopilot policy. In addition, GPS
coordinates and positioning information from other sensors such as IMU or LiDAR could
be used to further improve the resultant text descriptions by prompting the GPT-3 module
with the corresponding trajectories.

There are a number of other ways that the previously described system could be
extended or improved upon. Some potential areas of further work include the following.

The accuracy and reliability of the algorithms that handle captioning and object de-
tection can be improved: while current LLMs and object detection algorithms are highly
accurate, there is always room for improvement. Further research could focus on devel-
oping new techniques or fine-tuning existing algorithms to increase their accuracy and
reliability. Other sensors can be added: the RIZE Tello drone is equipped with a camera,
but additional sensors, such as LiDAR or RADAR, could allow the system to gather more
detailed and comprehensive data about the scene. The drone’s autonomy could be en-
hanced: the RIZE Tello drone is capable of autonomous flight, but further work could focus
on developing more advanced autonomy algorithms to enable the drone to navigate more
complex environments and perform more sophisticated tasks. Real-time analysis could
be implemented: at the moment, the system processes the video stream and generates
captions and object detections after the fact. However, implementing real-time analysis
could allow the system to provide updates and alerts in near-real time, making it more
useful for applications such as surveillance or search and rescue. Finally, applications could
be developed for specific domains: the system could be tailored to specific domains by
training the captioning and object detection algorithms on domain-specific data and devel-
oping domain-specific applications. For example, the system could be used for agricultural
monitoring by training the algorithms on data specific to crops and farm machinery.

The ultimate goal is to be able to confer autonomous systems (e.g., UAVs and self-
driving cars) with literary capabilities comparable to those provided by human counterparts.
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Specifically, the use of LLMs and VLMs push the boundaries of system perception and the
understandability of events, situations, and contextual information.
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