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Abstract: This paper integrates intelligent reflecting surfaces (IRS) with unmanned aerial vehicles
(UAV) to enhance the transmission performance of the Internet of Vehicles (IoV) through non-
orthogonal multiple access (NOMA). It focuses on strengthening the signals from cell edge vehicles
(CEVs) to the base station by optimizing the wireless propagation environment via an IRS-equipped
UAV. The primary goal is to maximize the sum data rate of CEVs while satisfying the constraint
of the successive interference cancellation (SIC) decoding threshold. The challenge lies in the non-
convex nature of jointly considering the power control, subcarrier allocation, and phase shift design,
making the problem difficult to optimally solve. To address this, the problem is decomposed into
two independent subproblems, which are then solved iteratively. Specifically, the optimal phase shift
design is achieved using the deep deterministic policy gradient (DDPG) algorithm. Furthermore,
the graph theory is applied to determine the subcarrier allocation policy and derive a closed-form
solution for optimal power control. Finally, the simulation results show that the proposed joint phase
shift and resource management scheme significantly enhances the sum data rate compared to the
state-of-the-art schemes, thereby demonstrating the benefits of integrating the IRS-equipped UAV
into NOMA-enhanced IoV.

Keywords: intelligent reflecting surface (IRS); Internet of Vehicle (IoV); non-orthogonal multiple
access (NOMA); resource management

1. Introduction

As a key enabler of intelligent transportation systems (ITS), unmanned aerial vehicles
(UAVs) can be used to improve the transmission performance of the Internet of Vehicle
(IoV) in rural highways [1]. Generally, the UAV is regarded as an active component of the
IoV (e.g., the aerial relay) that can enhance the flexibility, robustness, and throughput [2].
By seamlessly integrating UAVs into IoV, several advantages come to the forefront, fun-
damentally transforming how transportation networks operate [3–5]. On the one hand,
UAVs offer unparalleled mobility and coverage, overcoming the geographical limitations
that often hinder the deployment of conventional infrastructure in rural areas. With the
ability to traverse vast expanses swiftly, UAVs ensure continuous connectivity for vehicles,
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regardless of terrain obstacles or distance. This inherent mobility not only extends the
reach of IoV networks but also enables real-time data transmission, which is essential for
dynamic traffic management and remote monitoring in remote regions [6,7]. On the other
hand, UAVs introduce a layer of resilience and redundancy to IoV systems, mitigating the
risks associated with single points of failure or infrastructure damage. In scenarios where
ground-based communication infrastructure may be compromised due to natural disasters
or accidents, UAVs serve as agile alternatives, ensuring uninterrupted communication
and operational continuity. This redundancy enhances the reliability of IoV networks,
fostering safer and more efficient transportation ecosystems even in the face of unforeseen
disruptions [8–10]. In essence, by harnessing the capabilities of UAVs as active components
within IoV, rural highways stand to benefit from enhanced connectivity, resilience, and
efficiency, paving the way for smarter and more sustainable transportation solutions.

However, as an active aerial relay, the application of UAVs in fifth generation (5G)-
and beyond 5G (B5G)-enabled IoV is questionable. The reason for this is that 5G/B5G-
enabled IoV adopts a quasi-optic millimeter wave (mmWave) and visible light for com-
munications [11–13]. In this situation, although the UAVs can facilitate line-of-sight (LoS)
transmissions, the higher path loss attenuates the propagation signals between the UAV
and cell edge vehicles (CEVs) and between the UAV and base station (BS) [14]. First, the
higher path loss inherent in mmWave and visible-light communication systems presents a
formidable obstacle for UAVs operating as relay nodes. Unlike traditional frequency bands,
mmWave signals are highly susceptible to attenuation from environmental factors such
as foliage, atmospheric conditions, and even building materials. Consequently, the effec-
tiveness of UAVs in establishing robust connections with CEVs and the BS is diminished,
compromising the reliability and throughput of IoV [15–17]. Moreover, the dynamic nature
of UAV deployment exacerbates the challenges associated with maintaining stable connec-
tivity in 5G and B5G environments. As UAVs navigate through airspace, they encounter
varying degrees of interference and signal degradation, further impeding their ability to
sustain seamless communication links with vehicles and infrastructure components [18–20].
Therefore, while UAVs offer inherent advantages when used as aerial relays in traditional
communication frameworks, their integration into 5G- and B5G-enabled IoV necessitates
innovative approaches to address the unique propagation characteristics and operational
dynamics associated with advanced wireless technologies. Efforts to mitigate path loss,
enhance spectral efficiency, and optimize UAV mobility are paramount to unlocking the
full potential of UAVs in shaping the future of intelligent transportation systems.

Facing the above challenges, the authors [21,22] adopted an intelligent reflecting sur-
face (IRS)-equipped UAV to create ITS-related services for vehicle platooning in obstructed
rural highways covered by 5G/B5G. First, the IRS technique can enhance 5G/B5G sig-
nal coverage in rural areas, especially in situations with a complex terrain or buildings
that block signals [23,24]. By using UAVs carrying IRSs, dynamic signal reflection and
adjustment are achievable, optimizing signal quality and thus enhancing communication
efficiency and reliability [25]. Second, UAVs are highly mobile and flexible, and are able to
quickly adjust their positions and flight paths according to actual needs and environmental
changes, providing optimal signal reflection and coverage to the areas in need in real-
time [26,27]. Third, compared to the construction of fixed BSs or communication towers,
using an IRS-equipped UAV significantly reduces the cost of infrastructure construction
and maintenance, making it particularly suitable for remote or economically disadvantaged
rural areas. Finally, on rural roads where communication is obstructed, the stable commu-
nication service provided by UAVs can effectively support the operation of an ITS, such as
automatic vehicle queuing, traffic flow management, and emergency response, improving
road utilization efficiency, reducing traffic congestion, and enhancing driving safety [28,29].
To maximize the energy efficiency of IRS-equipped UAVs, a scheme for the joint optimiza-
tion of resource allocation, phase shift, and trajectory was proposed in [30]. Additionally,
the non-orthogonal multiple access (NOMA) technique has been emerging as a potential
solution in UAV-assisted networks, which can achieve timely, reliable, and seamless data
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exchange [31]. Therefore, some recent efforts in [32,33] combined IRS-equipped UAVs
with the NOMA technique to obtain the benefits of both. The sum data rate maximization
schemes used to fully exploit the advantages of NOMA-enhanced, IRS-equipped UAVs,
are presented in [34–36].

However, it is challenging to integrate the IRS-equipped UAV and NOMA technique
into IoV while optimizing the resource management and phase shift design. First, the
works in [21,22,30] make an implicit assumption that spectrum-efficient resource man-
agement can be achieved. Actually, in dynamic IoV, the subcarrier allocation and power
control policies need to be delicately designed to improve the communication performance.
Second, although the introduction of IRS can enhance signal strengths, the constraint of
the successive interference cancellation (SIC) decoding threshold cannot be ignored. This
practical factor has not been fully considered in [32,34,36]. Third, compared with the hover
mode, the mobile IRS-equipped UAV can further maintain aerial LoS links. Unfortunately,
this issue has been overlooked in [33,35]. Finally, due to the highly complex coupling
among optimization variables (e.g., the power, subcarrier, and phase shift) and mixed
combinatorial features, it is difficult to solve the sum data rate maximization problem
in the context of the considered scenarios. Especially, considering the limitations on the
computing ability of CEVs, we need to design a low-complexity scheme to jointly optimize
the resource management and phase shift with an acceptable running time.

This paper is motivated by several key considerations, as mentioned above, and
proposes a NOMA-enhanced communication framework in IoV to enhance uplink perfor-
mance, utilizing an IRS-equipped UAV to assist in the data transmissions of CEVs. Then,
we explore the challenge of maximizing the sum data rate by considering power control,
subcarrier allocation, and phase shift design. This complex problem is constrained by the
SIC decoding threshold. An iterative optimization (IO) algorithm, employing coordinate
polling, is introduced to address the non-convex nature of the problem, where the power,
subcarrier, and phase shift are solved in turn. Finally, the simulation results demonstrate
that our proposed scheme outperforms current state-of-the-art schemes [2,21,31,35] in
terms of sum data rate. Additionally, the number of supported CEVs, and the influence of
network parameters, convergence, and complexity are fully shown and discussed.

The remainder of this paper is organized as follows. Section 2 presents the system
model and problem formulation, establishing the foundational concepts and objectives
of our study. Section 3 introduces the proposed scheme to maximize the sum data rate.
Section 4 is dedicated to the simulation results, validating the effectiveness of our pro-
posed scheme through extensive simulations. Finally, Section 5 concludes the paper by
summarizing the key findings and suggesting directions for future research.

2. System Model and Problem Formulation

As shown in Figure 1, we consider an uplink of NOMA-enhanced IoV, where V single-
antenna CEVs (denoted as V = {1, . . . , V}) transmit the signals to the BS with the assistance
of an IRS-equipped UAV. The IRS has Y elements, denoted as Y = {1, . . . , Y}. To increase
the road capacity, vehicle platooning adopts vehicle-to-everything (V2X) techniques to
let a group of CEVs travel closely in a train-like manner [37]. To simplify the problem,
we consider vehicular communication on a straight rural highway. In CEV-UAV-BS links,
there are K subcarriers, denoted as K = {1, . . . , K}. Additionally, the direct CEV-BS links
are assumed to be blocked by obstacles [38]. We define the subcarrier allocation policy as
X =

{
xv,k
∣∣∀v ∈ V , ∀k ∈ K

}
, where xv,k is the subcarrier allocation indicator. If the v-th

(∀v ∈ V) CEV occupies the k-th (∀k ∈ K) subcarrier, xv,k = 1; otherwise, xv,k = 0. Due
to the high mobility of the IRS-equipped UAV and CEVs, the transmission channels vary
rapidly. Therefore, we use the outdated channel estimation method proposed in [22] to
reduce the pilot overhead.
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Figure 1. NOMA-enhanced IoV assisted by an IRS-equipped UAV.

The signal-to-interference-plus-noise ratio (SINR) γv of the v-th CEV is

γv =
xv,kPv

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
ηv + σ2 , ∀v, k, (1)

where Pv is the transmitted power of v-th CEV, denoted as P = {Pv|∀v ∈ V}; hH
I,B,k is

the channel between the IRS-equipped UAV and BS on the k-th subcarrier, hI,B,k ∈ CY×1;
Hv,I,k is the channel between the v-th CEV and IRS-equipped UAV on the k-th subcarrier,

Hv,I,k ∈ CY×1; Φ is the phase shift matrix, Φ = diag
{

ejθy
}

, θy ∈ [0, 2π), where θy is the

phase shift of y-th (∀y ∈ Y) reflection unit; σ2 is the noise power; ηv is the co-channel

interference, and we have ηv = ∑
i∈
{
V|
∣∣∣hH

I,B,kΦHi,I,k

∣∣∣2<∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2}xi,kPi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2, where

i is the i-th (∀i ∈ V) CEV that also occupies the k-th subcarrier; Hi,I,k is the channel between
the i-th CEV and IRS-equipped UAV on the k-th subcarrier, Hi,I,k ∈ CY×1; xi,k is the
subcarrier allocation policy of i-th CEV, xi,k ∈ {0, 1}; Pi is the transmitted power of i-th
CEV, ∀Pi ∈ P .

To successfully implement the NOMA technique, the SIC decoding threshold φth
SIC

needs to be considered. We define the decoding indicator as Θ
(

γv, φth
SIC

)
, which is ex-

pressed as follows:

Θ
(

γv, φth
SIC

)
=

{
Θ = 1, γv ≥ φth

SIC,
Θ = 0, γv < φth

SIC,
(2)

where Θ
(

γv, φth
SIC

)
∈ {0, 1}. According to (1) and (2), the uplink data rate Cv of the v-th

CEV is

Cv = Θ
(

γv, φth
SIC

)
B0log2(1 + γv), (3)

where B0 is the channel bandwidth.
By optimizing the subcarrier allocation K, power control P , and phase shift Φ, we aim

to maximize the sum data rate Csum of CEVs. The sum data rate maximization problem is
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mathematically formulated as P1, which is constrained by the SIC decoding threshold φth
SIC

and phase resolution.

P1 : max
K, P , Φ

Csum(K, P , Φ) = ∑
v∈V

Cv (4a)

s.t. ∑
k∈K

xv,k = 1, ∀v ∈ V , (4b)

∑
v∈V

xv,k ≤ 2, ∀k ∈ K, (4c)

xv,k ∈ {0, 1}, ∀k ∈ K, ∀v ∈ V , (4d)

0 ≤ Pv ≤ Pmax, ∀v ∈ V , (4e)

diag
{

ejθy
}

, θy ∈ [0, 2π), (4f)

where Pmax is the maximum transmitted power. In P1, (4b) ensures that each CEV is
assigned to a subcarrier; (4c) and (4d) together define that each subcarrier can only accom-
modate a maximum of two CEVs [39]; (4e) limits the range of transmitted power for each
CEVs; (4f) constrains the phase shift of IRS. It should be noted that the phase shift of each
reflection unit is continuous and the modulus is always 1 [30].

Remark: Our paper explicitly addresses the mobility aspect of UAVs within the context
of IoV, rather than merely focusing on stationary systems. However, it is important to note
that we did not undertake trajectory optimization for the UAVs in this study. Instead, we
emphasize the advantages of preset trajectories over trajectory optimization within UAV-
assisted IoV, particularly highlighting the real-time nature of information transmission.
While trajectory optimization undoubtedly offers benefits, such as enhanced efficiency and
adaptability, preset trajectories excel in scenarios where timely data exchange is paramount.
Moving forward, our future work will indeed delve into optimizing UAV trajectories,
aiming to strike a balance between efficiency and real-time communication demands
within the IoV.

3. Sum Data Rate Maximization Scheme

In Section 3, an IO algorithm based on coordinate polling is presented to deal with
P1, as shown in Figure 2. Specifically, P1 is decoupled into the phase shift optimization
problem P2 and resource management problem P3. The DDPG algorithm is used to
optimize the phase shift. Then, the subcarrier allocation problem is reformulated as a
maximum weighted independent set (MWIS) issue using the graph theory, and the closed-
form expression of optimal power control is derived theoretically. In the designed IO
algorithm, the selection of initial inputs is recognized as a pivotal factor influencing both
the convergence and the ultimate outputs of the process. To address this, initial inputs are
randomly selected within the feasible domain of the problem, providing the algorithm with
the opportunity to reach the global optimum. Furthermore, given the significant impact that
the initial input selection can have on the results, the Monte Carlo method is incorporated
into our algorithm. This approach involves conducting multiple runs with varied initial
inputs and subsequently analyzing the results. Through this comparative analysis, we can
effectively evaluate the performance of the algorithm under different conditions, thereby
enabling the identification and selection of the most optimal result as the final solution.
This method enhances the robustness and reliability of the algorithm’s outputs.
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Figure 2. Overall algorithmic framework.

3.1. Phase Shift Design

Given K and P , the phase shift design problem is simplified into:

P2 : max
Φ

Csum(Φ) (5a)

s.t. diag
{

ejθy
}

, θy ∈ [0, 2π). (5b)

The DDPG algorithm based on the Actor–Critic structure is used to solve P2. This
is because the use of DDPG presents significant advantages in solving the IRS phase
shift design problem. First, DDPG integrates deep learning with deterministic policy
gradient techniques, adeptly managing high-dimensional and continuous action spaces,
and thus enabling the IRS to achieve more precise and complex phase shift adjustments.
Second, DDPG utilizes an experience replay mechanism that more effectively harnesses
past experiences to boost learning efficiency and stability. Moreover, the adoption of
DDPG can circumvent local optima in the phase shift design problem, enhancing system
robustness and adaptability. In conclusion, the application of DDPG in solving P2 endows
the IRS-equipped UAV with increased flexibility and intelligence. Specifically, the action
vector, state vector, and reward function are designed as follows.

(A) Action Vector: Let Φ denote the action vector. Since the inputs of the neural
network are real numbers, Φ needs to be decomposed into real and imaginary parts. We
define the total training steps as T, denoted as T = {1, . . . , T}. The action vector A(t) of
the t-th (∀t ∈ T ) step is given by

A(t) =

{
Re
{

ejθy
}(t)

, Im
{

ejθy
}(t)}

, (6)

where Re{·} and Im{·} are real and imaginary parts, respectively.
(B) State Vector: In the t-th step, the state vector S(t) is

S(t) =

{∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2}(t)
. (7)

(C) Reward Function: Since this paper aims to maximize Csum, the reward of the t-th
step is set to Csum, i.e., R(t) = {Csum}(t). In the Actor network, the normalization layer
and the second hidden layer adopt the rectified linear activation (ReLU) function and the
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hyperbolic tangent (Tanh) function, respectively. In the Critic network, A(t) and S(t) are
separately fed to two individual hidden layers and then connected to two normalization
layers. The results of two normalization layers are concatenated and subsequently linked
to one hidden layer. As discussed in [32], the Adam optimizer is used to update the neural
network parameters. Additionally, the learning rates of Actor and Critic are 0.001 and
0.002, respectively.

The action vector composed of Φ is the output of the Actor network. Meanwhile, the
value of each element in A(t) is constrained by the Tanh function, and its range is (−1, 1).
Due to the range restriction, Φ cannot be used directly to calculate Csum. In this situation,
Φ needs to be normalized, and we have the following:

{
Φ̂
}(t)

= diag
{{

ejθ̂1
}(t)

, . . . ,
{

ejθ̂y
}(t)

, . . . ,
{

ejθ̂Y
}(t)}

, (8)

where
{

θ̂y
}(t)

= arctan

(
Im{ejθy}(t)

Re{ejθy}(t)

)
.

The steps used to solve P2 are summarized in Algorithm 1. In the proposed scheme
using the DDPG algorithm to solve the phase shift design problem, the complexity burden
during simulation and the accuracy of the algorithm play critical roles. The DDPG algo-
rithm, being a model-free, off-policy Actor–Critic method based on deep reinforcement
learning, allows for continuous action spaces, making it suitable for the phase shift design
problem, where the phase shifts can have a continuum of values. However, the complexity
of implementing DDPG is relatively high because it requires the maintenance of two neural
networks: the actor network that proposes actions and the critic network that evaluates
these actions. Furthermore, training these networks involves numerous forward and
backward propagations, which are computationally intensive, especially when handling
complex environments and large state spaces, as in IRS-enabled vehicular scenarios.

Algorithm 1 DDPG-based phase shift design

1: Initialization
2: Set hH

I,B,k and Hv,I,k.
3: Generate the Actor and Critic networks.
4: Obtain (K)∗ and (P)∗ by solving P3.
5: Establish the replay buffer B with the capacity D.
6: for episode e = 1 : E do

7: Generate
{

hH
I,B,k

}(e)
and

{
Hv,I,k

}(e), respectively.

8: Obtain the state vector S(1) by (7).
9: for step t = 1 : T do

10: Select the action A(t) from the Actor network based on the current state S(t).
11: Explore A(t) by adding a random process.

12: Obtain
{

Φ̂
}(t) by (8).

13: Calculate the reward function R(t).
14: Construct a new state S(t+1) by (7).
15: Store

{
A(t), S(t), R(t), S(t+1)

}
to B.

16: Randomly sample bd tuples from B.
17: Update the parameters of the Actor and Critic networks.
18: Softly update the parameters of the target Actor and Critic networks.
19: S(t) = S(t+1).
20: end for
21: end for
22: Output the optimal phase shift (Φ)∗.
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Accuracy-wise, DDPG can offer high precision in determining optimal phase shifts
due to its ability to continuously learn and adapt its policy. The algorithm benefits from
experience replay and target networks, which help to stabilize the learning process and
improve convergence to the optimal policy. Nevertheless, the accuracy of DDPG is highly
dependent on adequate hyperparameter tuning, network architecture choices, and sufficient
exploration of the action space during training. Therefore, while DDPG holds potential for
efficiently resolving the phase shift design problem with high accuracy, it does so at the
cost of increased computational complexity. Ensuring the successful deployment of DDPG
involves a careful balance between complexity, computational resources, and the precision
requirements of IRS-enabled vehicular scenarios.

3.2. Optimization of Resource Management

Given Φ, the resource management problem is simplified into:

P3 : max
K, P

Csum(K, P) (9a)

s.t. (4b) − (4e). (9b)

For P3, since K and P are highly coupled in the objective function and constraints,
P3 is further decoupled and iteratively solved.

3.2.1. Subcarrier Allocation

In this stage, it is assumed that Φ and P have been determined. Then, the subcarrier
allocation problem is transformed into:

P3.1 : max
K

Csum(K) (10a)

s.t. (4b) − (4d). (10b)

We define a weighted undirected graph (WUG) as G(F , H, η). The definitions of the
WUG, maximum weighted independent set (MWIS), and independent set (IS) can be found
in [40]. In G(F , H, η), F , H, and η are the set of vertices, the set of edges, and the weight,
respectively. A combination

(
v f , i f , k f

)
is constructed, where v f ∈ V , i f ∈ V , k f ∈ K,

and f ∈ F . We define the vertex f corresponding to the combination
(

v f , i f , k f

)
, and the

weight η f of vertex f is expressed as follows:

η f = Cv f

(
x

k f
v f ,
(

Pv f , Pi f

)∗)
+ Ci f

(
x

k f
i f

,
(

Pi f

)∗)
, (11)

where
∣∣∣hH

I,B,k f
ΦHv f ,I,k f

∣∣∣2 >
∣∣∣hH

I,B,k f
ΦHi f ,I,k f

∣∣∣2. Let χG( f ) denote the neighborhood of vertex

f in G(F , H, η), and we have χ+
G ( f ) = { f } ∪ χ+

G ( f ). In addition, let nG( f ) denote the
number of neighbors of vertex f in G(F , H, η). As discussed in [40], P3.1 can be viewed
as an MWIS problem, and can be solved by using Algorithm 2.

Algorithm 2 Graph-theory-based subcarrier allocation

1: Initialization
2: Construct the WUG G(F , H, η).
3: Let GIS ⇐ ∅, where GIS is an IS of G(F , H, η).
4: Let j = 0 and Gj(F , H, η) ⇐ G(F , H, η), where Gj(F , H, η) is a subgraph of

G(F , H, η).
5: repeat
6: In Gj(F , H, η), we select the set of vertexes F̂ .
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Algorithm 2 Cont.

7: F̂ =

 f |η f ≥ ∑
f̃∈χ+

Gj
( f )

η f̃

nGj( f̃ )+1

, where f̃ is a vertex, and η f̃ is calculated by (11).

8: We select the optimal vertex ( f )∗, where ( f )∗ = arg max
f∈F̂

η f̃

nGj( f̃ )+1
.

9: Set GIS ⇐
{
( f )∗

}
∪ GIS and Gj+1 ⇐ Gj

[
F
(
Gj
)
− χ+

Gj

[
( f )∗

]]
.

10: j = j + 1.
11: until F

(
Gj
)
== ∅

12: Output the optimal subcarrier allocation (K)∗.

3.2.2. Power Control

Similarly, we assume that Φ and K were given in advance, and the power control
problem is expressed as follows:

P3.2 : max
P

Csum(P) (12a)

s.t. 0 ≤ Pv ≤ Pmax, ∀v ∈ V . (12b)

A combination (v, i, k) is introduced to represent the v-th and i-th CEVs that share

the k-th subcarrier. As introduced above, we have
∣∣∣hH

I,B,k f
ΦHv f ,I,k f

∣∣∣2> ∣∣∣hH
I,B,k f

ΦHi f ,I,k f

∣∣∣2.

For combination (v, i, k), there are three cases.
Case (A): Both the v-th and i-th CEVs can satisfy the constraint of φth

SIC concurrently.
We have

Cv = B0log2

1 +
Pv

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
Pi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2 + σ2

, (13)

and

Ci = B0log2

1 +
Pi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2
σ2

. (14)

To satisfy φth
SIC, we can obtain

Pv

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
Pi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2 + σ2
≥ φth

SIC (15)

⇒
Pv

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2 − φth
SICσ2

φth
SIC

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2 ≥ Pi,

and

Pi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2
σ2 ≥ φth

SIC (16)

⇒ Pi ≥
φth

SIC φth
SIC∣∣∣hH

I,B,kΦHi,I,k

∣∣∣2 .
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Case (B): Only the v-th or i-th CEV can satisfy the constraint of φth
SIC. We have

Cv = B0log2

1+
Pv

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
σ2

, γv ≥ φth
SIC, (17a)

Ci = B0log2

1+
Pi

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2
σ2

, γi ≥ φth
SIC, (17b)

where (17a) indicates that only the v-th CEV can satisfy the constraint of φth
SIC, and (17b)

indicates that only the i-th CEV can satisfy the constraint of φth
SIC.

Case (C): None of them can satisfy the constraint of φth
SIC, and we have Cv = Ci = 0.

Lemma 1. The closed-form expression of optimal power control is shown in (18), where

P̂ =
Pmax|hH

I,B,kΦHv,I,k|2−φth
SICσ2

φth
SIC

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2 . It is noted that due to
∣∣∣hH

I,B,k f
ΦHv f ,I,k f

∣∣∣2> ∣∣∣hH
I,B,k f

ΦHi f ,I,k f

∣∣∣2,

we have Pmax ≥ P̂.

(Pv, Pi)
∗ =


(Pmax, Pmax), if γv(Pmax, Pmax) ≥ φth

SIC and γi(Pmax, Pmax) ≥ φth
SIC,(

Pmax, P̂
)
, elseif γv

(
Pmax, P̂

)
≥ φth

SIC and γi
(

Pmax, P̂
)
≥ φth

SIC,
(Pmax, 0), elseif γv(Pmax, 0) ≥ φth

SIC,
(0, Pmax), elseif γi(0, Pmax) ≥ φth

SIC,
(0, 0), else.

(18)

Proof. Through a comprehensive analysis of Cases (A)–(C), (19) can be derived. In (19),
the first line and second line represent Case (A), the third line represents Case (B), and the
fourth line represents Case (C). Lemma 1 is proved.

log2

1 +
Pmax

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
Pmax

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2 + σ2

+ log2

1 +
Pmax

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2
σ2


︸ ︷︷ ︸

(Pv , Pi)
∗= (Pmax, Pmax)

≥ log2

1 +
Pmax

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
P̂
∣∣∣hH

I,B,kΦHi,I,k

∣∣∣2 + σ2

+ log2

1 +
P̂
∣∣∣hH

I,B,kΦHi,I,k

∣∣∣2
σ2


︸ ︷︷ ︸

(Pv , Pi)
∗= (Pmax, P̂)

(19)

≥ log2

1 +
Pmax

∣∣∣hH
I,B,kΦHv,I,k

∣∣∣2
σ2

+ 0

︸ ︷︷ ︸
(Pv , Pi)

∗= (Pmax, 0)

≥ 0 + log2

1 +
Pmax

∣∣∣hH
I,B,kΦHi,I,k

∣∣∣2
σ2


︸ ︷︷ ︸

(Pv , Pi)
∗= (0, Pmax)

≥ 0 + 0︸ ︷︷ ︸
(Pv , Pi)

∗= (0, 0)

.

3.3. Performance Analysis

In this paper, Csum is obtained through the iterative optimization of (K, P , Φ). Thus,
we need to analyze the convergence. First, we consider a simple scenario consisting of a
BS, an IRS-equipped UAV, and a CEV. Since there is only one CEV, we have (Psim)∗ = Pmax
according to (18). Then, using the enumeration method, we can obtain (Ksim)∗ and (Φsim)∗.
As only one vehicle is present, there is no need to account for co-channel interference and
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spectrum reuse. In this paper, we consider an application scenario consisting of V CEVs,
and the upper bound Cupper

sum is

Cupper
sum = V × Csum

(
(Psim)∗, (Ksim)∗, (Φsim)∗

)
(20)

≥ Csum
(
(K)∗, (P)∗, (Φ)∗

)
,

where
(
(K)∗, (P)∗, (Φ)∗

)
can be obtained by iterative optimization, as shown in Figure 2.

Finally, due to the existence of an upper bound Cupper
sum , the convergence can be proven.

This IO algorithm, based on coordinate polling, effectively addresses the complexity
of optimizing communication systems, especially in the context of IoV. Decoupling the
problem P1 into phase shift optimization P2 and resource management P3 simplifies the
overall optimization process. Specifically, the DDPG algorithm is leveraged to optimize
the phase shifts of the IRS, which dynamically adjusts the propagation environment to
enhance signal quality. This is crucial for ensuring reliable communication in scenarios
with high mobility and variable environmental conditions, such as IoV. For resource man-
agement, reformulating the subcarrier allocation problem as an MWIS problem allows for
an efficient and theoretically grounded approach to optimizing resource allocation. This
graph-theory-based method enables a more structured and simplified problem-solving
process. Furthermore, deriving a closed-form expression for optimal power control di-
rectly supports the effective management of transmission power, thereby maximizing
the efficiency and reliability of the communication system. The principal advantages of
this approach include enhanced computational efficiency, scalability, and the ability to
provide high-quality solutions for complex optimization problems. Its application in IoV is
particularly beneficial due to the high mobility of vehicles and the dynamic nature of their
communication environment. By optimizing phase shifts and resource management intelli-
gently, it is possible to significantly improve the performance of vehicular communication
systems, leading to more a reliable, efficient, and safe IoV.

Unfortunately, while the employed IO algorithm effectively provides solutions for the
sum data rate maximization problem P1, it cannot ensure that the global optimal solution
is attained. This limitation stems from various factors. Firstly, the IO algorithm, utilizing
coordinate polling, might converge to local optima rather than the global optimum. Al-
though capable of simplifying the optimization process by decomposing P1 into phase
shift optimization P2 and resource management P3, assurance is not provided that the
locally optimal solutions discovered for these sub-problems collectively lead to the global
optimum for the primary problem. Secondly, although the IO algorithm offers improved
computational efficiency, scalability, and the ability to deliver high-quality solutions, it
still depends on heuristics and approximations. However, these approximations may not
consistently result in the globally optimal solution, especially in complex optimizations
involving non-convexities or discontinuities. Therefore, although the IO algorithm sub-
stantially enhances the efficiency of addressing the sum data rate maximization problem
P1 in UAV-assisted IoV, it may not ensure the achievement of the global optimal solution
due to the inherent algorithmic limitations and complexities associated with modeling the
communication environment.

4. Simulation Results

The performance of the proposed sum data rate maximization scheme is evaluated
via simulation. We compare it with four state-of-the-art works, namely Scheme 1 [21],
Scheme 2 [35], Scheme 3 [31], and Scheme 4 [2]. Specifically, Scheme 1 involves the de-
ployment of an IRS-equipped UAV that dynamically tracks and follows the CEVs, while
simultaneously optimizing the phase shift design and subcarrier allocation. In Scheme 2, the
IRS is statically installed on buildings, and the NOMA technique is employed to improve
spectrum efficiency. Scheme 3 combines UAV-assisted relaying with NOMA, where the
UAV employs the decode-and-forward protocol. Finally, Scheme 4 focuses on optimizing
resource management within the CEVs, where the NOMA technique is directly employed
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for communication between CEVs and the BS. According to [2,32], the major simulation
parameters set in this paper are as follows: V = [4, 40], Pmax = 30 dBm, φth

SIC = [20, 60] dB,
B0 = 180 KHz, σ2 = −174 dBm/Hz, K = [2, 20], and Y = {4, 10, 16}. Additionally, as dis-
cussed in [41], the air-to-ground path loss model is 32.44 + 20 lg[d(km)] + 20 lg[ fc(MHz)],
the multipath fading model follows the Rayleigh fading with 1 variance, the carrier fre-
quency is 2.1 GHz, the speed of the IRS-equipped UAV and CEVs is 50 km/h, and the
number of simulation runs is 104.

Figure 3 plots the sum data rate versus the number of CEVs. It is observed that the
proposed scheme outperforms the state-of-the-art works in terms of the sum data rate.
Specifically, compared to Schemes 1, 2, 3, and 4, the sum data rate can be increased by 11.8%,
18.4%, 4.2%, and 39.5%. The reasons for the improved performance are as follows. First, in
Scheme 1, the IRS-equipped UAV moves with the CEVs, based on which the subcarrier and
phase shift are optimized. However, by contrast, the proposed scheme enables NOMA to
support more CEVs simultaneously transmitting data under the same spectrum resources,
leading to an overall increase in data rates. Second, in Scheme 2, the IRS is fixed to the
building and uses NOMA. In this situation, the channel gain brought about by the IRS
is weakened, thus reducing the transmission performance. Third, in Scheme 3, the UAV
following the CEVs adopts the decode and forward (DF) relay protocol with NOMA, under
which the resource management is optimized. However, the transmission bottleneck will
limit the data rate of the DF protocol. Finally, in Scheme 4, the CEVs communicate directly
with the BS. In this situation, the signal propagation paths cannot be optimized, thereby
increasing the path loss and reducing the data rate.
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Figure 3. The sum data rate versus the number of CEVs (φth
SIC = 30 dB and Y = 10).

Figure 4 shows the sum data rate versus the decoding threshold. With the increment of
φth

SIC, the decoding constraint of NOMA-enhanced IoV becomes harder to satisfy. Therefore,
except for Scheme 1 using orthogonal frequency division multiple access (OFDMA), the
sum data rate of all schemes is reduced. In particular, for Scheme 4, the performance
degradation is most pronounced due to the use of direct communications. In addition,
Figure 4 demonstrates that the proposed sum data rate maximization scheme has a stable
performance even when φth

SIC is high, which is a good feature for its application in practical
ITS-oriented services.
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Figure 4. The sum data rate versus the decoding threshold (V = 20 and Y = 10).

Figure 5 illustrates the effect of the decoding threshold on the number of supported
CEVs. It is observed that the number of supported CEVs in all schemes (except for Scheme 1
using OFDMA) always decreases with the increase in φth

SIC. This is because co-channel
interference exists in these NOMA-enabled schemes. The decoding error of v-th CEV
(strong user) will affect the decoding of i-th CEV (weak user). In addition, we can observe
that even if φth

SIC is high, the proposed scheme can support a large number of CEVs,
making it superior to Schemes 2, 3, and 4. The reason for this is that the proposed scheme
appropriately pairs the CEVs and adjusts the transmitted power to reduce the co-channel
interference. In contrast, Scheme 1 is not affected by φth

SIC. However, the number of
supported CEVs for Scheme 1 is very limited.
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Figure 5. The effect of decoding threshold on the number of supported CEVs (V = 20 and Y = 10).

Figure 6 depicts the effect of the number of elements on the sum data rate. We can
find that, regardless of the number of elements, the proposed scheme always outperforms
Scheme 1, which shows the superiority of the NOMA technique. In addition, the sum
data rate increases as the number of elements increases. However, introducing additional
elements to IRS increases the complexity, which, in turn, restricts performance improve-
ments and renders it impractical for sustained enhancements in IRS-assisted IoV. Therefore,
there is a tradeoff between the sum data rate and the number of elements in terms of the
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complexity. The low-complexity optimization scheme design, jointly considering the sum
data rate and the number of elements, is an important issue for future research.
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Figure 6. The effect of the number of elements on the sum data rate (φth
SIC = 30 dB).

Figure 7 plots the convergence characteristics of the designed IO algorithm. We can
find that, through repeated iterations, the system gradually adjusts parameters towards
the optimal solution, causing the objective function (i.e., the sum data rate) to approach a
maximum. When the gradient of the objective function approaches zero, the system reaches
a converged state, indicating the discovery of a solution that satisfies the optimization
conditions. This process ensures the effectiveness of the designed IO algorithm in finding
suitable solutions in the search space. As can be seen from Figure 7, convergence can be
achieved after about 50 iterations.
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Figure 7. Convergence comparison (φth
SIC = 30 dB and Y = 10).

Figure 8 shows a comparison of the complexity with respect to the number of simula-
tion runs under the different sum data rate optimization schemes. The reason the running
time was used as a metric to compare the complexity is that it reflects the computational
resources and efficiency required for the practical execution of the scheme. We can see
that the complexity of the proposed scheme is close to that of the state-of-the-art works.
The average running time needed to perform an optimization scheme is 1.67 s. Note that
the running time depends on the hardware parameters. The proposed scheme was simu-
lated in an environment consisting of a 12th Gen Intel Core i7-1260P 2.10 GHz processor,
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32.0 GB of RAM, 1.5 TB of ROM, a 64-bit operating system based on x64 architecture, and
Windows 11 Professional edition. Specifically, through gradual refinement, the designed IO
algorithm can more effectively approximate the global optimum, addressing the challenge
of conducting a comprehensive search in large-scale problems. Therefore, the proposed
scheme exhibits better execution advantages in IoV, which can alleviate the computational
burden, improving the execution efficiency in resource-constrained vehicular environments.
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Figure 8. Complexity comparison (φth
SIC = 30 dB, V = 20, and Y = 10).

5. Conclusions

This paper investigated the incorporation of an IRS-equipped UAV and the NOMA
technique to improve the sum data rate of CEVs in IoV. First, we focused on the uplink
of NOMA-enhanced IoV, where the IRS-equipped UAV assisted single-antenna CEVs in
transmitting data to the BS. Next, we formulated the sum data rate maximization problem
by jointly considering the power control, subcarrier allocation, phase shift design, and
SIC decoding threshold. Then, we designed an IO algorithm to deal with this non-convex
problem, where three optimization variables were solved in turn. More precisely, the DDPG
algorithm was used to obtain the optimal phase shift design. Based on this, we reformulated
the subcarrier allocation problem as an MWIS problem, and employed the graph theory
to solve it. In addition, according to the decoding constraint, we derived the closed-form
expression of optimal power control. Finally, the simulation results showed that, compared
with the state-of-the-art works, the sum data rate of CEVs was significantly improved by
enabling the IRS-equipped UAV and the NOMA technique. Additionally, the influence of
network parameters, convergence, and complexity were analyzed and discussed.

In addition to the above, there are some other directions that are worth further study.
First, we can explore the use of real-time control algorithms to dynamically adjust the IRS
configuration and adapt to real-time changes in IoV. Second, we can further study the
collaborative work of IRS-equipped UAVs in IoV for improved efficiency in information
dissemination, monitoring, and emergency response. Finally, we can optimize the energy
consumption management for IRS-equipped UAVs while considering the network security
and privacy protection.
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