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Abstract: The integration of drones in the construction industry has ushered in a new era of efficiency,
accuracy, and safety throughout the various phases of construction projects. This paper presents
a comprehensive overview of the applications of drones in the construction industry, focusing on
their utilization in the design, construction, and maintenance phases. The differences between the
three different types of drones are discussed at the beginning of the paper where the overview of the
drone applications in construction industry is then described. Overall, the integration of drones in
the construction industry has yielded transformative advancements across all phases of construction
projects. As technology continues to advance, drones are expected to play an increasingly critical role
in shaping the future of the construction industry.

Keywords: drone application; unmanned aerial vehicle; smart construction; aerial inspections;
structure maintenance

1. Introduction

In recent years, the construction industry has witnessed a remarkable transformation
fueled by technological advancements. Among these innovations, drones have emerged
as game-changers, redefining the way construction projects are planned, executed, and
maintained. Equipped with sophisticated sensors, cameras, and GPS (global positioning
system) technology, drones offer unparalleled capabilities to capture real-time data, gen-
erate accurate 3D models, and conduct remote inspections. This review paper aims to
provide a comprehensive overview of the applications of drones in construction, shedding
light on their impact across different project phases and highlighting the potential benefits
they bring to the table.

Drones have rapidly evolved from being mere novelties to indispensable tools in the
construction sector. By utilizing different types of drones, construction professionals can
optimize their workflow, improve project coordination, and mitigate risks [1,2]. Surveying
drones, equipped with high-resolution cameras and LiDAR (light detection and ranging)
sensors facilitate precise mapping, topographical analysis, and site planning [3–5]. These
drones capture detailed aerial imagery and generate comprehensive 3D models, enabling
architects and engineers to make informed decisions about building placement, design
optimization, and resource utilization [6,7].

Inspection drones, on the other hand, provide an unprecedented advantage in assess-
ing hard-to-reach or hazardous areas of construction sites. Equipped with thermal cameras,
high-resolution imaging systems, and even artificial intelligence, these drones enable effi-
cient and accurate inspections of infrastructure, buildings, and equipment [8–10]. By swiftly
identifying structural defects, monitoring construction quality, and ensuring compliance
with safety regulations, inspection drones contribute to enhanced project transparency,
reduced manual labor requirements, and improved overall project outcomes.

Beyond the core phases of design and construction, drones continue to revolutionize
the maintenance stage. Regular inspections using drones enable proactive maintenance
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planning, identifying potential issues early on, and preventing costly repairs. By conducting
detailed assessments of buildings, bridges, and infrastructure, drones contribute to the
longevity and resilience of constructed assets. Additionally, the integration of drones in the
maintenance phase allows for the swift identification and resolution of defects, leading to
improved safety, and reduced downtime [8,11].

The utilization of drones in the construction industry represents a transformative leap
towards achieving higher levels of efficiency, safety, and sustainability. By harnessing their
data acquisition, monitoring, and inspection capabilities, construction professionals can
make informed decisions, improve project outcomes, and optimize resource utilization. As
drone technology continues to evolve, it is expected to play an increasingly pivotal role
in reshaping the construction industry, fostering innovation, and driving the adoption of
smart, resilient construction practices.

In this study, drone technology is reviewed by dividing the actual construction process
into three different phases. The architecture of the paper is organized as follows. Section 2
describes the three different types of drones used in the construction industry with the
advantages and disadvantages of using each of the drone types. Section 3 discusses
the drones used at the designing phase, Section 4 reviews how drones are used at the
construction phase and Section 5 overviews the maintenance phase, summarizing how
drones are applied to ensure effective maintenance. Then, the study concludes with sections
including challenges and opportunities and future directions.

2. Drone Types for Application in Construction Industry

There are various type of drones used in the construction industry for various purposes.
In reference [6], the study conducted surveys from many construction companies to find
out how drones were used for their construction projects and it showed that the most
popular use of drones was in capturing progress photos, followed by taking promotional
videos, conducting inspections, and enhancing site management (Figure 1).
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Figure 1. Drone applications result from survey companies [6].

As shown in Figure 2, fixed-wing drones, rotary-wing drones, and hybrid drones are
three types of drones or unmanned aerial vehicles (UAVs) that are commonly used for
various applications, including in the construction and maintenance industries. Each type
of drone has its unique advantages and disadvantages, and choosing the right drone for a
specific application depends on several factors, such as the size of the area to be covered,
the required payload capacity, and the environmental conditions in which the drone will be
operated (Table 1). Fixed-wing drones are ideal for covering large areas quickly [12], while
rotary-wing drones are more suitable for close-range inspections and operations in confined
spaces [13–15]. Hybrid drones offer a more versatile and adaptable solution, but may be
more complex and expensive than fixed-wing or rotary-wing drones [16]. Ultimately, the
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right drone for a specific application should be chosen based on a careful analysis of the
requirements of the task at hand.
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Table 1. Three types of drones.

Types of Drones References Brief Summary

Rotary-wing Drones

Calantropio, A et al. [17]
Villanueva, J.R.E et al. [18]
Templin, T et al. [19]
Anders, N et al. [20]

Large-scale topographic surveys

Yi, W et al. [21]
El Tin, F et al. [22] Aerial inspections and monitoring of construction sites

Sonkar, S et al. [23] Capturing images in difficult weather

Khan, S et al. [24] UAV platform research

Chae, M. H et al. [25]
Sujit, P.B et al. [26] Pilot’s expertise needs

Jin, J. W et al. [27] High initial cost of fixed-wing drones

Fixed-wing Drones

Yang, H et al. [28] Detailed inspections available

Altınuç, K. O et al. [29] Safe take-off and landing scenarios in case of failure

Freimuth, H et al. [30]
Kim, S.S. [31]

Accessible for small-scale civil engineering projects or
businesses with limited resources

Deng, C et al. [32] Limited flight time

Boon, M.A et al. [33]
Thibbotuwawa, A et al. [34]
Eck, C. [35]
Li, X et al. [36]

Structural issues impact quality and stability

Al-Rawabdeh et al. [37]
Jacob-Loyola, N et al. [38]
Motawa, I. et al. [39]
Khaloo, A et al. [40]
Lindner, G et al. [41]

High-resolution mapping, limiting advanced data collection
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Table 1. Cont.

Types of Drones References Brief Summary

Hybrid Drones

Panigrahi, S et al. [42]
Gunarathna, J.K et al. [43] Benefits of long flights

Saeed, A.S et al. [44]
Yuksek, B et al. [45] Increase detailed data collection

Nguyen, K.D et al. [46] Designed with numerical simulations

2.1. Fixed-Wing Drones

Fixed-wing drones offer several advantages for civil engineering applications but also
come with a few disadvantages. They have longer flight times compared to rotary-wing
drones. Their efficient forward flight allows them to cover larger areas and remain airborne
for an extended period, which is beneficial for large-scale surveying and mapping projects.
These drones can cover larger distances in a single flight due to their higher speed and
endurance. This increased coverage area makes them ideal for large-scale topographic
surveys [17–20], aerial inspections, and monitoring of construction sites [21,22]. Fixed-
wing drones are generally more stable in windy conditions than multi-rotor drones. Their
aerodynamic design and ability to withstand gusts allows them to maintain stability and
capture high-quality imagery even in challenging weather [23]. They have a higher payload
capacity, enabling them to carry heavier equipment such as high-resolution cameras and
LiDAR sensors. This capability allows them to capture detailed aerial data for the precise
mapping, 3D modeling, and volumetric analysis of construction sites. However, fixed-wing
drones have some disadvantages to consider. They have limited maneuverability and can-
not hover or fly in tight spaces like rotary-wing drones. This restricts their ability to inspect
vertical structures or perform close-range inspections in congested areas. Furthermore,
it requires a relatively longer runway or open area for take-off and landing compared to
vertical take-off and landing (VTOL) drones. This can be a constraint in sites with limited
space or challenging terrain [24].

Operating fixed-wing drones often requires skilled pilots due to their advanced flight
characteristics and longer flight distances. Pilots need expertise in planning flight paths, con-
ducting pre-flight checks, and coordinating with air traffic authorities, if necessary [25,26].
In general, fixed-wing drones are more expensive than rotary-wing drones due to their
sophisticated design and advanced flight capabilities. The initial investment required for
a fixed-wing drone system can be a barrier for small-scale civil engineering projects or
businesses with limited budgets [27]. While fixed-wing drones offer significant advan-
tages in terms of flight time, coverage area, and stability, their limited maneuverability,
longer take-off/landing requirements, complex operation, and higher initial cost should be
considered when selecting the appropriate drone for civil engineering applications.

2.2. Rotary-Wing Drones

Rotary-wing drones, also known as quadcopters and multi-rotor drones, have their
own set of advantages and disadvantages when used in the civil engineering field. Rotary-
wing drones provide excellent maneuverability and the ability to hover, making them
well-suited for close-range inspections of vertical structures and operating in tight spaces.
Their agility allows for detailed inspections of construction sites and infrastructure [28],
providing valuable data for engineers and project managers. These drones have shorter
take-off and landing requirements compared to fixed-wing drones [29]. They can perform
vertical take-offs and landings, eliminating the need for a runway or open area. This
makes them more suitable for operating in confined construction sites or areas with limited
space. Rotary-wing drones are relatively easier to operate compared to fixed-wing drones.
They can be flown by pilots with less training and experience, making them accessible for
small-scale civil engineering projects or businesses with limited resources [30,31].
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The main disadvantage of rotary-wing drones is their limited flight time. They have
shorter endurance due to the energy-intensive nature of hovering and maneuvering. This
restricts their coverage area and makes them less suitable for large-scale surveys or moni-
toring projects that require long flight times [32]. Furthermore, it can be affected by wind
and gusts more than fixed-wing drones. Their small size and lightweight construction
make them more susceptible to wind disturbances, which can impact flight stability and
the quality of captured data [33–36]. Compared to fixed-wing drones, rotary-wing drones
have lower payload capacities. They can carry lighter equipment such as small cameras
or sensors, which may limit their capabilities for high-resolution mapping or advanced
data collection tasks [37–41]. In summary, rotary-wing drones offer advantages in terms
of maneuverability, close-range inspections, and ease of operation. They are suitable for
small-scale projects and operations in confined spaces. However, their limitations include
shorter flight times, susceptibility to wind, and lower payload capacities.

2.3. Hybrid Drones

Hybrid drones combine the features and capabilities of both fixed-wing and rotary-
wing drones. They can take off and land vertically like rotary-wing drones, allowing
them to operate in tight spaces and perform close-range inspections. At the same time,
they can transition to fixed-wing flight for efficient forward flight, enabling them to cover
larger areas and achieve longer flight times. This flexibility makes them suitable for a
wide range of civil engineering applications. Hybrid drones offer extended flight times
compared to traditional rotary-wing drones. By transitioning to fixed-wing flight, they
can conserve energy and cover larger distances in a single flight. This is advantageous
for conducting large-scale surveys, mapping, and monitoring projects that require longer
flight durations [42,43]. The combination of vertical take-off and landing capability and
fixed-wing flight allows them to carry larger cameras, LiDAR sensors, or other equipment.
This enhances their capacity for detailed data collection, such as in high-resolution mapping
or 3D modeling of construction sites [44,45].

However, hybrid drones have some disadvantages to consider. They are generally
more complex to operate compared to single-mode drones. Pilots require specific training
and expertise to handle the transition between vertical and fixed-wing flight modes, as well
as understanding the nuances of operating a hybrid system. Furthermore, hybrid drones
may have higher initial costs compared to single-mode drones as the integration of both
fixed-wing and rotary-wing capabilities requires additional engineering and design, leading
to a potentially higher purchase price [46]. This cost factor may limit their accessibility for
smaller civil engineering projects or businesses with limited budgets.

3. Drone Application during the Designing Phase of Construction
3.1. Suitable Site Selection

Choosing the right site for any construction project is one of the first steps before
constructing a structure. It involves assessing various potential sites to determine the
most suitable location for the project. Drones play a significant role in this process by
providing valuable data and insights through aerial imagery and data collection. One of
the primary advantages of using drones for site selection and evaluation is the ability to
capture high-resolution aerial imagery [47,48]. Drones equipped with cameras can capture
detailed photographs and videos of the prospective sites from different angles and altitudes.
This imagery provides a comprehensive overview of the site, allowing project managers,
architects, and engineers to assess its characteristics and potential. The aerial imagery
obtained from drones enables the evaluation of factors such as accessibility, proximity to
transportation networks, and neighboring infrastructure. By analyzing this information,
stakeholders can determine if the site meets the project’s logistical requirements. They can
identify any limitations or challenges related to site access, which can impact construction
activities and the transportation of materials and equipment [49].
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3.2. Land Surveying and Mapping

Surveying and mapping construction sites using drones offers significant advantages
over traditional methods, revolutionizing the field of land surveying and providing valu-
able data for design and construction processes. Surveying with drones involves capturing
high-resolution aerial imagery that provides a comprehensive aerial perspective of the
construction site. The data collected by drones, including images and measurements from
sensors such as LiDAR [50–53] or thermal sensors [51], enables accurate assessments of the
site’s topography, existing structures, and boundaries. Precise measurements of distances,
elevations, and contours can be obtained, contributing to the creation of detailed 3D models
and accurate calculations. Additionally, drones assist in establishing survey control points
for precise georeferencing, ensuring the accuracy and reliability of subsequent mapping
activities.

Mapping with drones encompasses the generation of accurate maps and models of
the construction site using aerial imagery and photogrammetry techniques [49,54]. High-
resolution aerial imagery captured by drones covers large areas efficiently, providing a
visual representation of the site’s features. Photogrammetry algorithms process the overlap-
ping images to create 2D and 3D maps, including topographic maps that depict elevations,
contours, slopes, and other topographic features [50,55–57]. Orthomosaic maps, created by
stitching together multiple images, offer geometrically accurate and orthorectified repre-
sentations of the site, facilitating precise measurements, distance calculations, and visual
analysis. Moreover, drones assist in asset inventory by mapping existing structures, utilities,
and vegetation, allowing designers and planners to incorporate them into their design
processes [58,59].

The general process for using drones in surveying and mapping a construction site
involves several key steps. It begins with pre-flight planning, where the survey area
is defined, flight paths are determined, and necessary permits and safety measures are
ensured [25,60,61]. During the flight, the drone captures aerial imagery and data using
onboard sensors. Once the data are collected, it is processed using specialized software to
generate accurate maps, models, and orthomosaics [48,59,62,63], where Figure 3 shows a
general process of creating a digital terrain model regarding UAV photogrammetric process
and field survey parameters [64].
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Overall, the utilization of drones in surveying and mapping offers significant benefits,
including efficient data collection, high accuracy, comprehensive visual information, and
enhanced decision-making capabilities. The combination of surveying and mapping with
drones provides valuable insights for design, engineering, and asset management processes,
ultimately improving the efficiency and quality of construction projects.

4. Drone Application during the Construction Phase

The use of drones in the construction industry has been growing rapidly in recent
years. Drones offer numerous benefits during the construction phase, such as improving
safety, enhancing efficiency, and reducing costs. Figure 4 shows the percentage of content
for the references used in this section at construction phase where we can see that “support
for rescue operations”, at 31.6%, is most commonly used drone application.
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4.1. Earthwork and Grading Monitoring

Earthwork and grading monitoring using drones in the construction phase has rev-
olutionized the way construction projects are executed and managed. Drones equipped
with high-resolution cameras and advanced sensors offer a range of benefits, including
increased efficiency [65–67], improved accuracy [68–71], and enhanced safety [72–74].
Figure 5 shows a case study of a construction project of an apartment building complex
in Seoul, Republic of Korea for a 771 household capacity where a drone was used to 3D
model the area [70]. Using the UAV platform in this study, four primary analysis and visu-
alization types were performed. These were automatic volume calculation with cut-and-fill
volume data, height difference review by comparing two terrain models from different time
stamps, site monitoring through 2D/3D visualization, and documentation of the project
from start to completion. Traditional methods of earthwork and grading monitoring often
rely on manual measurements, which are prone to human error. Drones, on the other
hand, offer exceptional accuracy and precision. They capture precise measurements and
detailed images of the site, allowing for accurate volume calculations [75–78], cut and fill
analysis [77,79,80], and slope monitoring [81–83]. This level of accuracy helps minimize
rework, optimizes resource allocation, and ensures compliance with design specifications.
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4.2. Quality Control and Progress Monitoring

Drones play a crucial role in quality control by capturing high-resolution imagery
and data that allow for thorough inspections and defect detection. The detailed imagery
enables inspectors to identify even minor defects, such as cracks, corrosion, or surface
imperfections, that might be missed during ground inspections [84,85]. By comparing the
captured data with the construction plans or 3D models, inspectors can quickly identify
any deviations or errors in the construction process. This early detection of defects enables
timely rectification, ensuring that the project meets the required quality standards. Drones
also facilitate the systematic documentation and tracking of identified defects, providing a
clear record of issues that need to be addressed.

Drones provide an efficient and accurate method for monitoring construction progress
throughout the project’s lifecycle. By regularly capturing aerial imagery or conducting
photogrammetry surveys, drones enable project managers to assess the status of different
construction activities [86–89]. The captured data can be compared against the project
timeline, enabling progress tracking and the identification of any delays or bottlenecks.
Real-time progress monitoring allows for proactive decision-making and resource alloca-
tion adjustments to keep the project on schedule. Additionally, drones facilitate effective
communication among the construction team, enabling stakeholders to visualize and un-
derstand the progress of the project [90,91]. This visual documentation of the construction
site’s evolution aids in coordination, reducing the likelihood of misunderstandings, and
fosters a shared understanding of the project’s status among all stakeholders.

By leveraging drones for quality control and progress monitoring, construction projects
can significantly improve efficiency, minimize rework, and ensure that the project is de-
livered on time and within the specified quality standards. The use of drones enhances
the accuracy and thoroughness of inspections, enabling the identification of defects and
deviations from design plans. Real-time progress monitoring enables project managers to
proactively address any issues or delays, optimizing resource allocation and ensuring the
project stays on track. Ultimately, drones contribute to better construction outcomes, im-
proved project coordination, and enhanced communication among all project stakeholders.

4.3. Safety Monitoring

Safety monitoring using drones during the construction phase has emerged as a
valuable tool for enhancing safety practices and mitigating potential hazards. Drones
equipped with advanced cameras, sensors, and data processing capabilities offer several
benefits for safety monitoring in construction. By capturing high-resolution imagery
and videos, drones can identify unsafe conditions such as unstable structures, debris,
equipment malfunctions, or improper use of personal protective equipment [92–96]. The
aerial perspective allows inspectors to assess the overall safety of the site, identify potential
risks, and take necessary preventive measures [97–99]. Figure 6 shows a case study for
using a drone for safety monitoring in a high-rise building construction project in Santiago,
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Chile. From the study, it was possible to identify safety issues using drone images as shown
in the figure, such as a lack of guardrails and worker without safety rope, to ensure a safer
environment for the workers.
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In the event of an emergency or incident on a construction site, drones can quickly
provide real-time situational awareness. By capturing live video feeds and aerial imagery,
drones assist emergency response teams in assessing the situation, identifying access points,
and planning rescue operations [100–108]. Drones equipped with thermal cameras can
aid in locating missing persons or hotspots in fire incidents [109–117]. This real-time
information helps expedite emergency response efforts, ensuring the safety of personnel on-
site. Beyond safety monitoring, drones can enhance site security by providing surveillance
capabilities. Drones equipped with cameras and sensors can monitor the construction
site perimeter and detect unauthorized access [47,49,118,119]. The live video feeds and
recorded footage can be used for investigations, enhancing site security and protecting
valuable construction assets.

4.4. Material Tracking and Delivery

Drones are also being used in various industries for delivering materials including
the construction industry. [120–128]. They can deliver materials quickly and efficiently,
reducing the time and cost associated with traditional delivery methods. This is particularly
useful in areas with limited access or where heavy machinery cannot be used.

5. Drone Application during the Maintenance Phase

The use of drones in the maintenance of structures has been increasing in recent
years. Drones offer numerous benefits in structure maintenance, such as improving safety,
enhancing efficiency, and reducing costs. It can provide real-time data on the condition
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of structures, allowing maintenance teams to make informed decisions and adjust main-
tenance schedules accordingly. Drones equipped with high-resolution cameras, LiDAR
technology, and thermal cameras can detect defects and damage in structures that might
not be visible to the naked eye (Figure 7). This can help maintenance teams detect problems
early, before they become major issues. Furthermore, it is possible for drones to be used for
repair and restoration of structures. They can be used to apply coatings, sealants, and other
materials to structures in a fraction of the time it would take using traditional methods.
The following subsections discuss the research of the aforementioned areas.
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5.1. High Resolution Camera-Based Inspection with Drone

Drones have revolutionized the field of bridge maintenance. The ability to inspect bridges
from the air provides engineers and maintenance crews with valuable data that can be used
to ensure the safety and structural integrity of bridges. Drones equipped with cameras are
particularly useful for bridge inspections as they can capture high-resolution images of the
structure, allowing for a more detailed analysis of damage. One of the main advantages of
using drones for bridge inspections is the increased safety they provide [130–137]. Drones
can access areas that are difficult or dangerous for humans to reach, such as the underside
of bridges or high above the ground. This reduces the need for maintenance workers to
use scaffolding or other equipment, which can be expensive and time-consuming to set up.
Additionally, drones can be operated remotely, reducing the risk of injury to maintenance
workers who would otherwise have to climb the bridge structure to perform inspections.
Another benefit of using drones for bridge inspections is the speed at which they can
complete inspections. Drones can quickly fly over the bridge, capturing images and videos
that can be analyzed in real-time. This allows for a faster turnaround time for inspection
reports, reducing downtime for the bridge and minimizing disruption to traffic.

The high-resolution images and videos captured by drones can reveal details that may
be missed during a visual inspection by human inspectors. This can include cracks or other
signs of wear that are not immediately visible to the naked eye [138–140]. By providing a
more detailed analysis of the bridge, maintenance crews can identify potential problems
before they become serious issues, reducing the need for costly repairs and extending the
lifespan of the bridge. In addition to inspections, drones can also be used for ongoing
monitoring of bridge conditions. They can be programmed to fly over the bridge at regular
intervals and capture data on changes in the structure over time. This can help maintenance
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workers identify potential problems before they become a serious issue. For example,
drones can be used to monitor changes in the condition of the bridge after extreme weather
events such as floods, typhoons, and earthquakes [141–143].

One of the challenges of using drones for bridge maintenance is the need for skilled
operators. Drones require a trained operator who can maneuver the drone safely and
capture high-quality images and videos. Additionally, the analysis of the data captured by
the drone requires specialized knowledge and expertise. Therefore, it is essential to have a
team of skilled professionals to operate the drones and analyze the data.

The concept of using a drone equipped with a camera for damage detection of struc-
tures can be seen in Figure 8. Once the images are captured from the camera, it is transferred
to a computer for image processing to enhance the quality of the images, improve contrast,
and reduce noise or distortion. Then, various image analysis algorithms can be employed
to automatically detect and locate cracks in the processed images. These algorithms typi-
cally involve edge detection, texture analysis, or pattern recognition techniques to identify
regions that indicate crack presence. Here, detected cracks can be classified based on their
characteristics, such as length, width, orientation, or severity. It is worth noting that the
effectiveness of high-resolution cameras for crack detection depends on various factors,
such as the image quality, lighting conditions, surface texture, and the expertise of the
image analysts. It is important to establish appropriate standards and guidelines for image
capture, processing, and analysis to ensure accurate and reliable crack detection results.
Additionally, the integration of advanced technologies such as artificial intelligence (AI)
and machine learning can enhance crack detection capabilities by training algorithms
to recognize and classify cracks more accurately, thereby improving the efficiency and
effectiveness of the process.
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5.2. Drone Equipped with LiDAR for Structure Maintenance

LiDAR is a remote sensing technology that uses laser light to measure distances and
create detailed 3D maps of the surroundings. It is often referred to as the optical equivalent
of radar, as it uses light instead of radio waves. In a typical LiDAR system, a laser emitter
emits short pulses of laser light, usually in the infrared range. These pulses of light are
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directed towards the target object. When the laser light hits an object, a fraction of the
light is reflected back towards the LiDAR system where the time taken for the laser light
to return is calculated to measure the distance between the system and the object. By
combining these distance measurements with the known position and orientation of the
LiDAR device, a point cloud of the surrounding environment can be generated, which
represents the location and shape of objects.

Drones equipped with LiDAR technology can be a powerful tool for structure main-
tenance to ensure safety as they offer a wide range of advantages and opportunities for
efficient and effective inspection and monitoring of various structures, including buildings,
bridges, and industrial facilities. The ability to generate accurate 3D point cloud data
of structures can be utilized for the precise mapping, modeling, and visualization of the
structure, providing valuable insights for maintenance and assessment purposes [145–148].
These data can be processed and analyzed to detect and identify various structural is-
sues, including cracks, deformations, and corrosion [131,149]. By comparing the captured
data with reference models or previous scans, changes in the structure’s condition can be
identified, allowing for timely maintenance interventions and the prevention of further
deterioration or failure.

While the utilization of LiDAR-equipped drones for structure maintenance holds im-
mense potential, it is important to consider the challenges associated with this technology.
Data processing complexity is one such challenge, as the captured LiDAR data require special-
ized software and expertise to convert it into useful information for analysis [150,151]. Skilled
operators are required to operate the drones and process the collected data effectively. Another
challenge lies in adverse weather conditions. Rain, fog, or other inclement weather can af-
fect the performance of LiDAR systems, potentially reducing data quality or hindering data
collection altogether. This limitation necessitates careful planning and scheduling of drone
operations to ensure optimal weather conditions for data collection. Sensor accuracy is
another aspect that requires attention. While LiDAR sensors offer high precision, variations
in sensor quality or calibration can impact the accuracy of the captured data. The regular
calibration and maintenance of the LiDAR system are crucial to ensure reliable and accurate
measurements. Signal interference is also a consideration when using LiDAR-equipped
drones. Obstacles such as trees, power lines, or other structures in the vicinity can obstruct
the LiDAR signals, leading to incomplete or distorted data. Proper flight planning and
obstacle avoidance algorithms are essential to mitigate these interference issues and ensure
data integrity.

To address these challenges, researchers are exploring advanced data processing tech-
niques to streamline the analysis of LiDAR data and extract meaningful information more
efficiently. Improved sensor technologies and calibration methods are being developed
to enhance the accuracy and reliability of LiDAR measurements [152–155]. Moreover,
advancements in drone navigation and obstacle avoidance systems are being pursued
to ensure safer and more precise operations, even in complex environments [156–160].
Integration with other sensing technologies, such as thermal imaging or multispectral
cameras, is also being explored to enhance the inspection capabilities of LiDAR-equipped
drones and enable a more comprehensive assessment of structural conditions.

5.3. Drones Equipped with Thermal Camera for Structure Maintenance

Thermal cameras mounted on drones enable the capture of thermal images, providing
valuable insights into temperature variations and potential issues within the structures
being inspected [118,161–163]. Thermal cameras capture infrared radiation emitted by
objects, allowing the visualization of temperature variations. By detecting these tempera-
ture differences, thermal camera drones can identify various structural issues, including
insulation problems, moisture infiltration, electrical faults, and thermal bridges. The ability
to identify these anomalies at an early stage enables proactive maintenance and prevents
further damage or deterioration.
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Once thermal images are acquired, image processing and analysis techniques are
employed to extract valuable information and identify potential anomalies. Image en-
hancement, noise reduction, and temperature calibration are crucial steps in preparing the
thermal data for analysis. Advanced algorithms and machine learning approaches can be
applied to automate the anomaly detection process, improving efficiency and reducing the
burden on inspectors.

Several case studies and real-world applications have demonstrated the effectiveness
of thermal camera drones in structure maintenance. These applications include monitoring
the energy efficiency of buildings, assessing the integrity of infrastructure, inspecting solar
panels, and identifying insulation or HVAC (heating, ventilation and air conditioning)
system failures. The use of thermal camera drones for structure maintenance offers signifi-
cant advantages in terms of accessibility, early anomaly detection, and cost-effectiveness.
With continued advancements in drone technology, thermal imaging capabilities, and data
analysis techniques, the integration of thermal camera drones into standard maintenance
practices holds immense potential for enhancing the safety and longevity of structures.

6. Challenges and Opportunities

With the opportunities provided by the wide application of drones using in civil
engineering projects, there are still challenges that need to be addressed to fully leverage
the potential of drone technology in this field. For all three phases of design, construction,
and maintenance, one of the crucial challenges is its limited flight time and range as battery
life remains a significant constraint for drones. Most commercial drones have relatively
short flight durations, limiting their ability to cover large construction sites or inspect exten-
sive infrastructure. This limitation hampers their overall operational efficiency, requiring
frequent battery replacements and recharging. Currently, research and development efforts
are continuously improving battery energy density and recharge rates, allowing drones to
operate for longer periods and cover greater distances. The adoption of alternative power
sources, such as fuel cells, solar panels, or wireless charging, could potentially eliminate the
need for frequent battery replacements, enhancing operational efficiency. Environmental
conditions such as strong winds, rain or fog can impede drone operations affecting project
time which is another challenge for drones. Drones are susceptible to turbulence caused
by high winds, and precipitation can damage sensitive electronic components, leading
to potential downtime and increased maintenance costs. Designing drones with robust
structures, waterproofing, and advanced navigation systems can enable them to withstand
harsh weather elements and continue operations in challenging environments safely. With
the opportunities that lie ahead with drone technologies to improve safety at construction
sites, monitoring processes, surveys, 3D modeling and more, civil engineers can harness
the capabilities of drones to drive innovation, optimize project management, and promote
safer and more sustainable infrastructure development.

7. Future Directions

Over the years, drone technology has evolved and become more sophisticated, offering
a wide range of applications in areas such as those shown in this study. From this, we can
predict that future drones will be equipped with advanced automation and AI capabilities
to conduct missions with minimal human intervention such as autonomous flight planning
and obstacle avoidance. AI-powered drones can autonomously navigate complex terrains,
identify and assess potential hazards, and conduct advanced data analysis. This automation
streamlines data collection, data processing, and reporting, enabling civil engineers to make
informed decisions faster and more accurately. Furthermore, improvements in battery
technology and drone design will lead to extended flight times to allow drones to cover
large areas in a single flight, making them more effective for tasks where an extensive
reviewer works on energy storage systems, as can be found in reference [164].

An extremely encouraging prospect for the future of drone applications in the civil
industry involves incorporating 5G connectivity. The advanced capabilities of 5G net-
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works, including substantially higher data transfer rates, remarkably low latency, and
expanded capacity, enable seamless real-time communication between drones and ground
stations. Through the implementation of 5G-enabled drones, civil engineers gain the ability
to remotely oversee construction sites and infrastructure with enhanced accuracy and
efficiency. This seamless exchange of high-resolution data and live video feeds empowers
them to make agile decisions, enabling swift responses to dynamic project conditions.
Collaborative swarm technology is another area which needs to be further researched in
the future for drones as their ability to operate in swarms will revolutionize various civil
industries. Drones working together will enhance efficiency and data collection capabilities
which can be applied at construction sites. Such technology could possibly increase the
demand for drones and with the increase in numbers, one cannot ignore that there will be a
strong emphasis on making drones more environmentally friendly and sustainable. This
could involve using bio-inspired designs, energy-efficient propulsion systems, Micro Air
Vehicles [165], and materials with reduced environmental impact.

8. Conclusions

In conclusion, the review of drone applications in the construction industry under-
scores their significant contributions across various phases of the construction process,
including design, construction, and maintenance. The utilization of different types of
drones has proven to be immensely beneficial in enhancing efficiency, accuracy, and safety
within the industry.

During the design phase, drones equipped with high-resolution cameras and ad-
vanced mapping capabilities have revolutionized site surveys and aerial mapping. These
drones enable construction professionals to gather precise data, generate accurate 3D
models, and assess topography. This, in turn, facilitates informed decision-making and
enhances the overall design process. In the construction phase, drones have played a
vital role in monitoring construction progress, conducting inspections, and ensuring safety.
Equipped with real-time video transmission and thermal imaging cameras, drones provide
a comprehensive and timely overview of the construction site, identifying potential issues
for increasing productivity. Furthermore, drones have also demonstrated their utility in the
maintenance phase of construction projects. By conducting routine inspections of structures,
buildings, and infrastructure, drones efficiently detect and identify any damages, enabling
proactive maintenance, cost reduction, and the prolongation of asset lifespan.

Overall, the integration of drones in the construction industry has brought about
transformative advancements in efficiency, accuracy, and safety across all phases of the
construction process. As technology continues to advance, it is expected that drones
will increasingly play a critical role in shaping the future of the construction industry,
empowering professionals to achieve higher productivity, minimize risks, and deliver
projects of exceptional quality.
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