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Abstract: Unmanned aerial vehicles (UAVs) are becoming more common in wireless communication
networks. Using UAVs can lead to network problems. An issue arises when the UAVs function in a
network-access-limited environment with nodes causing interference. This issue could potentially
hinder UAV network connectivity. This paper introduces an intelligent packet priority module (IPPM)
to minimize network latency. This study analyzed Network Simulator–3 (NS-3) network modules
utilizing Manhattan long short-term memory (MaLSTM) for packet classification of critical UAV,
ground control station (GCS), or interfering nodes. To minimize network latency and packet delivery
ratio (PDR) issues caused by interfering nodes, packets from prioritized nodes are transmitted first.
Simulation results and evaluation show that our proposed intelligent packet priority module (IPPM)
method outperformed previous approaches. The proposed IPPM based on MaLSTM implementation
for the priority packet module led to a lower network delay and a higher packet delivery ratio. The
performance of the IPPM averaged 62.2 ms network delay and 0.97 packet delivery ratio (PDR).
The MaLSTM peaked at 97.5% accuracy. Upon further evaluation, the stability of LSTM Siamese
models was observed to be consistent across diverse similarity functions, including cosine and
Euclidean distances.

Keywords: UAV communications; FANET; FlyNetSim; NS-3; MaLSTM; packet priority

1. Introduction

An unmanned aerial vehicle (UAV) is a type of remote-controlled airplane. UAVs
have the option of being remotely piloted in real time or flying independently along pre-
determined routes. This variety of aircraft, known as drones, is on the rise across all
industries. The increased use of UAVs in daily life has piqued the interest of researchers
who study UAVs. Currently, 68% of UAV purchases and usage are for professional pur-
poses, according to a report by Skylogic Research [1]. UAVs are utilized for a variety
of professional applications, including agricultural surveillance, disaster management,
and environmental monitoring [2,3]. UAVs find application across diverse industries,
encompassing agriculture, disaster relief, and environmental research, among others.

The UAV communication infrastructure can function as an extended wireless com-
munication range connection [4]. Additionally, Callegro et al. [5,6] investigated UAVs and
networks. Real-world UAV networks face numerous logistical obstacles, particularly in
urban or densely populated areas. Due to the nature of UAVs, a large operating area is
required. Therefore, digital simulation is extremely essential for UAV and network research.

FlyNetSim is a prominent example of a currently available simulator for UAV networks.
The network simulation in FlyNetSim is implemented using Ns-3, while the configuration
of UAVs is facilitated via ArduPilot. NS-3 is an open-source network simulator that is
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supported by a community of developers and users [7]. ArduPilot is a simulator that
simulates UAVs with capabilities for control, navigation, and route planning. ArduPilot
is also capable of controlling submarines, ships, rovers, multi-copters, helicopters, and
fixed-wing aircraft [8]. FlyNetSim can simulate the interactions between UAV operation
and network environment, including sensing, navigation, and battery health [9].

The utilization of UAVs may encounter challenges associated with network connec-
tivity. An illustrative instance arises when the UAV is situated in a geographical area
characterized by the presence of multiple interfering nodes vying for network channels.
Interference in communication networks is a pervasive challenge that can affect the per-
formance and reliability of UAV communication systems, regardless of the underlying
network technology, including 4G, 5G, and beyond. In areas where UAVs operate, such
as urban environments or airspace shared with other wireless devices, frequency conges-
tion can occur. This congestion can lead to interference as multiple devices compete for
limited frequency bands, resulting in degraded signal quality and increased packet loss.
This matter has the potential to lead to delays in network connectivity. The latency of the
unmanned aerial vehicle (UAV) experiences an increase in proportion to the number of
nodes that are causing interference.

To remedy the latency issue, Jauzak et al. [10] devised a socket priority module. This
socket priority module assigns transmissions from UAVs and their GCS with priority
identifiers. Nonetheless, UAV applications may experience network-related issues. One
of the factors contributing to the challenges faced by UAVs is the presence of numerous
interfering networks in their operating area, resulting in contention for network channels.
This phenomenon has the potential to result in delays inside the network. As the number of
interfering nodes increases, the delays experienced by the UAV is proportionally amplified.
We constructed an intelligent package priority module to determine the priority of packets
that the network processes, in order to reduce delays and increase the PDR in wireless
communications caused by interfering nodes. The specific contributions made by this
endeavor include the following:

(1) Design and implementation of an IPPM using a deep learning algorithm, MaLSTM,
in a NS-3 environment with a Python binding module;

(2) Via the proposed IPPM, provision of an efficient solution to a number of issues induced
by interfering nodes, related to minimizing delays and increasing PDR in wireless
communication between UAVs and their GCS.

This paper is organized in the following manner. The related work and current state
of the art in this domain are discussed in Section 2. Section 3 presents a comprehensive
overview of the intelligent packet priority module that is proposed. The performance eval-
uation of our proposed method is presented in Section 4, including the results, discussions,
and analysis. The concluding section of the paper is denoted as Section 5.

2. Related Work
2.1. UAV

The main goal of UAV models is to mimic how UAV systems work and how they
move through the air. Some models, like the H-SIM Flight Simulator [11], can simulate
planes that are autonomously driven. PX4 and ArduPilot are two software applications
commonly employed by individuals to operate and manage diverse setups of UAVs,
encompassing multirotors, fixed-wing aircraft, and helicopters, as well as ships and rovers.
Also, compared with PX4, it supports a wider range of systems, such as Erle-Brain [12],
Pixhawk [13], and NAVIO [14].

There are five main components that make up ArduPilot: the vehicle code, the tool
files, the open-source library, the hardware abstraction layer (AP HAL), and the external
support code (such as MAVLink and DroneKit) [15]. Figure 1 shows how the main parts of
ArduPilot are put together. The ArduPilot software platform facilitates the development of
specialized UAV simulators to augment their operational capabilities.
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Figure 1. Ardupilot Structure.

The robot operating system (ROS) [16] helps Gazebo [17] simulate aircraft, land rovers,
and miniature robots. The Gazebo simulator’s size makes simulating multiple vehicles in
one environment difficult. XPlane-10 and RealFlight use ArduPilot. Most of the models
address navigation and mobility issues. FlyNetSim needs software in the loop (SITL) for
autonomous navigation, especially ArduPilot software. ArduPilot runs quickly on end-user
PCs without hardware, thanks to SITL. The approach uses ArduPilot’s ability to automate
across platforms. SITL uses sensor data from a flight simulator’s flight dynamics model.
The ArduPilot system can connect multiple vehicle simulators and external simulators.
SITL lets ArduPilot use multi-rotor aircraft, antenna trackers, camera gimbals, underwater
vehicles, fixed-wing aircraft, ground vehicles, lidar, and optical flow sensors.

2.2. Flynet Simulator

FlyNetSim is an open-source simulator that model networks and UAVs. It was de-
veloped using NS-3 and ArduPilot. The implementation of FlyNetSim holds promise in
augmenting the experimental procedure by means of simulating an edge server, a UAV,
and wireless networks. In contrast to alternative integrated UAV-network simulators,
FlyNetSim possesses the capability to effectively manage diverse UAV-control scenarios, en-
compassing the transmission of data streams, the regulation of telemetry, and the utilization
of multiple UAVs.

The architecture of FlyNetSim is illustrated in Figure 2, comprising four main components:

1. A fly simulator facilitates the launch and operation of UAVs, GCS, and visualiza-
tion tools;

2. A network simulator replicates the real-world network architecture and its surround-
ing nodes that compete with each other;
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3. Middleware enables bidirectional network communications based on ZeroMQ;
4. Autogen is proposed for the purpose of creating a comprehensive map of the vari-

ous components of the UAV, including sensors, as well as their corresponding net-
work nodes.
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2.3. Machine Learning for Priority-Related Module

Advances in artificial intelligence (AI), specifically in machine learning (ML) and
deep learning (DL), have led to significant accomplishments across various disciplines.
Deep learning algorithms are considered to be one of the most impactful and innovative
paradigms for wireless radio technology in upcoming network generations. It is anticipated
that forthcoming wireless networks will facilitate exceptionally elevated rates of data
processing and innovative applications, thereby mandating radio support for intelligent
adaptive learning and decision making. In recent articles, authors have highlighted the most
impressive achievements of machine learning techniques in comparison to conventional
methods and have proposed research recommendations on networking utilizing ML or DL
to motivate academicians to develop innovative algorithms. Researchers can use ML/DL
to design and optimize UAV-based wireless communication systems [18].

Several studies have provided summaries of the application of ML/DL to wireless
communication problems. Luong et al. [19] provided an exhaustive overview of deep
learning for applications including data offloading, wireless caching, data rate control,
network security, dynamic network access, and connectivity preservation. Other studies
have examined the implementation of deep learning algorithms in particular domains, such
as mobile edge caching [20], vehicular networks in 6G [21], URLLC in 6G networks [22],
and the Internet of Things (IoT) [23]. Interference from unauthenticated nodes contributes
to high network latency and low PDR in the communication between UAV and GCS.
For this reason, QoS must be implemented for managing packet delivery. Bezmenov
et al. [1] applied the reinforcement learning (RL) algorithm to predictive quality of service
(PQoS) to optimize the efficiency and adaptability of wireless network communication
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through accurate predictions. In addition, for the UAV and GCS interfaces, Jauzak et al. [10]
proposed a module priority setting. The objective of this prioritization is to give precedence
to drones and GCS packets. In order to mitigate the latency resulting from the presence of
interfering nodes, the payload with the highest priority is ultimately transmitted first. That
study was carried out by implementing a prioritization mechanism that assigned a higher
priority to sockets originating from trusted nodes in order to enhance network performance.
This present investigation does not incorporate a deep learning/machine learning strategy.

Jeganathan et al. [24] proposed a UAV-assisted, cooperative wireless communication
system to transmit sensor observations to a terrestrial base station. The average age of the
information was predicted using LSTM algorithms. The age of information (AoI) concept
combined with full-duplex unmanned aerial vehicles (FD-UAVs) can improve wireless-
powered sensor network latency and spectrum efficiency. AoI reduced latency through
identifying system parameters that cause it, while maintaining QoS. The results suggested
a positive correlation between self-interference (SI) and average interference amplitude
(AAoI). To determine how design parameters affect wireless systems used by UAVs, a
comprehensive analysis is needed [18]. UAV systems must be evaluated using QoS metrics
to determine their effectiveness. Coverage probability, throughput, latency, and reliability
are important metrics. Performance evaluations can also reveal UAV design tradeoffs.

Umair et al. [25] proposed a maximum entropy classifier and multilayer deep neural
network (DNN) for ITC. The Moore dataset was initially processed using OneHotEncoding
for categorical variables. After preprocessing, the data were split into training and testing
sets. An extra-trees classifier selected common flow features from preprocessed data. After
training the feedforward DNN, the output layer used a maximum entropy classifier. The
proposed multilayer DNN had 99.23% accuracy. Several SVM and KNN tests were run for
comparison. These tests showed SVM accuracy of 98.90% and KNN accuracy of 98.56%.
Multilayer DNN has great potential, as shown by that comparison. Khawaja et al. [26]
proposed using multi-agent reinforcement learning (RL) with MMPAR on UAVs to detect,
track, and classify UAVs in swarms. Small radar cross-sections, varying flight parameters,
and close UAV trajectories make traditional methods difficult. Manual or fixed algorithm-
based radar parameter and positional adjustments are limited. The proposed method
uses RL to dynamically adjust radar parameters and position to improve swarm UAV
detection, tracking, and classification. Simulations have shown that RL-based adjustments
outperform other AI algorithms by learning the environment through rewards in real
time. Khan et al. [27] examined how UAVs’ high mobility, frequent topology changes,
and 3D movement affected routing in flying ad-hoc networks (FANETs). Topology-based
routing is becoming more important in FANET ad-hoc networking protocols. Throughput,
end-to-end delay, and network load can be improved by topology-based routing protocols.
That text briefly summarizes these protocols, highlighting their data exchange features
and pros and cons. To evaluate topology-based routing protocols, the OPNET simulator
was used.

Ortiz et al. [28] described the service quality of flying ad hoc networks’ wireless drone
swarm ad hoc networks. Drones can transmit and receive data like routers, functioning as
hierarchical nodes for MPLS, FHAM, and IPv6 protocols. FANET quantifies many network
performance metrics, including delay, jitter, throughput, lost packets, and sent/received
packets. Various configurations of drones, including swarms consisting of 10, 20, 30, and
40 units, were subjected to testing. That study investigated the registration process and
message sequences of swarm drones, analyzed end-to-end drone traffic, identified security
vulnerabilities, and observed service patterns. Simulated measures, namely those indicating
favorable outcomes, were employed to forecast trends in the actual world. The findings
of this study provide insights into the anticipated behavior of the network in real-world
scenarios, hence informing the forthcoming experimental investigation. Additionally, Ortiz
et al. showcased the assessment of experience quality by utilizing service quality indicators
obtained from mathematical models and effectively applied the quality-of-experience
approach in the agricultural sector, mainly focusing on drones as the primary subject.
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This article utilizes the MaLSTM algorithm to analyze previous flight data and trajec-
tory predictions for accurate UAV path forecasting, based on the explanations provided
regarding UAV-related research. Furthermore, the UAV’s capacity to identify similarities
between various flight paths can assist in preventing collisions, enabling it to promptly
detect and mitigate potential dangers. Furthermore, MaLSTM can aid in mission planning
by assessing the appropriateness of various flight paths in complex scenarios involving
multiple UAVs. The role of anomaly detection in UAVs is to improve safety by identifying
deviations from expected flight patterns. Integrating the MaLSTM algorithm into the UAV
navigation system can enhance autonomous decision making by enabling UAVs to modify
their routes based on the constantly evaluated resemblance to the expected pattern, thereby
enhancing the performance of the network.

3. Proposed Method
3.1. Intelligent Packet Priority Architecture

In this work, when displaying communications from trusted nodes, we provide
priority to the interface of trusted nodes. The intelligent packet priority module, also
known as the IPPM, acts as a replacement for the default application priority that is used
by the network. It is predicted that the interfering node will be effectively overwhelmed if
priority is given to the trusted node. This allows the access point to successfully process
the trusted packet ahead of the interfering packet, because the trustworthy packet was
given priority.

The proposed algorithms, which are based on Ardupilot and NS3, were implemented
in FlyNetSimulator, which was used to run the simulation. Figure 3 illustrates how we
utilized the system architecture to operate the IPPM within the FlyNetSim framework. The
NS-3 simulator was linked to the IPPM environment using the Python binding module
(PBM). C++ was utilized during the development of the NS-3 interface, whereas Python
was utilized during the development of the IPPM. Through the transfer of data facilitated
by the PBM, the IPPM establishes a connection between the NS-3 and the MaLSTM models.
Both parties have access to the PBM, which is primarily controlled in NS-3 and is accessible
to them both. The network and topology configurations that produce training data for the
MaLSTM model in IPPM were created with the help of the NS-3 simulator, which was used
to configure the network and topology. The MaLSTM algorithm is utilized in order for the
IPPM to provide the functions necessary for priority packet prediction.
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3.2. IPPM Algorithm

This section is dedicated to discussing the IPPM algorithm. When transmitted, packets
from the UAV, GCS, and interfering nodes travel through the base station. Figure 4 depicts
IPPM’s algorithm.
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When UAV, GCS, and interfering nodes transmit packets, the base station’s IPPM mod-
ule classifies the packets. Priority packets can only be transmitted by UAV or the GCS, not
by interfering nodes, which improves security by blocking unauthorized access from nodes
outside the trusted UAV and GCS infrastructure, protecting critical communications from
potential malicious attacks. The system optimizes performance and reliability by restricting
priority packet transmission to UAVs and the GCS, which have specialized communication
hardware and protocols for efficient handling of such traffic. Centralizing the transmission
of priority packets to UAVs and the GCS enhances control and coordination of critical
operations, facilitating efficient network resource management and traffic prioritization.
Priority files are placed in the primary queue pool and sent first after classification. If there
are remaining slots in the queue pool and no packet arrival updates have been received,
the remaining slots are utilized by packets sent via the interfering node. The detail of the
proposed algorithm is described in Algorithm 1.

Algorithm 1. Intelligent Packet Priority Module Algorithm

Input: Arriving packets
Output: Packets queue

1:
2:
3:

4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

16:

Initialize PacketQueue
Initialize PrioritizedPacketList
Initialize InterferingPacketList

Function classify_packets(packet)
If packet comes from UAV or GCS
Predict priority using MaLSTM model
If packet is prioritized
Add packet to PrioritizedPacketList
Else
Add packet to InterferingPacketList
End If
Else If packet comes from an interfering node
Add packet to InterferingPacketList
End If
End Function
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Algorithm 1. Cont.

17:
18:
19:
20:
21:

22:
23:
24:
25:
26:

27:
28:

29:

30:
31:
32:
33:

34:
35:
36:
37:
38:

Function process_packet_queue()
While PacketQueue is not empty
packet <- get next packet from PacketQueue
classify_packets(packet)
End While
End Function

Function send_packets()
For each prioritized_packet in PrioritizedPacketList
send prioritized_packet
End For
available_slots <- QueueCapacity - size(PrioritizedPacketList)

If available_slots > 0
interfering_packets_to_send <- get first N packets from InterferingPacketList where N is
available_slots

For each interfering_packet in interfering_packets_to_send
send interfering_packet
End For
End If
End Function

While True
process_packet_queue()
send_packets()
Wait for next packet arrival or time interval
End While

3.3. Model Architecture

In recent years, there has been significant attention given to long-short-term memory
(LSTM) [29], a powerful variant of a recurrent neural network (RNN) used in deep learning,
due to its capability to model long-term dependencies and sequential data. In contrast to
RNNs, LSTM is immune to the vanishing gradient issue [30]. Using its internal processes
called gates, it controls the flow of information and keeps its state consistent throughout
time. In particular, LSTM’s track record of success in handling sequences of varying lengths
was a major factor in our decision to use it. LSTM incorporates the following changes,
given the input vector xt, the hidden state ht, and the memory state ct:

ht = ot ⊙ tanh(ct) (1)

ft = sigmoid
(

W f xt + U f ht−1 + bt

)
(2)

ĉt = tanh(Wcxt + Ucht−1 + bc) (3)

ct = it ⊙ ĉt + ft ⊙ ct−1) (4)

ot = sigmoid(Woxt + U0ht−1 + b0) (5)

ht = ot ⊙ tanh(ct) (6)

where it, ft, and ot represent input, forget, and output gates, respectively, at time t. Wk, and
Uk are LSTM parameterized weight matrices, bk is the bias vector for each k in {I, f, c, o}, and
⊙ is the Hadamard product, which is merely an entrywise multiplication. The MaLSTM is
a variant of the conventional LSTM in which the hidden state comparison between the two
final layers is performed using the Manhattan distance formula as opposed to the cosine
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or Euclidean distances. The Siamese design is characterized by the utilization of shared
weights among subnetworks, resulting in a reduction in the number of parameters and
mitigating the risk of overfitting.

Incorporating both the Siamese structure and the Manhattan distance, as its name
suggests, the MaLSTM model is well named for its combination of these two features. The
original objective of MaLSTM was to evaluate two sentences to determine whether they
were semantically equivalent [31,32]. MaLSTM has been tailored to the context of packet
identifiers in our proposed algorithm. The pairs of sentences become bundles. Siamese
networks, like the one used by MaLSTM, have two identical parts (LSTMa and LSTMb) that
each take in a vector representation of two packets and produce a hidden state encoding a
feature of the packets. As shown in Figure 5, a similarity measure was used to compare
these hidden states and acquire a similarity score. Our proposed architecture operates by
determining the similarity between incoming packets and LSTMa and comparing it with
packets that should be prioritized by LSTMb. A packet is classified as a prioritized packet
if its similarity is 50% or higher. Conversely, packets with a similarity level below 50% are
considered as packets sent from interfering nodes.
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3.4. Packet Pairs Dataset

To train the MaLSTM, we created a dataset of packet pairs that mimicked the structure
of Zhang’s [28] query retrieval dataset. We extracted the packets sent by connected nodes
in the FlyNetSim network, i.e., UAV nodes, GCS nodes, and contending nodes, in order to
construct the dataset. The collection contained 32,316 samples of packets. In Table 1, we
describe the sample row of our dataset.

Table 1. Example Row of Packet Pairs Dataset.

Packet 1 @@@U_000***1***1671196580***472***0x5643cb247a40***
TELEMETRY:***last_heartbeat***0.149132145#7557#7570

Packet 2 @@@G_000***17***1671196612***80***0x5643cb247de0*** COMMAND:
***HEARTBEAT_MESSAGE

Label 1 (Similar)

Each sample was comprised of a pair of packets containing the ground truth regarding
its similarity (1: similar, 0: dissimilar). Important packets from UAV and GCS nodes have
distinct characteristics compared with packets from competing nodes. The characteristics
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are described as packet source, packet identifier, packet timestamp, socket identifier, and
command–telemetry message.

3.5. Model Training

Algorithm 2 describes the training process for the proposed model. We used the
Adadelta method [32] for weight optimization to reduce the learning rate autonomously
throughout model training. Gradient extraction with a threshold of 1.25 was also used to
avoid the expanding gradient problem [33]. The size of our LSTM layers was 15, and the
size of the embedding layer was 30. Mean squared error (MSE) was utilized as a standard
regression loss function for prediction, and backpropagation was used to minimize cross-
entropy loss with sample sizes as small as 64. To investigate the effect of threshold, we
trained our model for 100 epochs with a wide range of values. The parameters were
determined through empirical testing. Each parameter was adjusted independently on a
development set in order to select the optimal value. Our model was created using Keras
and PyTorch.

Mapping between the space of sequences of varying lengths din and a representation of
hidden states (drep) of fixed dimension was achieved using LSTM. Each packet represented
as a feature vector sequence (i.e., Packet1 = x1, x2, x3, x4, x5; Packet2 = x1, x2, x3, x4, x5) was
supplied to the LSTMa and LSTMb, which updated their concealed state (ha and hb) at each
sequence index point.

The final state of each LSTMa and LSTMb was a drep-dimensional vector, denoted by
ha and hb in lines 7 and 8 of Algorithm 1. This vector contains the packet’s characteristics:

ŷ = exp
(
−
∣∣∣∣∣∣h(LSTMa) − h(LSTMa)

∣∣∣∣∣∣1) (7)

Similarity between pairs of sequences was calculated using the given network. Using
the Manhattan similarity function, as indicated in line 9 of Equation (7), we determined the
degree of similarity between the two vectors representing the underlying properties of each
packet (ha and hb). The desired output of our model is to classify whether the predicted
packet is similar to packets from important nodes (UAV and GCS) or not. Nevertheless,
given the presence of a negative exponent, the Manhattan similarity function (y_hat, or ŷ)
is a continuous value between 0 and 1.

Algorithm 2. Model Training

Input: Packet pairs training set, epoch
Output: Trained model, loss, and accuracy history

1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

Packet1, Packet2← packet pairs from dataset
y← label of packet pairs
lstm← initiate LSTM(input_size, hidden_dim)
threshold← [0.1, 0.3, 0.5, 0.7, 0.9]

For each Epoch
Packet1, Packet2← embed(Packet1, Packet2)
LSTMa, (ha, ct) = self.lstm(Packet1)
LSTMb, (hb, ct) = self.lstm(Packet2)
y_hat← exp(-abs(ha[-1] − hb[-1]))

For each threshold
optimizer.zero_grad()
loss← binary_cross_entropy(y_hat, y)
loss.backward()
optimizer.step()
sum_loss← sum_loss + (loss × total_y)
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Algorithm 2. Cont.

16:
17:
18:
19:
20:
21:
22:
23:
24:

total← total_y
is_simmilar← y_hat > threshold
If is_simmilar = true
correct← correct + 1
EndIf
train_loss← sum_loss/total
train_acc← correct/total
EndIf
EndFor

To evaluate the training phase, it was necessary to apply a threshold value to separate
between similar and dissimilar classes, as the value represented the degree of similarity
of the packet. For example, as shown in line 17–20, if we set the class threshold of the
MaLSTM as 0.5, then values of ŷ that are returned greater than 0.5 are considered a similar
class. On the contrary, values of ŷ lower than or equal to 0.5 are considered a different class.
The output of Algorithm 1 is a trained MaLSTM model, alongside the loss and accuracy
history of each training epoch.

4. Results and Analysis
4.1. Simulation Setup

This section presents the simulation setup employed for the purpose of evaluation,
as well as the evaluation and analysis of the MaLSTM model, including network delay,
packet delivery ratio (PDR), and throughput. Our work was realized in the Linux Mint
software (version 20.3) package FlyNetSim. Since NS-3 is a discrete event simulator that
can simulate many networks, we found it to be the most suitable for testing the proposed
IPPM in the noisy UAV-GCS setting.

We compared our method with our previous work [10] using a socket priority module
and standard packet. The socket priority module works to reduce the delay caused by
interfering nodes by first transmitting the payload with the highest priority. The IPPM
algorithm provides better results for reducing delay and increasing PDR.

We built the simulation environment as shown in Figure 6. In this paper, we illustrate
the whole communication scenario of our proposed IPPM, as depicted in Figure 6. The
specific simulation parameters are shown in Table 2.
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Table 2. Simulation Parameters.

Parameters Values

Network simulator FlyNetSim
(NS-3 and ArduPilot)

Network area (radius) 50 m
UAV transmission range (based on common LTE BTS) 100 m
UAV altitude 40 m
Number of UAV nodes 10 nodes
Number of interfering nodes (based on maximum
devices allowed on common LTE BTS) 100

Number of channels Single channel
Interfering nodes data rate 1 Mbps
UAV type Swarm UAVs
Radio propagation channel model Free space path loss (FSPL)

For simplicity, we considered 10 UAV nodes, 1 GCS node, and 100 interfering nodes in
this simulation. We used FlyNetSim software (version 1.0) based on NS-3 and ArduPilot
(version 4.5.3) to simulate the proposed approach and evaluate its performance. Table 2
shows a simulation parameter for the scenario with a UAV in a network area of 50 m radius.
The free space path loss (FSPL) radio propagation channel model was considered in the
simulation since it is useful and practical for evaluating communication range, link budget,
and feasibility of swarm drone communications in obstruction-free environments. Users
can efficiently assess the anticipated signal strength and coverage range for various UAV
setups and operational circumstances. The IPPM algorithm can dynamically adjust packet
prioritization by incorporating real-time feedback from the communication environment.
If there is a decrease in the connection quality due to propagation loss or shadowing, the
algorithm can prioritize packets to maintain the required quality of service.

Two traffic rate configurations were applied to test the module. We used an interfering
traffic rate of 1 Mbps with a packet size of 100 bytes and 10 UAV nodes plus 100 interfering
nodes. Simulation testing started with 10 interfering nodes and increased to 100 interfering
nodes. The UAV altitude for the test was configured at 40 m with a transmission range of
50 m. We ran UAV and GCS simulations using FlyNetSim and then, the network part of
the simulation was run on NS-3.

4.2. IPPM Evaluation

A set of 9.700 pairs (approximately 30% of total rows) were used for the evaluation
phase. Our test sets were fed directly into MaLSTM. To evaluate the performance of our
model, we compared the use of various similarity thresholds. We used accuracy as the
evaluation metric.

Accuracy denotes the proportion of correctly classified packets as similar or dissimilar.
Accuracy was measured in terms of correct and incorrect predictions for binary classifica-
tion, as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives.
The model evaluation is described in Figure 7. Over 100 epochs, we found that the

0.5 threshold outperformed other threshold values. All similarity thresholds started the
training with common accuracy values, ranging from 48% to 52% accuracy. However, the
performance began to differentiate from epoch 30. The 0.5 threshold performance rose,
peaking at 97.5% accuracy with the last training epoch, and was noted as the best performer.
Meanwhile, the 0.3 threshold performance gradually decreased and reached only 17.7%
accuracy. We noted that the middle upper threshold values (0.5, 0.7, 0.9) had relatively
higher accuracy than the lower threshold value (0.1, 0.3). In this case, we also found that
tightening or loosening the threshold resulted in lower model performance or accuracy.
In lower threshold cases (0.1, 0.3), the performance might have been lower because the
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false positives were higher. The packets that should have been detected as dissimilar were
considered similar. In contrast, in higher threshold cases (0.7, 0.9), the performance might
have been lower because the occurrence of false negatives was higher. The packets that
should have been detected as similar were considered dissimilar. Hence, we conclude that
the best threshold to separate between labels in this task was right in the middle of the
range, not leaning towards a lower or higher boundary.
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4.3. Network Delay

The network delay evaluation results are described in Figure 8. We compare the
network delay between our proposed IPPM with our previous work (socket priority
module) and the standard packet model.
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The results demonstrate that IPPM outperformed the socket priority module in re-
ducing the average network latency during UAV-to-GCS packet transmission. IPPM had
an average network delay of 62.2 ms, while the socket priority modules had an average
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network delay of 267.1 ms. We noticed that the delay in the standard packet mechanism
increased exponentially as the number of interfering nodes increased. The standard mech-
anism averaged 747.7 ms network delay. This might have happened because no module
was applied to make important packets from the UAV and GCS be forwarded first.

4.4. Packet Delivery Ratio

Results of the study of the packet delivery ratio (PDR) are shown in Figure 9. Our
suggested IPPM was compared to both our prior work and the standard packet method in
terms of PDR. Equation (9) was used to determine PDR.

PDR =
Data Received

Data Received + Data Loss
(9)
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According to these findings, IPPM worked better than either the socket priority module
or the conventional mechanism in terms of PDR. The socket priority module and the regular
packet method had an average PDR of 0.94 and 0.89, respectively, whereas IPPM had an
average of 0.97. Our attention was drawn by the observation that the PDR for the typical
packet technique rapidly diminished as the number of nodes contributing to interference
increased. This may have occurred because there was no module applied to prioritize the
forwarding of key packets from the UAV and GCS.

4.5. Throughput

Our suggested IPPM was compared to our prior work, and the developments show
that IPPM has better performance according to the throughput testing. Figure 10 shows the
results of the study of throughput. Equation (10) was used to determine throughput:

Throughput =
File Size

Time
(10)

IPPM averaged 22.8 Gbps, while the socket priority module averaged 18.3 Gbps,
respectively. Through analyzing the results of the performance tests, we observed that
IPPM enhanced the overall performance quality of the UAV network as the number of
interfering nodes increased.



Drones 2024, 8, 183 15 of 17
Drones 2024, 8, x FOR PEER REVIEW 16 of 19 
 

 
Figure 10. Throughput evaluation. 

IPPM averaged 22.8 Gbps, while the socket priority module averaged 18.3 Gbps, re-
spectively. Through analyzing the results of the performance tests, we observed that IPPM 
enhanced the overall performance quality of the UAV network as the number of interfer-
ing nodes increased. 

4.6. Algorithm Complexity Analysis 
Two algorithms were analyzed in terms of their complexity. The first was that used 

in the model’s training process, i.e., Algorithm 2. The training algorithm’s complexity 
analysis involved considering key components such as input size, hidden dimension size, 
number of epochs, and thresholds. The algorithm begins by embedding the input packet 
pairs with an 𝑂(n) time complexity. Subsequently, the packet pairs are passed through the 
LSTM, leading to a time complexity of 𝑂(n * m * t), where n is the number of packet pairs, 
m is the hidden dimension size, and t is the number of time steps. The binary cross-en-
tropy loss is then calculated with a 𝑂(n) time complexity. Backpropagation involves up-
dating the network’s weights with a time complexity of 𝑂(n * p), where p is the number 
of parameters in the network. Lastly, accuracy is determined by comparing predictions 
with thresholds, resulting in a time complexity of 𝑂(n * t), where t is the number of thresh-
olds. Overall, the algorithm’s time complexity is 𝑂(N * M * T), where N is the number of 
packet pairs, M is the hidden dimension size, and T is the number of thresholds, while its 
space complexity is 𝑂(N * M). It is worth noting that this training process only occurs once 
to create the model. 

The second analysis involved the proposed IPPM algorithm, i.e., Algorithm 1. The 
time complexity analysis of the proposed intelligent packet priority module (IPPM) pseu-
docode reveals that linear operations dominate the algorithm. The classification of indi-
vidual packets is performed in constant time, 𝑂(1), assuming the prediction time of the 
MaLSTM model does not increase with the number of packets. When processing the 
packet queue, the algorithm iterates through each packet once, leading to a linear com-
plexity, 𝑂(𝑛), where 𝑛 is the number of packets in the queue. Similarly, sending packets 
also has linear complexity, 𝑂(𝑛), since each packet is sent individually and the number of 
sending operations corresponds to the total number of packets, i.e., the sum of prioritized 
and interfering packets. Therefore, the main operational loop of the IPPM, which includes 
processing and sending packets, scales linearly with the number of packets, resulting in 
an overall time complexity of 𝑂(𝑛) for a single execution cycle. This analysis assumes effi-
cient data structures for managing the packet queues, where insertion and removal oper-
ations are 𝑂(1). If the data structures used for the packet lists have less optimal insertion 

Figure 10. Throughput evaluation.

4.6. Algorithm Complexity Analysis

Two algorithms were analyzed in terms of their complexity. The first was that used
in the model’s training process, i.e., Algorithm 2. The training algorithm’s complexity
analysis involved considering key components such as input size, hidden dimension size,
number of epochs, and thresholds. The algorithm begins by embedding the input packet
pairs with an O(n) time complexity. Subsequently, the packet pairs are passed through the
LSTM, leading to a time complexity of O(n * m * t), where n is the number of packet pairs,
m is the hidden dimension size, and t is the number of time steps. The binary cross-entropy
loss is then calculated with a O(n) time complexity. Backpropagation involves updating the
network’s weights with a time complexity of O(n * p), where p is the number of parameters
in the network. Lastly, accuracy is determined by comparing predictions with thresholds,
resulting in a time complexity of O(n * t), where t is the number of thresholds. Overall, the
algorithm’s time complexity is O(N * M * T), where N is the number of packet pairs, M is
the hidden dimension size, and T is the number of thresholds, while its space complexity is
O(N * M). It is worth noting that this training process only occurs once to create the model.

The second analysis involved the proposed IPPM algorithm, i.e., Algorithm 1. The time
complexity analysis of the proposed intelligent packet priority module (IPPM) pseudocode
reveals that linear operations dominate the algorithm. The classification of individual
packets is performed in constant time, O(1), assuming the prediction time of the MaLSTM
model does not increase with the number of packets. When processing the packet queue,
the algorithm iterates through each packet once, leading to a linear complexity, O(n), where
n is the number of packets in the queue. Similarly, sending packets also has linear com-
plexity, O(n), since each packet is sent individually and the number of sending operations
corresponds to the total number of packets, i.e., the sum of prioritized and interfering
packets. Therefore, the main operational loop of the IPPM, which includes processing
and sending packets, scales linearly with the number of packets, resulting in an overall
time complexity of O(n) for a single execution cycle. This analysis assumes efficient data
structures for managing the packet queues, where insertion and removal operations are
O(1). If the data structures used for the packet lists have less optimal insertion and fewer
removal complexities, this impacts the overall complexity of the algorithm. However, under
the assumption of optimal data structures for queue management, the IPPM algorithm is
efficient and scales well with increasing packets.

5. Conclusions

We developed an intelligent packet priority module (IPPM) in this paper. The IPPM
can be used to classify the essential packets from UAV and GCS. For this purpose, we



Drones 2024, 8, 183 16 of 17

introduced deep learning MaLSTM, which highly enhances the quality of network com-
munications. Comprehensive simulations conducted using the FlyNetSimulator evaluated
the performance of the suggested methods. The studies utilized the simulation of 10 UAVs
and 100 interfering nodes across various scenarios. The experimental findings demonstrate
that the suggested intelligent packet priority module (IPPM) improved network perfor-
mance. The observed highly dependable packet delivery ratio (PDR), reduced latency, and
enhanced network throughput support this method. In addition, we offer our viewpoint on
the forthcoming developments in AI-based networking, with a primary focus on advancing
techniques for vision-based tracking, enhancing environmental perception accuracy and
utilizing lightweight deep learning algorithms suitable for onboard processing, AI-driven
spectrum sharing, security-conscious networking, and vision-based tracking.
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