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Abstract: The structure of fibrous assemblies is highly complex, being both random and regular
at the same time, which leads to the complexity of its mechanical behaviour. Using algorithms
such as machine learning to process complex mechanical property data requires consideration and
understanding of its information principles. There are many different methods and instruments
for measuring flexible material mechanics, and many different mechanics models exist. There is a
need for an evaluation method to determine how close the results they obtain are to the real material
mechanical behaviours. This paper considers and investigates measurements, data, models and
simulations of fabric’s low-stress mechanics from an information perspective. The simplification of
measurements and models will lead to a loss of information and, ultimately, a loss of authenticity in
the results. Kolmogorov complexity is used as a tool to analyse and evaluate the algorithmic informa-
tion content of multivariate nonlinear relationships of fabric stress and strain. The loss of algorithmic
information content resulting from simplified approaches to various material measurements, models
and simulations is also evaluated. For example, ignoring the friction hysteresis component in the
material mechanical data can cause the model and simulation to lose more than 50% of the algorithm
information, whilst the average loss of information using uniaxial measurement data can be as high
as 75%. The results of this evaluation can be used to determine the authenticity of measurements and
models and to identify the direction for new measurement instrument development and material
mechanics modelling. It has been shown that a vast number of models, which use unary relationships
to describe fabric behaviour and ignore the presence of frictional hysteresis, are inaccurate because
they hold less than 12% of real fabric mechanics data. The paper also explores the possibility of
compressing the measurement data of fabric mechanical properties.

Keywords: algorithmic information; fabric mechanics; frictional hysteresis; multivariate nonlinear
relationships; Kolmogorov complexity; fabric low-stress mechanics; fabric modelling; fabric simulation

1. Introduction
1.1. General Context

The advent of the digital age has put forward increasingly stringent requirements
on the authenticity of fabric models and virtual simulations. A model must be able to
characterize its static and dynamic behaviours in a way that is close enough to the me-
chanical behaviours of real fabric. When people interact with fabrics in a virtual space,
they can get close to the same visual and mechanical experience as interacting with fabrics
with the same mechanical properties in the real world and experience the real aesthetics of
fabrics and clothing. Applications such as CAD, product development, internet shopping,
virtual environments, film, TV and advertising, medical simulations and computer games
can make technical and business decisions through virtual simulation across time and
space environments. In the process of intelligent customized design, manufacturing, and
use of clothing for certain special applications such as medical, competition sports, and
military, there are strict requirements for the authenticity of fabric mechanical models.
With the development of wearable information technology, more and more flexible sensors
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and energy-autonomous devices use fabrics as their base materials. These sensors and
devices often require rigorous software correction for nonlinearities caused by the substrate
material to ensure their overall performance. Fabric mechanics, as the basis for domain-end
digitalization, must be developed to guarantee and meet these new needs.

The need to realistically characterise and simulate the mechanical behaviour of fabrics
is urgent and necessary. As early as 1998, Stylios [1] and Hearle [2] argued that the textile
and apparel industry faced challenges in transitioning from empirical craftsmanship to
engineering. It is imperative to develop software that is acceptable and usable for the
industry. Software must be able to realistically characterise the behaviour of complex
fibre components based on calculations of simple relationships. With the need to develop
powerful digital virtual tools such as digital twins, the challenges facing the industry
are far more demanding and complex than just a shift from empirical to engineering
practises alone [3]. In the textile and apparel industry, the integration of digital information
technology with fabric modelling and simulation technology will involve the full life
cycle of industry products such as demand definition, fabric design, fabric manufacturing,
clothing silhouette and art design, clothing process design, clothing design verification,
clothing manufacturing, packaging design, clothing sales, product use and recycling,
market prediction and feedback. Virtual digital twins of fabrics and clothing will interact
with real-world physical presences. Fashion is a highly personalised product usually
following a trend. It is inevitable that users are deeply involved in the customisation and
design of clothing through virtual means. There is an urgent need to solve the problem of
realistic characterisation of the mechanical behaviour of fabrics in a virtual environment.

Using the output of a fabric mechanics model to truly represent the mechanical
behaviour of a fabric is inextricably linked to both the input information obtained by the
model and the model’s ability to process this information. The important aspect is that
the model’s heuristic input (virtual) information is a complete subset selected from an
infinite set of possible input information. The model must be designed so that its rules and
knowledge can accurately handle each possible choice and generate corresponding output
information. Only in this way can the model be used to explore various possible subsets
of input information to eliminate the uncertainty in its corresponding predicted output
and optimize the design of fabrics or clothing in applications. Here, the completeness of
the input information means that the virtual information subset must meet the model’s
dimensional requirements for input information. During model design, the specific content
of heuristic input information is unknown, but its dimensions must be determined.

A fabric mechanics model can be viewed as a set of multivariate nonlinear function
mappings. At the heart of the mapping relationship are proven rules and knowledge of
fabric mechanics. If overall authenticity in the model’s output information is expected, then
two prerequisites must be met. The first prerequisite is that the model must obtain complete
material mechanical property information, geometric information, force constraints and
condition information of the fabric that can truly represent its mechanical behaviour. The
second prerequisite is that the model must have rules and knowledge that can correctly and
effectively match and process the input information. A complete set of input information
must include all information dimensions that have a significant impact on the mechanical
behaviours of the fabric. The model itself does not create information; it can only generate
output information from input information according to the rules and knowledge it has. If
the completeness of the dimensions of the input information and the rules and knowledge
of the matching model cannot meet the requirements, the output information of the model
will inevitably not have overall authenticity.

1.2. Considering Fabric Mechanics

The acceptance of deviations in mechanical behaviour simulation caused by the in-
ability to provide and process mechanical property information and the oversimplification
of the complexity of fabric mechanics depends on the application. (Ngo and Boivin, 2004)
and (Stylios, 2008) pointed out that many methods for simulating clothing, despite having
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interesting visual effects, cannot be used in the textile and clothing industry due to a lack
of realism [4,5]. Other researchers observed hysteresis up to 50% of the mean force, and
they suggested that neglecting internal friction could lead to deformation errors of up to
±25% for a given load [6]. Additionally, they observed that internal friction plays a central
role in the formation and dynamics of fabric wrinkles and folds. (Volino et al., 2009) believe
that the highly nonlinear and anisotropic mechanical properties of cloth pose challenges
to accurate mechanical behaviour simulation [7]. (Wang et al., 2011) state that most fabric
simulation techniques ignore the nonlinearity and anisotropy of fabrics [8]. Although these
simplified models can produce reasonable results, they cannot accurately represent the
nature and core behaviour of real fabric mechanical properties or distinguish different
fabrics. In fact, the so-called “hyper elasticity” and oscillation stability that appear in many
cloth simulation algorithms are caused by the negligence of nonlinear mechanical proper-
ties and internal friction information. (Miguel et al., 2013) reported how they used Dhal’s
frictional model to simulate the nonlinear bending behaviour of two fabrics, recognising
branching complexities and not considering shear [6]. (Wang et al., 2019) reported that
cloth is a highly mouldable material and undergoes a wide range of deformations [9]. They
recognised that problems with modelling and simulating various mechanical properties
could directly affect the accuracy of cloth simulation. They have also asserted that despite
many years of in-depth research, various outstanding problems in cloth simulation persist.
In a recent FE study, researchers confirmed that “the dissipative performances of woven
fabric under tension resulted from the synergistic effect of the material’s viscoelasticity and
surface friction among yarns of fabrics, and also the higher friction coefficient of the yarns
contributes to a better stability in dimension and morphology of the fabric [10]”.

How to identify and determine the impact of fabric mechanical information dimen-
sions on fabric behaviour is challenging for model design, fabric measurement instrumen-
tation and usage selection. The high degree of complexity of a fabric’s structure leads to
the complexity of its mechanical behaviours. Within the linear elastic range of the mate-
rial, the stress–strain relationship for a homogeneous and isotropic linear elastic material
can be fully characterized using its physical parameters and linear constitutive equations.
These physical parameters usually include Young’s modulus, Poisson’s ratio, shear elastic
modulus and unit volume mass [11,12]. Through simple tension and shear measurements,
the mechanical parameters of the Hooke body can be easily obtained. If a set of material
geometry, dimensions and force are given, the calculation can use a rigorously verified
elastic mechanics model to predict the stress–strain relationship of linear elastic fabric
and the behaviours of the material in the virtual space–time environment. This is the
basic premise for the widely accepted and applied Hooke body mechanics simulation.
But the fabric is a specially assembled fibre structure rather than a Hooke body. To date,
the understanding of fabric structures and their mechanical behaviours remains limited.
It is well known, however, that the deformation of a given fabric structure includes the
following characteristics: Nonlinearity, Hysteresis, Anisotropy, Large deformation, and
Time dependence, with Frictional Hysteresis being very important but highly complex at
the same time. Consequently, this paper aims to provide answers about the complexity of
the frictional hysteresis component of fabric mechanics and whether it can be simplified or
ignored. Recognising that most fabric mechanical data is produced through uniaxial mea-
surements of how significant the information loss is, and finally, how we can compromise
between model accuracy and computational complexity.

2. The Challenges of Defining Fabric Mechanical Behaviour

These characteristics are intertwined and complicate the construction of reliable mod-
els to describe their mechanical behaviours. The uncertainty in the mechanical behaviours
of fabric structures far exceeds that of Hooke bodies. It also shows that using simula-
tion models to predict the uncertainty caused by poorly determined fabric mechanical
characteristics, geometric dimensions and forces requires models with far more rules and
knowledge. Due to the use of different fibre materials, textile processing techniques and
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weaving structures, the mechanical complexity of different fabrics also varies greatly. This
variability causes the method of comparing the mechanical behaviours of physical fabric
samples with model predictions for determining the authenticity of the model to lose
significance. For example, in the author’s fabric measurement database, measurement data
No. 147 and No. 20 indicate that the shear characteristics of the two fabrics have different
nonlinear complexities. The data in Figure 1 have been normalised. The purely elastic
components contained in the measured data are decomposed from the data. On the left
is the measurement data of Fabric No. 147. It contains a purely elastic component that
approximates a straight line. The properties of this fabric sample can be approximated
using a linear elastic model. On the right side is the measurement data of Fabric No. 20.
Its purely elastic component has a higher nonlinear complexity than the purely elastic
component of the measurement data of Fabric No. 147. Satisfactory results will be obtained
using the shear behaviour of fabric sample No. 147 compared with the predictions of the
linear elastic model. But using the same model to predict the shear behaviour of fabric
No. 20 will result in unacceptable errors.
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Since biaxial measurement of fabric in-plane deformation faces many challenges, the
characteristic parameters of fabric mechanics often come from some simple traditional
measurement methods or uniaxial instrument measurements. Can the data obtained by
these simplified measurement methods support a model of the true mechanical behaviour
of the fabric? Or how much information loss do they result in? We need to make the
necessary assessments of these data.

Modelling and developing measuring instruments for complex fabric mechanical
behaviour require a theoretical tool that can be used in advance to evaluate and quantify
the impact of different fabric measurement and modelling methods on the effectiveness of
the obtained mechanical characteristics. Hence, with a wide variety of simplified fabric
property models and simplified measurement methods, the loss of information due to
simplification can be evaluated. Assessments can help us identify existing gaps and
identify directions for further research. Tools can also be used to specifically quantify
the information needed in fabric measurement data, and management of data obtained
through measurements using compression can be achieved, which is also relevant in our
digital age.

However, in the existing literature on textile mechanics, models, and simulations, we
have not yet found a simple and powerful information assessment tool. To bridge this gap,
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we introduce Kolmogorov complexity (algorithmic information theory) into the study of
fabric mechanics. In Section 3 we will review the most basic concepts of information theory
and Kolmogorov complexity, and we will introduce the stress–strain and friction–hysteresis
relationships of fabric mechanics. Polynomials are used to approximate the multivariate
nonlinear mechanical relationships. In Section 4, Kolmogorov complexity is applied to
analyse and compare them to determine the information relationships of fabric mechanics
and evaluate the algorithmic information loss of simplified relationships. To facilitate
understanding of the complexity of Kolmogorov, we use enumeration to describe examples
and then discuss these contents in a simple induction way. In Section 5, we bring together
the important information analysis results of fabric mechanics and consider and discuss
the impact of these results on the future development of fabric instrumentation, fabric
modelling and simulation.

3. Shannon Information Theory and Kolmogorov Complexity

Information is a key concept across multiple disciplines in natural sciences, humanities
and in people’s daily lives. Everything we know about the world is based on the informa-
tion we receive or collect, and in principle, every science involves information. However,
researchers such as (Barbieri, 2016) and (Rocchi, 2012) show that there is still disagreement
on the appropriate definition of information [13,14]. Wiener believed that information is
not matter or energy; information is information. It is the name of the content that people
exchange with the objective world in the process of adapting to it. That is to say; Wiener
believed that in the space–time environment, information has the same level as matter and
energy [15].

The philosophical meaning of information is a complex issue [16], a polymorphic
phenomenon, and a polysemantic concept that can be associated with multiple interpre-
tations [17]. In the general field of information theory, it is likely that at least some of the
many different semantics assigned to information by different authors will prove useful
enough in some applications. They deserve further study and recognition. It is difficult to
expect that the numerous possible applications in this area can be satisfactorily explained
using a single concept of information [18].

In the fields of information processing and communications, due to the need to
design effective data encoding and transmission methods, two basic questions must be
answered: the minimum limit level that data compression can achieve and the ultimate rate
of data transmission. Hence, a quantitative concept of information needs to be established.
(Nyquist, 1924) expresses the amount of ‘intelligence’ that a telegraph system can convey
at a specific linear speed using a logarithmic function of the number of loop current
values [19]. (Fisher, 1925) proposed a method of measuring the information content of
observable random variables from a statistical perspective [20]. (Hartley, 1928) constructed
a function to quantify the amount of information obtained when an element is selected
from a uniformly distributed finite set [21]. Its information content is the logarithm of the
cardinality of the set. (Shannon, 1948) created the mathematical theory of communication
(MTC), known as Shannon’s information theory [22]. Shannon defined information as a
description of uncertainty about the state of things or the way they exist. Information is the
content of any communication. The direct purpose of eliminating the sink’s uncertainty
about the source message is achieved through communication. The amount of information
is equal to how much uncertainty is eliminated. Shannon introduced the concept of entropy
to measure this information uncertainty.

3.1. Shannon’s Information Entropy

Definition: Let the sample space of the discrete random variable X be χ, where the
probability of an event xi occurring is denoted as P(xi), xi ∈ χ, and the self-information of
the event xi is given using the following equation:

I(xi) = −log2(P(xi)). (1)
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The unit of self-information in Equation (11) is a bit.
Theorem: The entropy of a discrete random variable X is the expected value of its

self-information:
H(X) = − ∑

xi∈χ

p(xi)log2(P(xi)). (2)

Shannon’s information theory [22] has achieved great success in information trans-
mission, encoding, storage and data compression. It does not involve the semantics of the
information itself, so it is also called syntactic information theory.

3.2. Algorithm and Kolmogorov Complexity

The algorithm is based on the understanding and decomposition of the logic of a
problem and uses a certain effective finite series of simple mechanical operations to solve
the steps or sequence of the problem. Algorithms infuse problem-solving knowledge
and intelligence into computational machines. The time and space complexities of the
algorithm are used to analyse and judge the advantages and disadvantages of the algorithm.
Algorithms are the foundation of computer science and the core of continued research in
this field.

Kolmogorov complexity (algorithmic information theory) provides a new perspective
on the concept of information. It uses the binary encoding length of the shortest description
program of an information object to measure its information content. Algorithmic infor-
mation theory was proposed and developed by Kolmogorov [23–25], Solomonoff [26–28]
and Chaitin [29]. It is based on the Turing machine computational model [30] and the
optimization of the program algorithm description dimension according to the parsimony
rules of Occam’s razor. Its main results clarify the concepts of randomness and probabil-
ity. In a rather different context, algorithmic information theory reproduces the results
of Shannon’s information theory [31]. The following definitions and theorems refer to
the above-mentioned references on Kolmogorov complexity and the work of Cover and
Thomas [32].

Definition: Let us s be a binary string of limited length, and Tu be a general computer
(Turing machine). When a program p is given, l(p) is the binary string length of p. Let
Tu(p) be the output of Tu with respect to program p. Then the Kolmogorov complexity of
the binary string s is as follows:

K(s) = min
p:s=Tu(p)

l(p). (3)

That is, the Kolmogorov complexity K(s) is the minimum binary string length of all
programs that can output s and stop (satisfying computability). If the binary string length
l(s) of s is known, then

K(s|l(s)) = min
p:s=Tu(p,l(s))

l(p). (4)

If p does not exist, then
K(s) = ∞. (5)

In the above definition, program p is used to describe s. That is, the Turing machine Tu
uses its input program p to generate the described object s.

Invariance theorem: Suppose K1 and K2 are the complexity functions of the description
languages L1 and L2 that satisfy Turing completeness, then there is a constant C. The choices
for the description languages L1 and L2 are

∀s. |K1(s)− K2(s)| ≤ C. (6)

Theorem: For a binary output string s, l(s) is its length, and there exists a constant C
such that

∀s. K(s) ≤ l(s) + C. (7)
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Theorem: For any n ∈ N, there is a complexity of string s:

K(s) ≥ n. (8)

Theorem: K is not a computable function. That is, there is no program that can take
the string s as input and then obtain its K(s).

Kolmogorov’s chain rule of complexity is given using

K(X, Y) = K(X) + K(Y|X) + O[logK(X, Y)]. (9)

That is, the shortest program describing X and Y differs by one logarithmic term
from the sum of the shortest program describing X and the shortest program describing
Y, respectively.

3.3. The Relationship between Kolmogorov Complexity and Information Entropy

Theorem: If X1, X2,. . . are independent uniform integer random variables, and the
entropy is H, there exists a constant C for all n, then

H ≤ 1
n

EK(Xn|n) ≤ H + |χ| logn
n

+
C
n

. (10)

3.4. Mathematical Abstraction of Low-Stress Mechanical Properties of Fabrics

To support the analysis of the algorithmic information of stress–strain fabric relations
using Kolmogorov complexity, the contents of this section bring together a summary of
fabric stress–strain and their friction hysteresis relations [33,34].

The mechanical properties of woven fabrics are usually divided into stress–strain
relationships of in-plane deformation and bending deformation. In-plane deformation
includes the stress–strain relationship of longitudinal/latitudinal tensile deformation and
shear deformation. In these stress–strain relationships, pure elastic components and friction
hysteresis components always coexist in the form of common action points and common
action lines. In the uniaxial tension, shear and bending measurement fabric data, as shown
in Figure 2, due to the existence of friction hysteresis, the loading curve and the unloading
curve are always non-coincident.
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Figure 2. Schematic diagram of uniaxial tensile, shear and bending stress–strain relationships of
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3.4.1. Stress–Strain Relationship of Fabrics

Since the magnitude of the stresses produced by bending deformations is small com-
pared to the stresses produced by in-plane deformations, its effect on the stress of in-plane
deformation can be neglected. The stress–strain relationship of fabric in-plane deformation
can be abstracted, as shown in Equation (11) [35,36].
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Among them, Si
(
εx, εy, γ

)
and Hi

(
εx, εy, γ

)
respectively represent the pure elastic

component and friction hysteresis component of fabric mechanical properties.
σx = S1

(
εx, εy, γ

)
+ H1

(
εx, εy, γ

)
σy = S2

(
εx, εy, γ

)
+ H2

(
εx, εy, γ

)
τ = S3

(
εx, εy, γ

)
+ H3

(
εx, εy, γ

) (11)

The bending characteristics of the fabric can be reasonably inferred as the mapping
relationship between the bending force couple M and its bending curvature K, and the
offset angle θ between the bending direction and the warp direction, εx, εy and γ. The
relationship between M, K and θ has been proven in many studies [37,38]. Since in-plane
shearing causes changes in fabric fibre distribution and fabric density, shearing will also
inevitably lead to changes in the orthogonal relationship between warp and weft yarns.
It can be reasonably speculated that shear is regarded as one independent variable in the
multivariate relationship of bending properties. When a fabric is stretched, the crimped
state of the fibres is changed. Since the yarns in the fabric usually have a twist, the fibres
within the yarns are held tightly and change the bending section modulus of the yarns.
It is also reasonable to speculate that the stretch of warp and weft yarns are used as
two independent variables in the bending characteristics of the fabric. Due to the high
complexity of fabric structure, there is currently no good measurement solution for the
correlation between in-plane deformation and bending characteristics. So, the details of
these relationships remain to be studied. To sum up, the five independent variables for the
nonlinear stress–strain relationship of fabric bending can be expressed as follows:

M = S4
(
K, θ, εx, εy, γ

)
+ H4

(
K, θ, εx, εy, γ

)
. (12)

When fabrics are subjected to repeated loads, there are problems such as accumulation
of plastic deformation and hardening of fibre materials [36]. The loop formed through the
hysteresis curve of its mechanical properties will also gradually change from wide to narrow
and undergo spatial migration. The addition of these fabric’s mechanical behaviours will
inevitably further increase the complexity of the fabric mechanics’ model.

3.4.2. Friction Hysteresis Component

Extensive research has shown that the relationship between friction and normal
pressure of polymer fibres obeys a power law [39]:

Ff = aNn, (13)

where Ff represents the friction force, N represents the normal force, and a and n are
regression constants obtained through data fitting, n < 1, which is approximately 2/3.

Macroscale combined deformations such as stretching, shearing, and bending of fabrics
lead to complex deformations of fibres and yarns at the microscale and mesoscale [40].
With the occurrence of macro-scale combined deformation, the distribution of friction
points between fibres and the normal force between fibres at friction points is constantly
changing. For example, because the yarn has a twist, when a fabric is stretched, friction
and self-locking occur between the fibres in the yarn, and the friction force increases with
the increase in the stretching force. This allows the yarn to transmit tensile force over
any length scale. The macroscopic equivalent friction force of the fabric forms a nonlinear
multivariate relationship similar to that of the pure elastic component. The equivalent
friction force for in-plane deformation can be expressed as follows:

fci = Fci
(
εx, εy, γ

)
. (14)

Among them, i = 1, 2, 3 represent warp/weft stretching and shearing, respectively.
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Similarly, for bending deformation, the following equation can be used:

fc4 = Fc4
(
K, θ, εx, εy, γ

)
. (15)

To describe the hysteresis due to friction within the fabric, an extended version of
Dahl’s pre-slip Model [41] was introduced:

dHi = σi

[
1 − Hi

fci
sgn(dsi)

]
dsi. (16)

It is worth noting that in Equation (16), fci is not a constant but a multivariate nonlinear
relationship, dsi, is the path integral of the corresponding deformation.

When it is necessary to express the combination of the Coulomb friction model and the
static friction model, the extended second-order Bliman and Sorine Friction Model [42–45]
can be introduced.

3.4.3. Function Approximation

Polynomial space is a dense subset of the continuous function space. A series of
polynomials of countable dimensions can be used to approximate continuous functions.

Let’s consider Weierstrass’s first theorem of function approximation [46]: Any contin-
uous function f defined in the bounded closed interval [a, b] can always be approximated
using polynomial Pn and the error between the two is

En( f ) = lim
n→∞

(
max

a≤x≤b
| f (x)− Pn(x)|

)
= ∥ f − Pn∥∞ = 0. (17)

According to the Weierstrass function approximation theorem, nonlinear functions
can be expanded into infinite-dimensional polynomial functions. The nonlinear problem
of higher-order functions is transformed into the dimensionality problem of linear space.
In calculations, it is often only necessary to use a few terms of a polynomial function to
convey information on most fabric mechanical properties with acceptable errors.

The purely elastic components S1, S2 and S3 of the in-plane deformation (Equation (11))
and the equivalent friction forces fc1, fc2 and fc3 (Equation (14)) can be approximated using a
ternary polynomial. The pure elastic component S4 (Equation (12)) of bending deformation
and the equivalent friction force fc4 (Equation (15)) can be approximated using a five-
variable polynomial.

The pure elastic component and the equivalent friction force of the friction hysteresis
component of any fabric have different degrees of nonlinearity. This means that the degree
requirements of the polynomials used to describe them also differ. The higher the degree
of nonlinearity, the higher the degree of the polynomial required to describe it. Based on
the author’s experience in processing hundreds of uniaxial measurement data of fabrics,
the description of the most complex mechanical nonlinear characteristics encountered uses
fifth-order polynomials for approximation and fitting. Here, we also choose the fifth order
as the highest degree of the polynomial.

After using function approximation, the evaluation of the computational information
content of multivariate nonlinear relationships in fabrics can be transformed into the
evaluation of the computational information content of multivariate polynomials.

4. The Nonlinearity of Fabric Mechanical Properties, Polynomials and Its
Kolmogorov Complexity

According to the invariance theorem of Kolmogorov complexity (Equation (6)), we
can choose any language to describe information objects. To clearly highlight the changes
in the description complexity of different information objects, this paper chooses concise
Python3 as the description language of information objects. When measuring the binary
encoding length of the description language, the character encoding uses 7-bit binary ASCII
encoding. The encoding length measurement includes spaces, carriage returns and line
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feeds in the description. The description coding provided in this article can be executed
in the Python3 environment. However, it should be noted that these codes are optimized
for measuring and comparing the Kolmogorov complexity of information objects, and the
fabric model will not use such encoding.

A polynomial function has its defined interval. To simplify the description process
without losing the comparability of the description, except for Description 5, the rest of
the descriptions are simplified to only describe the polynomial function itself without
involving its definition interval.

4.1. Polynomials of One Variable and Their Kolmogorov Complexity Analysis

Most of the measurement data of existing fabric model software comes from single-
axis measurement systems. The nonlinear characteristics of these measured data can be
approximated and fitted using a polynomial of one variable. More importantly, the one-
variable polynomial is also the most basic comparison unit for analysing the components
of fabric mechanical properties. We need to first analyse its Kolmogorov complexity.

The mathematical expression of a polynomial can have different forms. Let ai be its
coefficient; its direct expression is

f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5. (18)

To reduce the number of multiplication calculations, it can also be expressed as

f (x) = a0 + x(a 1 + x(a2 + x(a3 + x(a 4 + xa5)))). (19)

It is worth noting that compared with the mathematical expression of Equation (18),
the computational complexity and description complexity of Equation (19) are reduced.
We use Equation (19) to describe polynomial calculations.

Description 1. The equivalent Coulomb friction force of the bending hysteresis of a certain
fabric is very close to a constant, which is equivalent to retaining only the constant term of
the polynomial. It can be described as follows.

def f(a,x):return a
print(f(0.2368,0.0))

The total description length is 287 bits.

Description 2. When using linear relationships to describe the elastic components of
tension, shear and bending, since the elastic component needs to pass through the zero-
coordinate point, there is a0 = 0. Linear spring models use this description. This is equivalent
to retaining only the first term of the polynomial. Its description is as follows.

def f(a,x):return a * x
print(f(0.2368,0.8533))

The total description length is 322 bits.

Description 3. The highly complex nonlinear elastic components of a certain fabric need
to be described using fifth-order polynomials. However, since the elastic components need
to pass through the coordinate zero point, there is a0 = 0, which is described as follows.

def f(a,x):return x*(a[0] + x*(a[1] + x*(a[2] + x*(a[3] + x*a[4]))))
print(f([0.2108,0.0386,0.0816,−0.0288,0.0188],0.533))

The total description length is 812 bits.

Description 4. The highly complex nonlinear hysteresis equivalent to the Coulomb friction
of a certain fabric needs to be described using a fifth-order polynomial, which is described
as follows.
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def f(a,x):return a[0] + x*(a[1] + x*(a[2] + x*(a[3] + x*(a[4] + x*a[5]))))
print(f([0.2135,0.0086,0.0618,−0.0013,0.0188,−0.0065],0.8533))

The total description length is 903 bits.
It can be seen from the above description that the amount of calculation information for

different fabric nonlinearities is very different. If the elastic nonlinearity of a certain fabric
is highly complex and needs to be described using a fifth-degree polynomial of Description
3 but is simplified and described using a linear spring of Description 2, this simplification
alone will result in a relative loss of more than half of the algorithm information. It is not
surprising, therefore, that most fabric models exhibit unusual behaviours such as “hyper
elasticity”.

4.2. Compressibility of Unary Measurement Data

Description 5. There is highly complex tensile property data of a certain fabric measured
using a uniaxial fabric tensile instrument. Through machine learning algorithms, its
nonlinear elastic and hysteresis components can be decomposed. Its nonlinear elastic
component is shown in Figure 3. It requires fitting using a fifth-degree polynomial.
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Figure 3. Tensile pure elastic curve chart (the pure elastic component after the tensile curve
is decomposed).

The length of the fabric sample is 50 mm, and the measured maximum elongation is
12%, which is 6 mm. Taking one data sample every 0.02 mm of extension produces a total of
301 samples. The sampled values are encoded using float quantization. Each float encoding
occupies 32-bit binary length. The total memory length occupied by the binary encoding
of the data is 9632 bits. The maximum number of data list output is 5000.0 mN/cm. If we
maintain one significant digit after the decimal point and include decimal point, carriage
return and line feed codes, each dataset uses approximately six ASCII encodings on average.
The total binary encoding length is approximately 12,642 bits. Its algorithm is described as
follows.

def f(a,x):return x*(a[0] + x*(a[1] + x*(a[2] + x*(a[3] + x*a[4]))))
for i in range (0,300):print(round(f([32.88,25.68,5.86,1.18,0.11], i*0.02),2))

The description length is 987 bits in total. Comparing the description length of the algo-
rithm’s information content with the encoding length of the algorithm’s output shows that
the information can be compressed effectively. If Shannon’s information entropy calculation
is used, according to Equation (10), it is possible to obtain a higher data compression ratio.

If one sample is taken for every 0.01 mm of extension, the amount of data for the
same curve is doubled, but the amount of algorithm information does not change. It
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can be concluded that during the fabric measurement process, within the measurement
interval, when the density of the sampling points reaches a certain level, increasing the
density of the sampling points does not help to obtain effective information. It would be
useful and interesting to conduct a detailed analysis of Shannon’s information content of
fabric instrument measurement data and explore effective data encoding and compression
methods in a future paper.

4.3. The Relationship between Multivariate Polynomials, Nonlinearity, and Complexity

In this section, the elastic component Si of the fabric’s mechanical properties and the
equivalent friction force fci of the hysteresis component form their own multivariate nonlin-
ear relationships are being considered. To approximate nonlinear mechanical properties
with multivariate relationships, multivariate polynomials are being used.

The conceptual definition of multivariate polynomials in advanced algebra is: Suppose
P is a number field, x1, x2,. . ., xn are n words. The form is

axk1
1 xk2

2 . . . xkn
n , (20)

where a ∈ P, k1, k2, . . ., kn are non-negative integers and are called a monomial. If two
monomials have exactly the same powers of the same literal, they are said to be congeners.
Similar items can be merged. The sum of some monomials is given using

∑k1,k2,...,kn
ak1k2 ...kn xk1

1 xk2
2 . . . xkn

n . (21)

It is called an n-ary polynomial, or simply a polynomial.
Suppose f (x, y) has continuous partial derivatives up to the fourth order in a certain

neighborhood of the zero point, and (h, k) is any point in the neighborhood. Let us try to
use a binary cubic polynomial fp (x, y) in approximating a binary nonlinear function f (x, y)
near the zero point. Applying the third-order Taylor formula, we get

fp(x, y) = f (0, 0) +
(

x ∂
∂x + y ∂

∂y

)
f (0, 0) + 1

2!

(
x ∂

∂x + y ∂
∂y

)2
f (0, 0)

+ 1
3!

(
x ∂

∂x + y ∂
∂y

)3
f (0, 0) + Rn,

(22)

where Rn is called the Lagrangian remainder of the Taylor expansion. Expanding Equation (16)
and sorting out the coefficients of each term, we can get

ˆfp(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y + a8xy2 + a9y3. (23)

In a similar way, the relationship between the number of terms and the number and
degree of variables after merging similar terms of an approximation polynomial can be
obtained as follows:

As can be seen from Figure 4 and Table 1, multivariate nonlinear functions can be
transformed into high-dimensional linear space for processing approximation. But as the
number of variables and their degree of nonlinearity increases, the dimensions of the linear
space must increase rapidly, leading to a disaster of dimensionality.

Table 1. Relationships between the number of polynomial terms, the number of variables and the
degree of the polynomial.

Degree One Variable Two Variables Three Variables

Zero 1 1 1

Linear 2 3 4

Quadratic 3 6 10
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Table 1. Cont.

Degree One Variable Two Variables Three Variables

Cubic 4 10 20

Quadratic 5 15 35

Quintic 6 21 56
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Description 6. Let us describe a quadratic polynomial of two variables.

def f(a,x,y):return a[0] + x*(a[1] + a[4]*y + x*a[3]) + y*(a[2] + a[5]*y)
print(f([0.1021,0.4031,0.1257,0.2111,0.0101,0.1056],0.3505,0.8625))

The description length is 924 bits. A quadratic polynomial of two variables has the
same number of terms as a quintic polynomial of one variable. Comparing Description 4,
the complexity of describing quadratic polynomials of two variables is basically the same
as that of quintic polynomials of one variable.

Description 7. Let us now try to describe the cubic polynomial of two variables further.

def f(a,x,y):return a[0]+x*(a[1]+a[4]*y+x*(a[3]+a[6]*x+a[7]*y))+y*(a[2]+y*(a[5]+a[8]*x+a[9]*y))
print(f([0.1011,0.3537,0.1257,0.2186,0.0101,0.1211,0.5433,0.1158,0.1358,0.3575],0.3505,0.8625))

The description length is 1344 bits.

Description 8. The description of the ternary quadratic polynomial is as follows.

def f(a,x,y,z):return a [0] + x*(a[1] + a[4]*x + a[5]*y + a[6]*z) + y*(a[2] + a[7]*y + a[8]*z) + z*(a[3] + a[9]*z)
print(f([0.1011,0.3537,0.1257,0.2186,0.0101,0.1211,0.5433,0.1158,0.1358,0.3575],0.3505,0.8625,0.5708))

The number of terms in a cubic polynomial of two variables is also the same as the
number of terms in a quadratic three-dimensional polynomial. Comparing Descriptions 7
and 8, shows that their description complexity is the same.

Comparing all descriptions except Description 5, we can conclude that the number of
terms of a polynomial determines its complexity. The higher the number of terms in the
polynomial, the higher the complexity.
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We know that the number of terms of a polynomial depends on its number of vari-
ables and the nonlinearity of those variables. Multivariate variables and their nonlinear
interactions generate a large number of cross-terms, rapidly increasing the number of terms
in the polynomials that describe them.

When comparing the information loss caused by different fabric mechanics measure-
ment and model reduction methods, we use fourth-order polynomials as a benchmark
for comparison. In the third section of this paper, the number of main independent vari-
ables required for fabric measurement and modelling and their physical meanings have
been determined. They exhibit cross-correlation on mechanical properties. The degree of
nonlinearity of these fabrics cannot be determined until test data on the physical fabric is
obtained. We empirically use the highest fifth-degree polynomial as their reference model.
The number of terms in the final polynomial still needs to be determined using the machine
learning algorithm from the measured data of the fabric in accordance with Occam’s razor
principle. The statistical average of the degree of polynomial described using the degree of
nonlinearity of mechanical properties is close to four degrees.

Description 9. Use the cumulative integration method to describe the integral of the Dahl
friction hysteresis model (Equation (16)).

If (‘hs’ not in vars().keys()): hs = 0
def sgn(x):
if (x < 0): return −1
else: return 1
def h(xgm,fc,ds):
global hs
hs = hs + xgm*(1 − sgn(ds)*hs/fc)*ds
return hs
print(h(0.8052,0.2035,0.1001))

The description length is 1323 bits. Contrast this with Description 7, which is close to
the complexity of the polynomial description with 10 terms.

4.4. Complexity of Pure Elastic and Friction Hysteresis Components

It has been shown in Section 3 that although the physical meanings are different,
the mathematical model descriptions of the equivalent friction force of the pure elastic
component and the friction hysteresis component of the fabric’s mechanical properties
are similar. Consequently, their Kolmogorov complexity is naturally the same. However,
due to the path dependence of friction hysteresis, the equivalent friction force is only
part of the description of friction hysteresis. After obtaining the equivalent friction force,
the friction hysteresis still needs to be described using the extended pre-slip model such
as Dahl (Description 9) and following up with integration on Dahl’s differential model.
Therefore, the frictional hysteresis component has a higher Kolmogorov complexity than the
purely elastic component. i.e., it generates a higher uncertainty in the fabric’s mechanical
properties than the purely elastic component, confirming our earlier observations.

• In practical and theoretical research and engineering applications of fabric mechanics,
the elastic component of mechanical properties has received more attention. This
is because there is still limited awareness of the contribution of friction hysteresis’s
high complexity to the mechanical properties of fabrics, and obtaining and effectively
characterizing friction hysteresis information is difficult due to the high complexity of
friction hysteresis.

Replacing the hysteresis caused by dry friction with the damping caused by internal
friction in the fluid, which is different in physical meaning from friction hysteresis, and
simplifying the characterization of friction hysteresis will cause the model or simulation to
lose a lot of fabric mechanical information. Completely ignoring its existence will inevitably
cause the model and simulation to lose more than 50% of the algorithm information.
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4.5. Information Loss of Uniaxial Measurements and Models

Since the pioneering fabric mechanical measurement and research by (Haas & Dietzius,
as reported by Yousef and Stylios, 2015), biaxial measurement technology of fabric mechan-
ical properties has perplexed the industry [47]. It is difficult to obtain measurement data for
fabric low-stress mechanical properties described using Equation (11). There is still no ef-
fective measurement method for the bending characteristics described using Equation (12).
The difficulty of the measurement process and the lack of measurement methods have led
to most measurements, models and simulations being reduced to relatively simple uniaxial
methods.

But we need to understand the effects of this information loss using uniaxial measure-
ments, models and simulations instead of corresponding multivariate nonlinear measure-
ments and models. How much authenticity can such simulations of fabrics and clothing
provide? Due to the nonlinear diversity of physical fabrics, such questions cannot be
answered using simple sample comparison methods.

For fabric in-plane deformation, using uniaxial measurement, models and simulations,
Equation (11) is simplified to 

σx = S1(εx) + H1(εx)
σy = S2

(
εy
)
+ H2

(
εy
)

τ = S3(γ) + H3(γ)
. (24)

Taking the stress–strain relationship of σx in Equation (24) as an example, a fourth-
order polynomial is chosen to meet the average requirement for describing the degree
of nonlinearity of the fabric. The stress–strain relationship uses five polynomial terms
to describe S1; five terms describe the equivalent friction force of friction hysteresis, and
the complexity equivalent to ten polynomial terms describe the hysteresis model. A total
complexity equivalent to twenty polynomial terms is used to describe the stress–strain
relationship of σx. If Equation (11) is used to describe the stress–strain relationship of σx,
under the same degree of fabric nonlinearity, thirty-five polynomial terms are needed to
describe S1. Thirty-five terms describe the equivalent friction force of friction hysteresis, and
an additional complexity equivalent to ten polynomial terms describes the hysteresis model.
A total of eighty polynomial terms are required to describe the stress–strain relationship
of σx. Uniaxial measurements and models retain only about a quarter of the information
on mechanical properties. Even though this quarter of the information may be among the
most important for the mechanical properties of the fabric, too much information loss will
make the result of measurements and models deviate from reality.

The information loss due to the over-linearisation of nonlinear characteristics is an
important consequence. If the nonlinear description ability of the model is reduced below
the true nonlinearity of the fabric, the number of terms of the polynomial can be reduced,
and the complexity of the model will be lost. For example, linear springs are used instead
of nonlinear mapping relationships, and output results are less realistic, as is currently
practised with CAD models used nowadays.

5. Conclusions and Outlook

Considering the challenges of fabric mechanics, this paper aims to establish how
to precisely define the mechanical behaviour of fabrics as engineering materials using
Komogorov complexity, offering a new way of thinking about measurements, models, and
simulations. The paper aims to provide answers about the complexity of the frictional
hysteresis component in fabric mechanics and whether it can be simplified or ignored.
Recognising that most fabric mechanical data are produced through uniaxial measurements,
how significant is the information loss, and finally, how we can compromise between model
accuracy and computational complexity.

This paper shows that information theory and Kolmogorov complexity provide new
ways of thinking about the nature and reality of measurements, models and simulations of
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fabric mechanics. A loss in the complexity (algorithmic information content) of measured,
modelled, and simulated fabric mechanical properties will render their results significantly
less realistic. Hence, through algorithm information analysis, the following conclusions
can be drawn from this research:

1. The frictional hysteresis component in fabric’s mechanical properties provides a higher
level of complexity than the purely elastic component. This paper shows that ignoring
the friction hysteresis component will cause the model and simulation to lose more
than 50% of the algorithm information. For example, the pure elastic component
and the Coulomb friction of a fabric need to be described using three-dimensional
fourth-order polynomials. If the friction hysteresis component is ignored, we can have
a 56% loss of information, and if there is a frictional overshoot, the loss of information
will be even greater.

2. Although uniaxial measurements are technically easier to implement than their multi-
variate counterparts, we have shown that an average loss of information can be as
high as 75%. Hence, the vast number of models that use unary relationships to de-
scribe fabric behaviour and ignore the presence of frictional hysteresis are inaccurate
because they hold less than 12% of real fabric mechanics data.

3. Oversimplification of nonlinearities in models and simulations can also cause signifi-
cant information loss. For example, in the same ternary relationship, if a fabric with a
quartic polynomial description is simplified and described using a linear relationship,
it can be calculated from Table 1 that it can lose a staggering 88% of its mechanical
information.

4. Our research also shows that the entropy of data obtained from fabric instrument
measurements is not high, so we have shown that it can be significantly compressed
to facilitate data management, exchange and use.

Consequently, using Kolmogorov complexity and Shannon’s information theory, we
can conclude the low-stress mechanics of fibrous flexible materials as follows: The friction
hysteresis component and the pure elastic component in the mechanical properties of
fabrics coexist in the form of co-action lines and co-action points. Measurements cannot
directly obtain them individually. Friction hysteresis has branches, that is, path dependence,
which cannot be simply represented by a nonlinear polynomial relationship. In view of the
high degree of complexity of friction hysteresis, which carries more than 50% of fabric’s
mechanical information, an algorithm needs to be developed to decompose the friction
hysteresis components and pure elastic components contained in the measurement data
and to effectively characterize them.

The fabric instrument measurement technology has long posed challenges to the de-
velopment of fabric mechanics. Uniaxial measurement methods cannot obtain sufficient
information to truly characterise the mechanical behaviours of fabrics. It is of great sig-
nificance to develop a biaxial measurement system suitable for clothing applications. To
obtain maximum information from measurements, it is necessary to develop new sensor
technology, analogue signal conditioning, information conversion and encoding, artificial
intelligence calibration and inter-dimensional decoupling technology of multi-dimensional
sensors and data fusion technology. They all form the basis for developing new biaxial
measurement solutions.

A balance should be sought between the computational complexity of the algorithm
and nonlinear simplification to keep the model with enough rules and knowledge that its
output remains sufficiently accurate.

Efforts should be directed towards developing algorithms and systems for efficient pro-
cessing, compression, encoding and management of fabric instrument measurement data.

Due to the high degree of complexity, increasing the amount of information required
for fabric measurements, models and simulations will inevitably lead to realistic computabil-
ity issues. How to overcome real computability problems through improved algorithms,
hardware instruction acceleration, parallel computing and machine learning remains a
challenging aspect in the engineering mechanics of fibrous flexible assemblies.
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Regarding the multivariate nonlinear relationship of fabric mechanics, our research
involves the highest three-dimensional nonlinear relationship. The deformation analysis of
the fabric shows that it has a five-dimensional nonlinear relationship if no simplification
is applied.
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