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Abstract: Most rule induction algorithms generate rules with simple logical conditions based on
equality or inequality relations. This feature limits their ability to discover complex dependencies
that may exist in data. This article presents an extension to the sequential covering rule induction
algorithm that allows it to generate complex and M-of-N conditions within the premises of rules. The
proposed methodology uncovers complex patterns in data that are not adequately expressed by rules
with simple conditions. The novel two-phase approach efficiently generates M-of-N conditions by
analysing frequent sets in previously induced simple and complex rule conditions. The presented
method allows rule induction for classification, regression and survival problems. Extensive experi-
ments on various public datasets show that the proposed method often leads to more concise rulesets
compared to those using only simple conditions. Importantly, the inclusion of complex conditions
and M-of-N conditions has no statistically significant negative impact on the predictive ability of
the ruleset. Experimental results and a ready-to-use implementation are available in the GitHub
repository. The proposed algorithm can potentially serve as a valuable tool for knowledge discovery
and facilitate the interpretation of rule-based models by making them more concise.

Keywords: rule induction; complex elementary conditions; M-of-N conditions; classification;
regression; survival analysis

1. Introduction

In knowledge discovery from tabular data, rules represent one of the most intuitive
and widely used forms of knowledge representation. Many knowledge discovery problems
can be considered as rule induction tasks. Examples of such tasks include association rule
learning [1], subgroup discovery [2], contrast sets, and emerging patterns mining [3] and
black-box explanation [4,5]. While the descriptive power of rules is widely acknowledged,
they moreover find utility in predictive purposes (i.e., for building classification systems).
The descriptive and predictive aspects of rule induction are closely related. In fact, any
rule induction algorithm can be oriented toward one or both of these purposes. What
distinguishes them are the strategies used to navigate the search space, the techniques used
to evaluate the rules, and how they are subsequently refined.

For the purpose of knowledge discovery, the induction algorithm aims to find rules
that fulfill assumed quality constraints, such as precision (confidence) or support (coverage).
Subsequently, filtering can be applied based on the interestingness of the rule. If classifica-
tion is the main goal, induction is oriented towards achieving the highest predictive power.

The vast majority of rule induction algorithms—some of which are listed in the
Section 2—generate rules with premises consisting of simple elementary conditions. These
conditions are expressed as attribute ⊙ value, where ⊙ ∈ {=,>,<,≥,≤}. While some
algorithms permit the induction of negated conditions (e.g., attribute ̸= value), only a
few allow the induction of complex conditions. These complex conditions may involve
comparisons of attribute values, M-of-N conditions, and conditions resulting from the use

Mach. Learn. Knowl. Extr. 2024, 6, 554–579. https://doi.org/10.3390/make6010026 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6010026
https://doi.org/10.3390/make6010026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-6035-1951
https://orcid.org/0000-0002-2393-9761
https://orcid.org/0000-0002-5715-6239
https://doi.org/10.3390/make6010026
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6010026?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2024, 6 555

of constructive induction. The reliance on simple elementary conditions is a limitation of
many rule induction algorithms. Rules with complex conditions can capture dependencies
that cannot be represented using simple conditions.

Among the various rule learning approaches, the separate-and-conquer strategy (also
known as sequential covering) represents a reasonable compromise, enabling the induction
of a moderate number of rules with good predictive power. Importantly, the procedure
can be easily tailored to the interpretability or classification abilities of the model by using
different rule search strategies and rule quality criteria (quality measures).

In the articles [6,7], we demonstrated the effectiveness of our version of the sequential
covering rule induction algorithm, confirming its performance across dozens of benchmark
datasets. The algorithm is implemented in the RuleKit library [8].

The purpose and main contribution of this paper are to extend the RuleKit-based
rule induction algorithm by introducing the capability to induce complex elementary
conditions. Specifically, our original proposal involves generating M-of-N conditions based
on the analysis of frequent sets constructed from both simple and complex (e.g., conditions
comparing the values of two attributes) elementary conditions.

The proposed algorithm enables rule induction for classification, regression, and sur-
vival analysis problems. The conducted experiments show that the introduction of com-
plex conditions does not significantly affect the predictive ability of rulesets. However,
rules with complex conditions enable the description of data with a wider range of
different dependencies.

The implementation of the algorithm is available on the GitHub repository (https://
github.com/adaa-polsl/m-of-n-rules accessed on 21 February 2024). In addition, to ensure
the reproducibility of the research, we have published detailed results of all the experiments
conducted there.

2. Related Work
2.1. Rule Induction Algorithms

The earliest rule induction algorithms were based on the sequential covering strategy.
This strategy involves constructing a set of rules by sequentially inducing rules that cover
successive, not-yet-covered training examples. The sequential covering strategy was first
proposed by Michalski [9], who presented several versions of the AQ algorithm [10–13].
Fürnkranz systematized the sequential covering approach to rule induction by analyzing
the impact of rule specialization and generalization phases and rule search heuristics on
the descriptive and predictive capabilities of induced rulesets [14,15].

Well-known sequential covering rule induction algorithms include AQ, CN2 [16],
and RIPPER [17], but the family of such algorithms is extensive. AQ and CN2 generate
sets of rules, while RIPPER generates a rulelist, which is important for the global interpre-
tation of discovered dependencies and the method of example classification. LEM [18],
DomLEM [19] and VC-DomLEM [20] exemplify rule induction algorithms combining the
sequential covering idea with rough set theory.

Moreover, association rule induction algorithms can be used to induce classification
rules [21,22]. In this approach, rule conclusions are fixed and always indicate a specific value
of a decision attribute (class label). Rules that meet minimum confidence and minimum
support requirements are generated, and a filtration algorithm is subsequently applied to
eliminate redundant rules.

Another group somewhat related to the sequential covering strategy is the one based
on ensemble classification approaches such as boosting [23–25], or bagging [26].

In recent years, several rule induction proposals based on optimizing a given loss
function have been presented. Instead of inducing consecutive rules one by one, these
algorithms optimize the entire ruleset according to a given loss function [27–29].

A growing number of proposals focus on extracting rulesets from trained neural
networks [30–33]. Extracted rules are used not only for data description and prediction.
They are applied to explain the decisions made by complex networks [30,32]. It is worth
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noting that effective rule induction algorithms based on neural network architectures were
proposed over 20 years ago [34,35].

Recently, there has been a return to the idea of generating locally optimal rules for
individual (specific) training examples. Although this approach usually yields better
prediction results, it complicates understanding the decision-making mechanism. The idea
of discovering locally optimal dependencies aligns with the fundamentals of rough set
theory [36–38], where minimal decision rules are represented by local decision reducts.
Examples of locally optimal rule induction algorithms not directly inspired by rough set
theory are HARMONY [39] and LORD [40].

2.2. Learning Complex Elementary Conditions

Fundamentally, apart from some versions of AQ, all the aforementioned algorithms
generate rules with simple elementary conditions (a = v, a < v, a > v; where a is
a conditional attribute and v is one of its values). Some of these algorithms allow the
induction of negated elementary conditions (a ̸= v).

The AQ algorithm allows for the appearance of an internal disjunction in the elemen-
tary condition. The expression a = v1 ∨ v2 ∨ . . . ∨ vn represents the elementary condition
that has a form of internal disjunction. In this expression, a is a conditional attribute, and v1,
v2, ..., vn are specific values of a or intervals of a. A rule with an internal disjunction in its
premise can be transformed into multiple (e.g., n) rules that contain only simple conditions.

Some approaches attempt to replace conventional attribute-value conditions with
fuzzy intervals [41]. An example of such a method is the FURIA algorithm [42], which
modifies RIPPER to induce fuzzy rules. FURIA tends to achieve better predictive accuracy
than RIPPER but at the cost of generating more rules and conditions. Notably, fuzzification
adds a layer of complexity to interpreting such rules, as it requires an awareness of the
underlying fuzzy semantics.

Both classical and fuzzy rules can only determine axis-parallel decision boundaries.
To overcome this limitation, some authors have proposed oblique decision rules. An oblique
decision rule incorporates a linear combination of attributes in its premise. One example of
such algorithms is CHIRA [43], which is a rule aggregation method that uses convex hulls
to identify the regions covered by the aggregated rules and creates oblique elementary
conditions based on them. Setiono and Liu [44] proposed a system capable of generating
oblique decision rules from trained neural networks. Although oblique rules often can
produce more compact and accurate rulesets, as they can handle more complex and non-
linear relationships in data, they are less interpretable than conventional rules.

Much greater interpretability than fuzzy and oblique rules provides the induction
of rules with M-of-N conditions. The M-of-N condition is represented as a disjunctive
normal form (DNF) formula with N conjunctions, each containing M literals. For instance,
the 2-of-3 condition can be written as a formula: (w1 ∧w2) ∨ (w1 ∧w3) ∨ (w2 ∧w3), where
w1, w2, w3 are elementary conditions. However, the M-of-N condition may have various
interpretations, such as “at least M out of N conditions are met”, “exactly M out of N
are met”, and “at most M out of N conditions are met”. In addition, depending on
the interpretation, the DNF formula representing the condition will differ. To induce
the M-of-N conditions, greedy search [45,46], genetic algorithms [47], and constructive
induction [48–50] have been applied. There are articles that present the idea of inducing
M-of-N conditions from trained neural networks [51,52] and decision trees [50,53]. Some
algorithms assume that the rule premise contains only M-of-N conditions. An analogy to
the idea of inducing M-of-N formulas is found in the work by Beck et al. [54], proposing
the induction of general logical functions by training alternating layers of conjunctive and
disjunctive rulesets.

Considerations on various types of rule conditions are found in the [55] report, which
is a kind of manifesto for the descriptive possibilities of classification (decision) rules.
Although this work was written many years ago, to date, no broader research has been
presented on the impact of complex elementary conditions on the descriptive and predictive
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capabilities of rulesets with such conditions. Moreover, there is no publicly available imple-
mentation of an algorithm generating complex conditions (e.g., enabling the comparison of
attribute values or generating M-of-N conditions). It is worth noting that all the algorithms
mentioned in this section apply only to classification problems.

Finally, we mention the studies related to introducing new attributes/features to the
attribute set. New attributes reflect complex relationships between the basic attributes
and can be generated using constructive induction methods (data-driven [56], hypothesis-
driven [57], or other feature extraction methods [58]). Besides, new attributes may re-
sult from analyses (e.g., PCA [59], multidimensional scaling [60]) conducted by domain
experts attempting to understand the dependencies present in the data of interest [61].
Although constructive induction may influence the descriptive and predictive capabilities
of generated rulesets, it is only somewhat related to our article. Our method of inducing
M-of-N conditions can be particularly viewed as an implementation of the concept of
constructive hypothesis-driven induction.

3. Methods
3.1. Basic Notion

Let us consider the dataset D(A, δ), which contains |D| examples. Each example
is described using a fixed set of attributes A = {a1, a2, ..., a|A|} and a special decision
attribute δ. The form and interpretation of decision attributes can vary based on the type of
problem specified. In this paper, we focus on three problem types: classification, regression,
and survival analysis.

For the classification problem, each example could be assigned to a specific class
based on the value of the decision attribute. In such a case, δ is a discrete class identifier
δ ∈ {L1, L2, ..., L|L|}. The task involves predicting the correct class value Lj for a given
example Xi. In a regression problem, the decision attribute is a continuous variable: δ ∈ R.
Therefore, the task is to predict its value with minimal error, ideally zero. In survival
analysis, the label attribute refers to the Boolean censoring status, indicating whether the
example was subject to a certain event (e.g., patients who suffered a stroke). For such an
analysis, an additional survival time attribute T is required. The attribute T specifies the
time before the event occurs, if the event occurs, for a given example. Otherwise, it equals
the overall observation time. For classification and regression data, each example from D is
represented as a vector xi = (ai1, ai2, ..., ai|A|, δi). For the survival problem, this vector must
be extended by the variable Ti.

Our main objective is to define (induce) a set of rules describing examples from the set
D and enabling the prediction of the value of the attribute δ for new (unseen) examples.
This set of rules is later referred to as a rule-based data model.

Let R be a set of |R| rules. Each rule r ∈ R takes the following form:

IF c1 ∧ c1 ∧ ...∧ cn THEN δ = f (X).

The rule premise is a conjunction of elementary conditions ci (i ∈ 1, 2, ..., n).
If an example x fulfills the conditions of a rule r premise, we say that r covers x (x is

covered by r).
The conclusion of a rule contains the decision part used during the prediction process.

For classification and regression rules, a constant function is defined specifying a certain
value of the decision attribute δ (e.g., a certain decision class).

For a survival rule r, f (x) represents the Kaplan–Meier [62] estimator (i.e., the survival
curve) defined based on all examples covered by r.

A set of rules can be treated as a predictor. The prediction is made by evaluating
the premise part of each rule for a given example x. Only the rules covering the example
x participate in the prediction process. The predicted value is obtained based on the
decision part of these rules. If all rules covering the example x have the same conclusion,
the prediction is straightforward. The predicted value of the decision attribute of example
x is taken from the conclusions of the rules.
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For classification problems, if an example is covered by rules with different conclusions,
a voting procedure is invoked. Each rule covering the given example votes for the predicted
value from its conclusion, and each vote is multiplied by the so-called voting weight. Voting
weights can be calculated in various ways, such as using rule quality measures [8,63].

In regression and survival problems, the final prediction is obtained by averaging the
decisions of the rules covering the example. In particular, in survival analysis, the Kaplan–
Meier estimators of all rules covering a given example are averaged to obtain the final
prediction value.

Another scenario is applied to an example not covered by any rule. Such an example
is usually predicted using the so-called default rule. The premise of the default rule is
empty, ensuring that the default rule covers every example. The conclusion of the default
rule is calculated for the entire set of training examples and specifies the majority class for
classification problems, the median value of the decision attribute for regression problems,
and the Kaplan–Meier estimator for survival data.

Most existing rule induction algorithms generate rules with simple elementary condi-
tions. The simple elementary condition has one of the following forms: a = v or a < v or
a > v, where a is a conditional attribute, and v is one of its values. Such conditions may not
always be optimal for describing datasets containing more complex relationships. In this
paper, we focus on the induction of rules containing more complex conditions. We consider
the following types of complex conditions.

Negated conditions: Represent negations of simple conditions (e.g., a ̸= v, a /∈ [v1, v2) and
all complex conditions listed below (except Disjunctions).
Attribute Relations: This type of condition covers all examples for which a given relation
exists between given attributes. They are generated only for attributes of the same type,
either nominal or numeric. For nominal attributes, the possible relations are equality and
inequality. For numeric ones, the relations of strict and weak inequalities are additionally
analyzed. Examples of such conditions are presented below:

a = b, a ≤ b where a and b are attributes.

Internal Disjunctions: For nominal attributes, an elementary condition with internal
disjunction is defined as follows:

a ∈ {v1, v2, ..., vk} where v1, v2, ..., vk are values of a.

For numeric attributes, the internal disjunction is represented as a disjunction of mutually
disjoint intervals of values of the attribute a:

a = ([v1, v2) ∨ [v3, v4) ∨ ...∨ [v5, v6)),

where v1 < v2 <, ..., < vk are values of a.
The above expression can be rewritten as an alternative of the simple elementary conditions
a = vi, (i ∈ {1, 2, ..., k}).

In this article, we propose a methodology that allows the induction of conditions
known as M-of-N conditions. An M-of-N condition consists of N conditions, which can be
either simple or complex. In our study the M-of-N condition is satisfied if exactly M or at
least M of its N components are satisfied. Depending on the interpretation of the M-of-N
condition, the sets of examples covering this condition may vary. In the experiments,
we considered both interpretations of the M-of-N condition. An example of the M-of-N
condition (2-of-3 condition) is presented below.

2-o f -3(a = b, a ̸= v, c ∈ {v1, v2, v3}).

We can say that an M-of-N condition represents a compressed form of the DNF formula
consisting of N disjunctions, each of which has M literals.
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To simplify the notation, we denote all N conditions that are part of M-of-N by
C′ = {c1, c2, ..., cl}. In the case of our example, C′ = {c1, c2, c3}. Using such a nota-
tion, the DNF form of our example condition, for the “at least M-of-N” interpretation, is
as follows:

(c1 ∧ c2) ∨ (c1 ∧ c3) ∨ (c2 ∧ c3).

For the “exactly M-of-N” interpretation, the DNF form of our example is as follows:

(c1 ∧ c2 ∧ ¬ c3) ∨ (c1 ∧ c3 ∧ ¬ c2) ∨ (c2 ∧ c3 ∧ ¬ c1).

3.2. Learning Rules with Simple Conditions

To induce rules with simple conditions, our approach employs the sequential covering
rule induction algorithm. This algorithm makes it possible to induce classification, regres-
sion, and survival rules. The source code for the algorithm is available on GitHub [8] as the
RuleKit library. In this subsection, we provide a concise explanation of RuleKit for all three
types of rules. For a comprehensive understanding of how the RuleKit algorithm works,
refer to [6,7] and the library documentation [64].

The algorithm starts with an empty ruleset and iteratively learns a single rule to induce
a ruleset that covers the entire set of training examples, or until the number of uncovered
examples remains below some fixed (algorithm’s parameter) value. After the induction of a
rule, all examples covered by the rule are removed from the training set, and the algorithm
proceeds to induce the next rule, which covers some of the remaining examples.

Inducing a new rule involves two phases: rule growing and rule pruning. In the
growing phase (Algorithm 1), elementary conditions are added to the initially empty
premise. When extending the premise, the algorithm considers all possible conditions built
upon all attributes (line 5: GETALLCONDITIONS function call) and selects those leading
to the rule with the highest quality. The algorithm enables the use of any well-known
rule quality measures [63] or a user-defined rule quality measure. These measures guide
the rule induction process, favoring rules that cover as many positive and few negative
examples as possible. Using the rule quality measure, the algorithm aims to maximize the
number of positive examples while minimizing the number of negative ones covered by
the induced rules.

In the simplest version of the algorithm, the function GETALLCONDITIONS generates
a set of all possible simple elementary conditions. For nominal attributes, conditions in
the form ai = vi for all values vi from the attribute domain are considered. Regarding
continuous attributes, vi values present in the observations covered by the rule are sorted.
Subsequently, potential split points sj are determined as the arithmetic means of subse-
quent vi values, and conditions ai < sj and ai ≥ sj are evaluated. If multiple conditions
yield identical results, the one covering more examples is chosen. Rule pruning can be
considered the opposite of rule growing. It iteratively removes conditions from the premise,
systematically making eliminations that lead to the most substantial improvement in rule
quality. The procedure stops when no conditions can be deleted without diminishing the
rule’s quality or when the rule contains only one condition. RuleKit uses the hill climbing
strategy for both rule growth and pruning. The process of searching for the best conditions
is illustrated in Algorithm 2.

In the classification problem, the algorithm systematically iterates over all decision
classes (class labels). In regression and survival analysis problems, the algorithm is ex-
ecuted once on the entire set of training examples. In the case of a regression problem,
RuleKit transforms it into a binary classification problem, following the proposal in [65].
The conclusion of a regression rule r indicates a specific value of the decision attribute δ.
This value is calculated as the median Me of the decision attribute values of the examples
that cover r. All training examples with a value δ within a range [Me− σ, Me+ σ] represent
the positive decision class, while the remaining examples represent the negative one. It
is important to note that changing the premise of an induced rule dynamically affects
the class membership of the covered examples. For survival analysis, RuleKit, instead
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of relying on rule quality measures, uses the log-rank test [66] to evaluate a rule during
the growth and pruning phases. This test compares the differences between two Kaplan–
Meier estimators: one fitted to the examples covered by the rule and the other fitted to the
remaining examples.

3.3. Rules with Complex Conditions

The induction of rules with complex conditions (excluding M-of-N) is very similar to
to the induction of rules containing only simple conditions.

When inducing rules with complex conditions, the set of all possible conditions
(GETALLCONDITIONS line 5) includes not only simple conditions but in addition all possi-
ble attribute relations, internal disjunctions for symbolic attributes, and
negated conditions.

The algorithm considers all possible attribute relations for attributes of the same type.
For a symbolic attribute, the set of internal disjunctions corresponds to the power set of the
attribute values.

To avoid nonsensical comparisons for a given dataset and to reduce computational
complexity, the algorithm utilizes a list of attributes that should not be compared and limits
the number of values that an internal alternative can contain.

Compared to the standard version of the RuleKit algorithm, the rule-growing phase
differs only when internal disjunctions based on numeric attributes are added to the rule
premise. The main modification involves introducing additional steps (see lines 8–10) into
Algorithm 1. These additional steps occur only if the best-selected condition found earlier
(line 6) is based on the numeric attribute. The GETDISJUNTIONS procedure extends this
condition with pairs of mutually disjoint intervals.

The rule pruning phase remains the same as in the original version of the RuleKit
algorithm. In both phases, there is a change in the selection of the best condition when
several conditions achieve the same quality.

Algorithm 1 Rule growing

Require:
D—training dataset,
Du—uncovered set of examples,
Dr—examples covered by r,
T—list of condition types to induce.

Ensure: r—rule.
1: function GROW(D,Du, T)
2: r ← ∅
3: repeat
4: Dr ← COVERED(r, D)
5: C ← GETALLCONDITIONS(T, D, Dr, Du)
6: cbest ← GETBESTCONDITION(C, r, D)
7: ▷ induce internal disjunctions for numeric attributes
8: if cbest ̸= ∅ ∧ T includes INTERNAL_DISJUNCTIONS then
9: Calt ← GETDISJUNCTIONS(cbest, D, Dr, Du)

10: cbest ← GETBESTCONDITION({cbest} ∪ Calt, r, D)
11: if cbest ̸= ∅ then
12: r ← r ∧ cbest

13: until cbest ̸= ∅
14: return r
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To compare the quality of elementary conditions, a lexicographic order is used. Let us
suppose that a condition c is given and a rule r contains c in its premise, then the condition
c is evaluated according to the following criteria (see Algorithm 2):

• The quality of r—line 6;
• The number of positive examples covered by r—line 9;
• The number of unique attributes included in c—line 11;
• Comprehensibility, complexity of c—line 15.

The last criterion reflects our subjective assessment of the comprehensibility of ele-
mentary conditions. Each type of elementary condition is assigned a weight that reflects
its comprehensibility:

• Simple Conditions, Negated condition: 1;
• Attribute Relation: 2;
• Internal Disjunction:

– For numeric attributes: 0;
– For symbolic attributes 2.

The higher the weight value, the more comprehensible the condition. It should be
emphasized that the last criterion is invoked only when the conditions being compared
achieve the same evaluation for the remaining criteria.

Algorithm 2 Finding the best condition

Require:
C—set of conditions,
r—rule,
D—training dataset.

Ensure: cbest—best condition.
1: function GETBESTCONDITION(C,r,D)
2: cbest ← ∅, qbest ← −∞ ▷ best condition and its quality
3: for c ∈ C do
4: rc ← r ∧ c ▷ add condition to the rule
5: q← CALCULATEQUALITY(rc, D)
6: f ound_better ← (q > qbest) ▷ compare quality
7: if ¬ f ound_better ∧ q = qbest then
8: ▷ prefer conditions with a higher coverage
9: f ound_better ← (COVEREDCOUNT(c, D) > COVEREDCOUNT(cbest, D))

10: if ¬ f ound_better then
11: ▷ prefer conditions with a smaller number of attributes
12: f ound_better ← (ATTRIBUTESCOUNT(c) < ATTRIBUTESCOUNT(cbest))
13: if ¬ f ound_better then
14: ▷ prefer conditions types with a higher weight
15: f ound_better ← (TYPEWEIGHT(c) > TYPEWEIGHT(cbest))
16: if f ound_better then
17: cbest ← c, qbest ← q
18: return cbest
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3.4. Learning Rulesets with M-of-N Conditions

The method for inducing rules with M-of-N conditions assumes that these conditions
are constructed based on an already-induced set of rules (R). The set R contains rules with
both simple and complex conditions (Block 1—Figure 1). Following rule induction, a set C
containing all elementary conditions present in ruleset R is determined (Block 2, Figure 1).
In the subsequent step, a table—binary matrix (BM)—is constructed, with each column (k)
representing an elementary condition from C (Block 3, Figure 1). The matrix BM contains
|C| columns and |D| rows, each row representing one training example. For a given
training example x ∈ D and column k ∈ BM, k(x) = 1 if and only if x is covered by an
elementary condition represented by column k; otherwise, k(x) = 0. In BM, frequent sets
fulfilling the minimum support condition (algorithm’s parameter) are mined. Specifically,
for all allowed values of M, all frequent M-itemsets are mined. For instance, if the analysis
aims to extend the set of elementary conditions with 2-of-3 and 3-of-4 conditions, both
frequent 2-itemsets and 3-itemsets are sought. In the proposed method, the FP-growth
algorithm [67] is applied to mining frequent itemsets. Following frequent itemset mining,
the procedure to generate candidates for M-of-N conditions is initiated (Block 4, Figure 1).
A candidate for the M-of-N condition comprises N frequent M-itemsets (see Example).
To constrain the number of candidates in further calculations, the average support is
calculated for each M-of-N candidate. The average support of an M-of-N condition is the
average value of supports of all N frequent M-itemsets defining this condition. The top
l (algorithm’s parameter) candidates with the highest support are selected for further
processing. In the penultimate step, the binary matrix BM is extended with l candidate
M-of-N conditions (Block 5, Figure 1). To the extended BM matrix, a decision column
identical to the one in the training set D is added (Block 6, Figure 1). Finally, the rule
induction is performed on (BM, δ), but this time the rule induction algorithm induces rules
only with simple elementary conditions (i.e., k = 1 or k = 0). Note that column k in the
extended BM matrix may represent a simple, complex (created in Block 2, Figure 1) or
M-of-N condition (created in Block 4, Figure 1).

The proposed method has an additional advantage: if an induced rule contains a
condition k = 0, and for example, k corresponds to the M-of-N condition, this means that
the rule contains the negation of M-of-N.
Example
Let us assume that D contains a nominal attribute a and two numeric attributes b and c.
The ruleset induced in the first step contains the following conditions: a = 1, a = 0, a = 2,
b > 2, b > 5, b < 4, b = c. The matrix BM contains 7 columns. Moreover, let us assume that
2-of-3 conditions are induced and the FP-growth algorithm found the following frequent
2-itemsets, fulfilling the minimal support requirement:

• {a = 0 , b < 4};
• {a = 0 , b = c};
• {b < 4 , b = c}.
These itemsets may define a single 2-of-3 condition candidate:

2-of-3 (a = 0, b < 4, b = c).



Mach. Learn. Knowl. Extr. 2024, 6 563

Training dataset D(A, δ)

Final ruleset

1 Based on D induce ruleset R with simple 
and complex conditions

2 Extract the set of elementary conditions C 
from the ruleset R 

3 Prepare matrix BM 
based on C and D

4 Find frequent M-itemsets 
in BM

5 Generate M-of-N candidates 

6 Select the k best M-of-N candidates

7 Extend BM with k additional columns 
representing the best of M-of-N candidates 

8 Add to BM 
the decision attribute δ 

Based on (BM, δ) induce rules 
with simple elementary conditions 9

Figure 1. Induction of rules with M-of-N conditions.

4. Experiments and Results
4.1. Experiments Methodology

To evaluate the proposed methods, experiments were carried out on 76 publicly available
datasets. Among all the considered datasets, 25 contain only numeric attributes, comprising 7
for classification, 12 for regression, and 6 for survival analysis. Another 12 datasets consist
solely of symbolic attributes, with 11 being classification datasets and 1 for regression. The re-
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maining datasets contain both symbolic and numeric attributes. The aggregated statistics of
the datasets are presented in Table 1. All results, source code, and detailed characteristics of
these datasets are available in the GitHub repository (https://github.com/adaa-polsl/m-
of-n-rules accessed on 21 February 2024). All experiments were carried out in a stratified
10-fold cross-validation mode, with the exception of the Monk’s datasets, where the default
division into training and testing parts was used.

Table 1. Statistics of the datasets used during experiments.

Problem Type Number of Datasets Attributes Rows
All With Missing Values Mean Min/Max Mean Min/Max

Classification 30 10 16 4/61 1131 101/12,960
Regression 30 3 9 3/28 189 27/625

Survival 16 7 16 6/57 723 187/3154

For each dataset, four rulesets were trained. The first, denoted as simple contains only
simple elementary conditions. The second, denoted as complex, contains complex and
simple conditions, and the last two rulesets, at least M-of-N and exactly M-of-N, contain
simple, complex, and M-of-N conditions, reflecting two interpretations of these conditions.

During rule induction, the well-known C2 rule quality measure [6,68] (see Equation (1))
was used in the rule growing and pruning phases, and for classification conflicts resolution.
We decided to use this measure because it favors rules with high precision and moderate
coverage [6,7]. Moreover, each new rule added to the ruleset had to cover at least two
previously uncovered positive examples. Following the completion of the growing phase,
a rule had to cover at least five examples, unless the total number of positive examples in
the analyzed dataset was fewer. This allows the algorithm to induce rules even for datasets
with very small decision classes containing only a few examples, while avoiding overly
specific rules covering individual data entries. Induced rulesets were not required to cover
the entire dataset: a maximum of 2% of the examples could remain uncovered by any
rule. Such a configuration allows us to disregard a certain level of outlier examples in the
training dataset.

C2 = Coleman · P + p
2P

where Coleman =
Np− Pn
N(p + n)

(1)

When searching for frequent itemsets, the minimal support value was set at 0.2.
Before selecting this value, we tested three minimal support values: 0.1, 0.15, and 0.2 (refer
to the Section 4.2 for more details).

For all experiments involving the induction of M-of-N conditions, only the 2-of-3
conditions were induced.
For rulesets evaluation, we used the standard metrics:

• Classification: balanced accuracy (BAcc);
• Regression: relative root-mean-squared error (RRMSE (2));
• Survival: integrated Brier score [64] (IBS (3) and (4) [69]).

RRMSE =

√
1
n ∑n

i=1 (yi − y)2

∑n
j=1 yj
n

(2)

IBS =
∫ tmax

t0

BSc(t) dw(t) (3)

BSc(t) =
1
n

n

∑
i=1

I(yi ≤ t ∧ δi = 1)
(0− π̂(t|xi))

2

Ĝ(yi)
+ I(yi > t)

(1− π̂(t|xi))
2

Ĝ(t)
(4)

https://github.com/adaa-polsl/m-of-n-rules
https://github.com/adaa-polsl/m-of-n-rules


Mach. Learn. Knowl. Extr. 2024, 6 565

To evaluate the quality of induced rules, both precision (p/(p + n)) and coverage (p/P)
were calculated. For the survival problem lacking defined decision classes, the rule support
(|r|/|D|) is reported. In the aforementioned expressions, p and n denote the number of
positive and negative examples covered by a rule, respectively; P denotes the total number
of positive examples; |D| represents the total number of examples; and |r| denotes the
number of examples covered by the rule r.

In addition, quantitative analysis of the results included assessing the statistical signif-
icance of the induced rules. The fraction of significant rules in the ruleset was calculated as
the fraction of rules with a p-value less than 0.05. The p-values were calculated as follows:

• For classification: using Fisher’s exact test to compare confusion matrices;
• For regression: using the χ2 test to compare label variance for covered and uncovered

examples;
• For survival: using the log-rank test to compare survival estimators for covered and

uncovered examples.

All p-values were corrected using false discovery rate (FDR) correction [70].

4.2. Results

Tables 2–4 present average values of the statistics characterizing induced rulesets.
Detailed results, separately for all datasets, are available in the GitHub repository (https:
//github.com/adaa-polsl/m-of-n-rules accessed on 21 February 2024).

Upon analyzing the aforementioned table, one may observe that rulesets containing
complex and M-of-N conditions, in general, contain a lower number of rules than rulesets
with simple conditions. The only exception is in survival data, where rulesets containing
complex conditions have the most rules. Classification rules have similar precision and
coverage. In comparison to rules with simple conditions, regression rules with M-of-N
conditions have higher precision and coverage. Regression rules with complex conditions
are the most specific because they have the highest precision and the lowest coverage.
A similar relationship is observed for survival rules with complex conditions, which have
the lowest support. This low support is the reason for the higher number of induced rules.

The fraction of significant rules in the rulesets is very similar. For classification and
survival rules, almost all induced rules are statistically significant, while for regression
rules, only 50% of rules are significant. However, the introduction of complex and M-of-N
conditions to the rule premises does not negatively affect the percentage of rules that are
significant. Rulesets with complex conditions contain rules of the highest precision, leading
to a larger number of statistically significant rules in these sets.

Table 2. Characteristics of classification rulesets.

Conditions Rules Count Conditions Count Precision Coverage Fraction of Significant RulesSimple Complex M-of-N

Simple 60.8 2.8 - - 0.96 0.14 0.94
Complex 44.2 1 1.5 - 0.96 0.16 0.94
Exactly 2-of-3 43.4 1.4 0.8 0.2 0.95 0.16 0.94
At least 2-of-3 43.8 1.4 0.9 0.2 0.96 0.16 0.94

Table 3. Characteristics of regression rulesets.

Conditions Rules Count Conditions Count Precision Coverage Fraction of Significant RulesSimple Complex M-of-N

Simple 20.8 2.8 - - 0.76 0.14 0.51
Complex 21.9 0.6 2.9 - 0.83 0.13 0.69
Exactly 2-of-3 15.9 1.3 1.2 0.6 0.81 0.21 0.53
At least 2-of-3 14.6 1.4 1.3 0.3 0.82 0.22 0.54

https://github.com/adaa-polsl/m-of-n-rules
https://github.com/adaa-polsl/m-of-n-rules
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Table 4. Characteristics of survival rulesets.

Conditions Rules Count Conditions Count Support Fraction of Significant RulesSimple Complex M-of-N

Simple 7.8 2.2 - - 0.37 0.95
Complex 11.1 1.1 3.4 - 0.29 0.94
Exactly 2-of-3 6.4 0.9 1.3 1.0 0.37 0.97
At least 2-of-3 5.3 0.9 1.2 0.6 0.42 0.98

In analyzing the values in the ‘Conditions count’ columns, one may observe that the
introduction of complex conditions into rule premises results in this type of condition be-
coming the most prevalent. However, when permitting the induction of M-of-N conditions,
the occurrence of simple and complex conditions becomes comparable. There are only a few
M-of-N conditions in the induced rulesets. This is because the min_supp value for accept-
able frequent itemsets was set to 0.2 (subsequent sections present results for other min_supp
values). Both interpretations of the M-of-N conditions yield similar outcomes. Rulesets
containing M-of-N conditions have slightly higher coverage compared to other rulesets,
along with marginally greater (in regression) or comparable (in classification) precision.

Figures 2–4 show the results of the statistical analysis comparing the number of
induced rules. In this comparison, the Friedman test and Nemenyi post hoc test (with
a significance level of 0.05) were conducted [71]. The presented critical difference (CD)
diagrams show the differences between different versions of the algorithm. Specifically, they
show that there are no differences between rulesets with simple and complex conditions or
between rulesets with complex and M-of-N conditions. However, it is worth noting that
the test used is very conservative. When examining the algorithm rankings, it is evident
that rulesets containing M-of-N conditions are the least numerous, regardless of the type of
training data considered.

Figure 2. CD diagram for the average number of induced classification rules.

Figure 3. CD diagram for the average number of induced regression rules.
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Figure 4. CD diagram for the average number of induced survival rules.

Table 5 shows the prediction possibilities of the induced rulesets. The rule induction
algorithm with simple elementary conditions attains the highest balanced accuracy and the
lowest RRMSE and IBS values. In analyzing the contents of Table 5, one can notice that all
rulesets achieve similar results. For the classification problem, the complex variant is better
than the others, while the variants that introduce N-of-N conditions achieve slightly worse
results than the simple one. The regression rulesets obtain very similar results, except for
the ruleset with simple conditions, which attains the best result. A very similar situation is
observed for survival rules.

Table 5. Prediction results on test datasets (10-fold CV).

Conditions BAcc RRMSE IBS

Simple 0.771 ± 0.077 0.728 ± 0.234 0.179 ± 0.036
Complex 0.774 ± 0.079 0.794 ± 0.344 0.185 ± 0.038
Exactly 2-of-3 0.758 ± 0.084 0.782 ± 0.344 0.188 ± 0.05
At least 2-of-3 0.756 ± 0.085 0.787 ± 0.336 0.186 ± 0.05

Decision tree 0.76 ± 0.199 0.82 ± 0.282 0.21 ± 0.0701

For a more insightful comparison of the tested rulesets, the Friedman test with and
without FDR correction was run (Table 6). The results show a significant difference in the
number of generated rules, while the differences among the predictive possibilities of the
rulesets are insignificant at the 5% significance level. This means that introducing complex
elementary conditions into the rule premises allows for the induction of sets of rules with
similar predictive abilities but representing different dependencies in the data.

Table 6. Friedman’s tests results (p-values).

Rules Count Prediction Score
Before Correction After Correction Before Correction After Correction

Classification 3.2 × 10−4 3.2 × 10−4 0.22 0.22
Regression 3.2 × 10−6 1.0 × 10−5 0.08 0.12
Survival 1.6 × 10−5 2.4 × 10−5 0.058 0.17

The final analysis focused on the effect of the min_supp value in the frequent itemset
search algorithm on the number of M-of-N conditions generated and the predictive capabil-
ities of the rulesets that contain these conditions. Experiments were conducted with three
different min_supp values (0.1, 0.15, and 0.2). Figures 5 and 6 illustrate the number of 2-of-3
conditions generated at each min_supp level and the predictive capabilities of rulesets that
include these conditions.
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Figure 5. Classification results and M-of-N conditions count for rules with at least 2-of-3 conditions
for different values of minimum support of sought frequent itemsets.

Figure 6. Classification results and M-of-N conditions count for rules with exactly 2-of-3 conditions
for different values of minimum support of sought frequent itemsets.

For all considered min_supp values, the classification capabilities remain at a very
similar level. However, with decreasing min_supp, the number of M-of-N conditions
and the variance of classification results increase. In our subjective evaluation, M-of-N
conditions describe specific data patterns (refer to case studies), and rulesets with too many
such conditions may be challenging to interpret. The experiments described in the first part
of this section, as well as in the case studies, were carried out with min_supp = 0.2.

4.3. Case Studies

For case studies, we present the results of rule induction for two well-known bench-
mark sets: Iris and Monk’s problems. Both datasets describe classification problems; Monk’s
datasets are synthetic, where membership of an example to the target class is defined using
a certain logical formula.
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4.3.1. Iris Dataset

The Iris dataset represents the very popular three-class problem of classifying iris
flower types based on the width and length of their petals and sepals. The dataset con-
tains three decision classes (setosa, versicolor, and virginica), which are types of flowers,
and 150 examples.

Table 7 presents a ruleset that contains rules with simple conditions only. The training
set contains 135 examples, and the remaining examples form the test set. The ruleset
contains nine rules and achieves BAcc = 0.93 on the test set. The second and third rules
cover only a few examples.

Table 7. Iris dataset—rules with simple conditions.

r1: IF petallength < 2.45 THEN class = setosa (p = 45, n = 0).

r2: IF sepalwidth ∈ [2.35, 2.45) THEN class = versicolor (p = 3, n = 0).

r3: IF sepallength > 6.1 AND sepalwidth < 2.45 THEN class = versicolor
(p = 2, n = 0).

r4: IF petallength ∈ [2.3, 4.75) THEN class = versicolor (p = 40, n = 1).

r5: IF petalwidth < 1.65 AND petallength ∈ [2.2, 4.95)
THEN class = versicolor (p = 43, n = 0).

r6: IF petalwidth < 1.85 AND sepallength > 4.95 AND petallength ∈ [2.45, 5.15)
THEN class = versicolor (p = 44, n = 7).

r7: IF petalwidth > 1.65 AND petallength > 4.85 THEN class = virginica
(p = 38, n = 0).

r8: IF petalwidth > 1.65 THEN class = virginica (p = 41, n = 1).

r9: IF petallength > 4.95 THEN class = virginica (p = 39, n = 1).

Table 8 presents the rules with complex elementary conditions. This ruleset contains
two rules fewer than the first where only simple conditions were allowed. Additionally, all
of its rules cover a similar and rather large number of examples, resulting in the same BAcc
score of 0.933. One rule describing the setosa decision class contains the complex condition
sepalwidth > petallength. Figure 7 illustrates the relation described by the first rule (dashed
line). Green dots represent positive training examples, and red dots represent positive
examples from the test set. Black dots stand for negative examples from the training dataset
and red crosses stand for negative examples from the test dataset.

Figure 7. Visualisation of the first rule from Table 8. The dashed line illustrates the rule premise
condition. Green and red dots represent positive examples from the training and testing sets. Black
dots and red crosses represent negative examples from the training and testing sets.
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For numeric attributes, a complex condition of the form a⊙ b—where a,b are attributes
and ⊙ ∈ {>,≥<,≤}—represents a specific case of the oblique elementary condition [43].

Table 8. Iris dataset—rules with complex conditions.

r1: IF sepalwidth > petallength THEN class = setosa (p = 45, n = 0).

r2: IF petalwidth < 1.65 AND petallength ∈ [2.45, 4.8) THEN class = versicolor
(p = 40, n = 0).

r3: IF sepallength > 4.95 AND petallength ∈ [2.45, 4.9) THEN class = versicolor
(p = 41, n = 2).

r4: IF petalwidth ∈ [0.8, 1.7) AND petallength < 4.95 THEN class = versicolor
(p = 43, n = 0).

r5: IF petalwidth > 1.65 AND petallength > 4.85 THEN class = virginica
(p = 38, n = 0).

r6: IF petalwidth > 1.65 THEN class = virginica (p = 41, n = 1).

r7: IF petallength > 4.95 THEN class = virginica (p = 39, n = 1).

The rulesets that contain rules with M-of-N (2-of-3) conditions are presented in Table 9
(for the exactly 2-of-3 interpretation) and Table 10 (for at the at least 2-of-3 interpreta-
tion). Both rulesets achieve the same BAcc score as the above-presented rules with simple
and complex conditions. Introduction conditions having the form M-of-N results in the
reduction of induced rules.

In both interpretations of the M-of-N condition, the virginica class is described by a
single rule with a negated 2-of-3 condition. This rule covers all positive examples found in
the training set. Rule r2 presented in Table 9 has a 2-of-3 condition, one of the components
of which is the complex condition spalwidth > petallength. Combining simple conditions
with complex ones and M-of-N conditions allows, in the presented example, for obtaining a
concise description of the data while maintaining this description at a level understandable
to the user.

Table 9. Iris dataset—rules with M-of-N conditions (exactly 2-of-3).

r1: IF sepalwidth > petallength THEN class = setosa (p = 45, n = 0).

r2: IF 2-of-3 (petallength < 4.95, sepalwidth > petallength, petalwidth < 1.65).
THEN class = versicolor (p = 43, n = 0).

r3: IF sepalwidth < petallength THEN class = versicolor (p = 45, n = 45).

r4: IF ¬ 2-of-3 (sepalwidth > petallength, petalwidth ∈ [0.80, 1.70), petallength < 4.95)
THEN class = virginica (p = 45, n = 2).

Table 10. Iris dataset—rules with M-of-N conditions (at least 2-of-3).

r1: IF sepalwidth > petallength THEN class = setosa (p = 45, n = 0).

r2: IF petallength ∈ [2.45, 4.80) AND petalwidth < 1.65 THEN class = versicolor
(p = 40, n = 0).

r3: IF petallength ∈ [2.45, 4.90) AND
2-of-3 (petallength < 4.95, petalwidth < 1.65, sepallength > 4.95)
THEN class = versicolor (p = 42, n = 2).

r4: IF petalwidth ∈ [0.80, 1.70) AND petallength < 4.95 THEN class = versicolor
(p = 43, n = 0).

r5: IF ¬ 2-of-3 (petallength < 4.95, sepalwidth > petallength, petalwidth < 1.65)
THEN class = virginica (p = 45, n = 2).
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4.3.2. MONK’s Problems

The well-known MONK’s problems reflect binary classification tasks. The datasets
associated with these problems are commonly used to benchmark various concept learning
algorithms (https://archive.ics.uci.edu/dataset/70/monk+s+problems accessed on 21
February 2024). Each dataset comprises six categorical attributes (a1, a2, ..., a6) and a
class attribute. The purpose of the analysis is to discover the target concept defined as
follows [72]:

• For MONK-1:

class = 1 if a1 = a2 ∨ a5 = 1, otherwise class = 0.

• For MONK-2:

class = 1 if exactly two of {a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1}, otherwise class = 0.

• For MONK-3:

class = 1 if (a5 = 3 ∧ a4 = 1) or (a5 ̸= 4 ∧ a2 ̸= 3), otherwise class = 0.

The MONK-3 trained dataset additionally includes 5% noise for the class attribute.
The MONK-1 dataset contains 324 examples, where the training part has 124 examples

(62 positive ones), and the test part contains the rest of them.
The ruleset induced using only simple conditions is presented in Table 11 and con-

sists of 5 rules describing the positive class, achieving a BAcc score of 0.967 on the test
dataset. Comparing it with the formula describing the MONK-1 problem, we can notice its
redundancy. Additionally, we can observe relatively low support values for rules r4 and r5,
which cover relatively few examples.

Table 12 presents the ruleset induced with the use of complex conditions. Now the
ruleset contains only two rules that perfectly capture the MONK-1 problem and achieve a
BAcc of 1.0. In addition, we can notice how the support values of the rules significantly
increase. Rulesets induced with the use of M-of-N conditions, in this case, are exactly the
same as the one in Table 12. This is an expected result because extending rules with M-of-N
conditions cannot provide any further improvement in this situation.

Table 11. MONK-1 dataset—rules with simple conditions.

r1: IF a5 = 1 THEN class = 1 (p = 29, n = 0).

r2: IF a1 = 3 AND a2 = 3 THEN class = 1 (p = 17, n = 0).

r3: IF a3 = 2 AND a4 = 1 AND a6 = 1 THEN class = 1 (p = 7, n = 1).

r4: IF a1 = 2 AND a2 = 2 THEN class = 1 (p = 15, n = 0).

r5: IF a1 = 1 AND a2 = 1 THEN class = 1 (p = 9, n = 0).

Table 12. MONK-1 dataset—rules with complex conditions.

r1: IF a1 = a2 THEN class = 1 (p = 41, n = 0).

r2: IF a5 = 1 THEN class = 1 (p = 29, n = 0).

The MONK-2 dataset comprises 369 examples, where 169 are the training part con-
taining 105 positive examples. For this dataset, where the positive class is described by a
single exactly 2-of-6 condition, the ruleset induces using only simple conditions and contains
27 rules. Such a ruleset achieves a BAcc of 0.698 on the test dataset. Many of its rules
achieve very poor support values, where 14 of them cover less than three examples in total.
For brevity, this ruleset is not presented in this paper. However, based on the number of
rules in it and their predictive score, it is easy to see that simple conditions fail to describe
this data sufficiently. Such rules achieve a fairly high score in the training part of the dataset
(0.921), which drops dramatically in the testing part.

https://archive.ics.uci.edu/dataset/70/monk+s+problems
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The ruleset trained on the MONK-2 dataset using complex conditions (without M-of-N
conditions) contains 21 rules and is not presented in this paper due to its size. The generated
rules achieve a BAcc of 0.819. These rules have better support values than the ones with
only simple conditions, yet still some of them cover only a few examples. Based on this
information, we can conclude that the usage of complex conditions allowed a better and
more accurate description of this dataset, yet this description is still very redundant.

Rulesets containing complex and M-of-N conditions for the MONK-2 dataset are
presented in Table 13 (for at least 2-of-6) and Table 14 (for exactly 2-of-6).

Table 13. MONK-2 dataset—rules with M-of-N conditions (at least 2-of-6).

r1: IF ¬ 2-of-6 (a1 = 1, a2 = 1, a3 = 2, a4 = 1, a5 = 1, a6 = 1) THEN class = 1 (p = 33, n = 17).

r2: IF ¬ 2-of-6 (a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 2) THEN class = 1 (p = 28, n = 20).

r3: IF 2-of-6 (a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1) THEN class = 1 (p = 64, n = 64).

Table 14. MONK-2 dataset—rules with M-of-N conditions (exactly 2-of-6).

r1: IF 2-of-6 (a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1) THEN class = 1 (p = 64, n = 0).

The ruleset with at least 2-of-6 conditions contains three rules, and its BAcc score is
0.764. Here we can observe a reduction in the number of rules compared to rules with
complex conditions, coupled with a certain deterioration in the predictive score. The same
set of rules induced using the variant exactly 2-of-6 (Table 14) contain only one rule with a
single M-of-N condition, equal to the original formula describing the MONK-2 problem.
Interestingly, the algorithm returns the same rule for the negative class but with a negated
M-of-N condition. Both of the rulesets with M-of-N conditions contain rules with higher
support values than the previously mentioned ones. This example shows how choosing the
correct variant of M-of-N conditions for a given dataset can affect the size and quality of
the resulting ruleset. Moreover, we can see how M-of-N conditions can help create shorter
and more interpretable descriptions of relationships in data that are difficult or sometimes
impossible to capture with other types of conditions.

The MONK-3 dataset contains 554 examples, with 122 of them being the training part,
which includes 60 positive and 62 negative examples. The set of rules trained for the last
MONK-3 problem, containing only simple conditions, consists of 13 rules and achieves a
BAcc score of 0.913. As before, some of them have low support values, and three of them
cover fewer than 10 examples in total.

The ruleset induced using complex conditions for this dataset is visible in Table 15.
Now the ruleset contains only two rules with an improved BAcc of 0.991. We can ob-
serve here that the usage of nominal internal disjunction conditions results in more con-
cise data descriptions while improving its predictive quality and increasing the average
rules support.

The rulesets with M-of-N conditions are shown in Table 16—for the interpretation of
at least 2-of-3 —and in Table 17—for the interpretation of exactly 2-of-3. Both sets of rules
contain two rules and achieve the same BAcc score of 0.974, with all the rules having high
support values.

Table 15. MONK-3 dataset—rules with complex conditions.

r1: IF a2 ∈ 1, 2 AND a5 ∈ {1, 2, 3} THEN class = 1 (p = 57, n = 5).

r2: IF a1 ̸= a4 AND a5 ∈ {1, 2, 3} THEN class = 1 (p = 42, n = 16).
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Table 16. MONK-3 dataset—rules with M-of-N conditions (at least 2-of-3).

r1: IF a2 ̸= 3 AND a5 ̸= 4 THEN class = 1 (p = 57, n = 5).

r2: IF a1 ̸= a4 AND ¬ 2-of-3 (a5 = 4, a2 = 3, a3 ̸= 2) THEN class = 1 (p = 42, n = 16).

Table 17. MONK-3 dataset—rules with M-of-N conditions (exactly 2-of-3).

r1: IF a2 ̸= 3 AND a5 ̸= 4 THEN class = 1 (p = 57, n = 5).

r2: IF a5 ̸= 4 AND a1 ̸= a4 AND ¬ 2-of-3 (a5 = 4, a2 = 3, a3 ̸= 2)
THEN class = 1 (p = 42, n = 7).

Looking at the rulesets with complex conditions, we can see that the first rule is equal
to the second part of the formula describing the MONK-3 problem. This is because the a2
attribute’s domain is {1, 2, 3}, and the domain of the a5 attribute is {1, 2, 3, 4}. However,
the second rule in Table 15 ruleset does not fit the original problem description. A similar
situation can be observed for both rulesets with 2-of-3 conditions, where the first rule is a
different, more concise, form of the second part of the MONK-2 problem definition. None
of the rulesets, however, manages to discover the first part of the formula (a5 = 3 ∧ a4 = 1).

This particular case study shows that using M-of-N conditions may not be optimal for
all datasets, especially when such relationships are not present in the data.

4.3.3. Bone Marrow Transplantation

BMT-Ch dataset describes 187 individuals, comprising 75 females and 112 males,
with ages ranging from 0.6 to 20.2 years (median 9.6 years). These individuals were admit-
ted to the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hema-
tology at Wrocław Medical University, Poland. The spectrum of diseases observed in
this cohort consisted of 155 cases of malignant disorders, including 67 patients diagnosed
with acute lymphoblastic leukemia, 33 with acute myelogenous leukemia, 25 with chronic
myelogenous leukemia, and 18 with myelodysplastic syndrome. Additionally, 32 cases of
nonmalignant disorders were documented: 13 patients with severe aplastic anemia, 5 with
Fanconi anemia, and 4 with X-linked adrenoleukodystrophy.

In each case, the procedure involved unmanipulated allogeneic unrelated donor
hematopoietic stem cell transplantation, performed in accordance with European protocols
or guidelines from the European Blood and Marrow Transplant Inborn Errors Working
Party, with modifications accepted worldwide, tailored to the specific disease and/or condi-
tion of the patient prior to transplantation. Each patient’s profile was characterized by a set
of 42 conditional attributes, with interpretations of selected attributes presented in Table 18.
The occurrence of patient mortality was considered as an event in the analysis. The dataset
was divided into a training and testing section containing 168 and 19 examples respectively.

Table 19 presents 6 out of 10 rules induced on the BMT-Ch dataset using simple
conditions only. This ruleset achieves IBS = 0.15 on the test set.

The ruleset employing complex conditions, comprises 12 rules with an IBS (Imbalance
Severity) score of 0.208. For this specific dataset, it appears that complex conditions have not
rendered the data description more concise compared to rules utilizing simple conditions.
Additionally, there is a noticeable decline in the predictive quality of the model.

Tables 20 and 21 present rulesets induced using an at least 2-of-3 condition and exactly
2-of-3 condition, respectively. The former includes four rules and achieved an IBS score
of 0.177, while the latter comprises only three rules with an IBS score of 0.172. This
clearly demonstrates how the M-of-N conditions contribute to creating concise rulesets.
For the considered set of examples, rules employing M-of-N conditions performed better,
significantly reducing the number of rules while causing relatively minor deterioration in
the IBS.

In both rulesets (Tables 20 and 21) the last rule contains the condition relapse ̸=
acute_GvHD_III_IV. Figure 8 presents the survival curve associated with this condition
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against the survival curve calculated for the entire training set. Analyzing the meaning of
this rule, we can conclude that in the case of bone marrow transplantation, the presence of
one of the factors appearing in the rule has a negative impact on the chance of prolonged
survival of patients. Actually, the co-occurence of these two factors, i.e., relapse={Yes}
and acute_GvHD_III_IV={Yes}, negatively impacts survival time (see Figure 8, right chart).
However, in the analyzed dataset, there are only two such examples, thus they have minimal
significance for the induction algorithm in which elementary conditions are selected using
the log-rank test. Moreover, this situation highlights the importance of a thorough analysis
of the rules induced in automatic way if the goal of induction is knowledge discovery.

Table 18. BMT-Ch (Bone Marrow Transplantation) dataset attributes.

Attribute Name Description

donor_age Age of the donor at the time of hematopoietic stem cells apheresis

donor_ABO ABO blood group of the donor of hematopoietic stem cells

recipient_age_int Age of the recipient of hematopoietic stem cells at the time of
transplantation

recipient_body_mass Body mass of the recipient of hematopoietic stem cells at the time of
transplantation

recipient_ABO ABO blood group of the recipient of hematopoietic stem cells

recipient_rh Presence of the Rh factor on recipient’s red blood cells

ABO_match Compatibility of the donor and the recipient of hematopoietic stem
cells according to ABO blood group

CMV_status
Serological compatibility of the donor and the recipient of
hematopoietic stem cells according to cytomegalovirus infection prior
to transplantation

HLA_match

Compatibility of antigens of the main histocompatibility complex of
the donor and the recipient of hematopoietic stem cells (10/10, 9/10,
8/10, 7/10 allele/antigens) according to ALL international BFM SCT
2008 criteria

CD34_x1e6_per_kg CD34+ cell dose per kg of recipient body weight

CD3_x1e8_per_kg CD3+ cell dose per kg of recipient body weight

CD3_to_CD34_ratio CD3+ cell to CD34+ cell ratio

acute_GvHD_III_IV Development of acute graft versus host disease stage III or IV

extensive_chronic_GvHD Extensive chronic graft versus host disease

relapse Reoccurrence of the disease

Table 19. BMT-Ch—rules with simple conditions.

r1: IF HLA_mismatch = {matched} AND relapse = {yes} (support = 0.131)

r2: IF HLA_mismatch = {matched} AND recipient_age_int = {5_10} AND relapse = {no}
AND CD34_x1e6_per_kg < 14.72 AND time_to_acute_GvHD_III_IV ≥ 18.50 AND
acute_GvHD_II_III_IV = {yes} (support = 0.06)

r3: IF extensive_chronic_GvHD = {no} (support = 0.679)

r4: IF stem_cell_source = {bone_marrow} AND recipient_CMV = {absent} AND
time_to_acute_GvHD_III_IV ≥ 500050 AND donor_age_below_35 = {no} AND
recipient_age ≥ 13.65 (support = 0.018)

r5: IF recipient_CMV = {absent} AND extensive_chronic_GvHD = {yes} AND
tx_post_relapse = {yes} (support = 0.018)

r6: IF extensive_chronic_GvHD = {yes} AND donor_CMV = {absent} AND recipient_gender
= {male} (support = 0.06)
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Table 20. BMT-Ch—rules with M-of-N conditions (exactly 2-of-3).

r1: IF ¬ 2-of-3 (donor_age ̸= <21.40, 21.97), CD34_x1e6_per_kg ̸= <1.35, 1.99),
recipient_body_mass ̸= <33.50, 35.50)) AND relapse = acute_GvHD_III_IV
(support = 0.613)

r2: IF ¬ 2-of-3 (CD3_to_CD34_ratio ̸= <2.43, 2.50), CD34_x1e6_per_kg ̸= <9.88, 10.96),
donor_age ̸= <21.40, 21.97)) AND relapse = acute_GvHD_III_IV (support = 0.601)

r3: IF recipient_age_below_10 ̸= acute_GvHD_II_III_IV AND time_to_acute_GvHD_III_IV
< 19.50 (support = 0.036)

r4: IF relapse ̸= acute_GvHD_III_IV (support = 0.339)

Table 21. BMT-Ch—rules with M-of-N conditions (at least 2-of-3).

r1: IF 2-of-3(CD34_x1e6_per_kg ̸= <4.51, 5.08), donor_age < 44.06, recipient_body_mass ̸=
<33.50, 35.50)) AND relapse = acute_GvHD_III_IV (support = 0.655)

r2: IF recipient_age_below_10 ̸= acute_GvHD_II_III_IV AND time_to_acute_GvHD_III_IV
> 19.50 (support = 0.036)

r3: IF relapse ̸= acute_GvHD_III_IV (support = 0.339)

In the ruleset listed in Table 21, there is one rule (r1) that includes a 2-of-3 condition.
This rule can be decomposed into a DNF formula that is an alternative of three rules r1_1,
r1_2, r1_3, as shown in Figure 9.

The conclusions of rules r1_1, r1_2, r1_3 are almost the same as the conclusion of r1.
However, r1 covers significantly more examples—it covers all the examples covered by
r1_1, r1_2, and r1_3. The support of the rule r1 equals 65%. In addition it is worth noting
that the rules appear neither in the ruleset containing simple elementary conditions nor in
the set containing rules with complex conditions.

Figure 8. Visualisation of the rule conclusion of the rule relapse ̸= acute_GvHD_III_IV.
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Figure 9. Visualisation of the conclusions of the rules r1 and r1_1, ..., r1_3.

5. Conclusions

This article proposes a modification to the rule induction algorithm, incorporating
the induction of both complex elementary conditions and M-of-N conditions. Specifically,
the induction of M-of-N conditions is a two-stage process. In the second stage, M-of-N
conditions are generated based on identifying frequent sets that include both simple and
complex conditions induced during the first pass of rule induction.

An analysis of several dozen datasets and case studies demonstrates that introducing
complex and M-of-N conditions into rules reveals relationships that cannot be represented
by rules that contain only simple elementary conditions. The presented method can
be applied to knowledge discovery tasks. Moreover, the experiments indicate that the
induction of rulesets with complex and M-of-N conditions does not significantly impact
the predictive capabilities of these rulesets.

The proposed method enables the induction of classification, regression, and sur-
vival rules.

Generating rules with complex and M-of-N conditions does not adversely affect the
computational complexity of the rule induction algorithm. However, it does extend the
rule induction time, sometimes significantly. This feature can be considered a drawback
of the current implementation of the method. The time complexity remains the same as
the standard sequential rule induction algorithm [7,15]. The algorithm’s complexity is
quadratic with respect to the number of training examples.

Our future work will focus on integrating the implementation of the presented method
with the RuleKit library. Recently, new functions have been added to this library, including
a limitation of the number of cuts considered when creating elementary conditions (the
histogram method was used by analogy to the implementation of the GBM algorithm [73]).
In addition, we intend to extend the algorithm with the capability to induce rules with



Mach. Learn. Knowl. Extr. 2024, 6 577

exceptions [74]. This modification is expected to have a positive impact on the predictive
accuracy of the induced rulesets.
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25. Dembczyński, K.; Kotłowski, W.; Słowiński, R. ENDER: A statistical framework for boosting decision rules. Data Min. Knowl.

Discov. 2010, 21, 52–90. [CrossRef]
26. Stefanowski, J. The bagging and n 2-classifiers based on rules induced by MODLEM. In Proceedings of the International

Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden, 1–5 June 2004; pp. 488–497.
27. Su, G.; Wei, D.; Varshney, K.R.; Malioutov, D.M. Learning sparse two-level boolean rules. In Proceedings of the 2016 IEEE 26th

International Workshop on Machine Learning for Signal Processing (MLSP), Salerno, Italy, 13–16 September 2016; pp. 1–6.
28. Wang, T.; Rudin, C.; Doshi-Velez, F.; Liu, Y.; Klampfl, E.; MacNeille, P. A bayesian framework for learning rule sets for interpretable

classification. J. Mach. Learn. Res. 2017, 18, 2357–2393.
29. Dash, S.; Gunluk, O.; Wei, D. Boolean decision rules via column generation. Adv. Neural Inf. Process. Syst. 2018, 31.
30. Hailesilassie, T. Rule extraction algorithm for deep neural networks: A review. arXiv 2016, arXiv:1610.05267.
31. Yu, L.; Li, M.; Zhang, Y.L.; Li, L.; Zhou, J. FINRule: Feature Interactive Neural Rule Learning. In Proceedings of the 32nd ACM

International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 3020–3029.
32. Zarlenga, M.E.; Shams, Z.; Jamnik, M. Efficient decompositional rule extraction for deep neural networks. arXiv 2021,

arXiv:2111.12628.
33. Qiao, L.; Wang, W.; Lin, B. Learning accurate and interpretable decision rule sets from neural networks. In Proceedings of the

AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4303–4311.
34. Duch, W.; Adamczak, R.; Grabczewski, K. A new methodology of extraction, optimization and application of crisp and fuzzy

logical rules. IEEE Trans. Neural Netw. 2001, 12, 277–306. [CrossRef]
35. Andrews, R.; Diederich, J.; Tickle, A.B. Survey and critique of techniques for extracting rules from trained artificial neural

networks. Knowl.-Based Syst. 1995, 8, 373–389. [CrossRef]
36. Pawlak, Z.; Skowron, A. Rudiments of rough sets. Inf. Sci. 2007, 177, 3–27. [CrossRef]
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43. Sikora, M.; Gudyś, A. CHIRA—Convex hull based iterative algorithm of rules aggregation. Fundam. Inform. 2013, 123, 143–170.

[CrossRef]
44. Setiono, R.; Liu, H. NeuroLinear: A system for extracting oblique decision rules from neural networks. In Proceedings of

the Machine Learning: ECML-97: 9th European Conference on Machine Learning, Prague, Czech Republic, 23–25 April 1997;
pp. 221–233.

45. Ming, T.K. An M-of-N rule induction algorithm and its application to DNA domain. In Proceedings of the 1994 Proceedings
of the Twenty-Seventh Hawaii International Conference on System Sciences, Wailea, HI, USA , 4–7 January 1994; Volume 5,
pp. 133–140.

46. Baffes, P.T.; Mooney, R.J. Extending theory refinement to m-of-n rules. Informatica 1993, 17, 387–397.
47. Larsen, O.; Freitas, A.A.; Nievola, J.C. Constructing X-of-N Attributes with a Genetic Algorithm. In Proceedings of the GECCO

Late Breaking Papers, New York, NY, USA, 9–13 July 2002; pp. 316–322.
48. Wnek, J.; Michalski, R.S. Discovering representation space transformations for learning concept descriptions combining DNF and

M-of-N rules. In Working Notes of the ML-COLT94 Workshop on Constructive Induction; Springer: New Brunswick, NJ, USA, 1994.
49. Sebag, M. Constructive induction: A version space based approach. In Proceedings of the International Conference on Artificial

Intelligence, Las Vegas, NV, USA, 28 June–1 July 1999; pp. 708–713.
50. Murphy, P.M.; Pazzani, M.J. ID2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees. In Machine

Learning Proceedings 1991; Elsevier: Amsterdam, The Netherlands, 1991; pp. 183–187.
51. Maire, F. A partial order for the M-of-N rule-extraction algorithm. IEEE Trans. Neural Netw. 1997, 8, 1542–1544. [CrossRef]
52. Setiono, R. Extracting M-of-N rules from trained neural networks. IEEE Trans. Neural Netw. 2000, 11, 512–519. [CrossRef]

[PubMed]
53. Zheng, Z. Constructing X-of-N attributes for decision tree learning. Mach. Learn. 2000, 40, 35–75. [CrossRef]
54. Beck, F.; Fürnkranz, J.; Huynh, V.Q.P. Layerwise Learning of Mixed Conjunctive and Disjunctive Rule Sets. In Proceedings of the

International Joint Conference on Rules and Reasoning, Oslo, Norway, 18–20 September 2023; pp. 95–109.

http://dx.doi.org/10.1587/transinf.E95.D.1531
http://dx.doi.org/10.1007/s10618-010-0177-7
http://dx.doi.org/10.1109/72.914524
http://dx.doi.org/10.1016/0950-7051(96)81920-4
http://dx.doi.org/10.1016/j.ins.2006.06.003
http://dx.doi.org/10.1371/journal.pone.0231788
http://www.ncbi.nlm.nih.gov/pubmed/32320407
http://dx.doi.org/10.1049/trit.2019.0025
http://dx.doi.org/10.1109/TKDE.2006.179
http://dx.doi.org/10.1007/s10994-022-06290-w
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1007/s10618-009-0131-8
http://dx.doi.org/10.3233/FI-2013-805
http://dx.doi.org/10.1109/72.641475
http://dx.doi.org/10.1109/72.839020
http://www.ncbi.nlm.nih.gov/pubmed/18249780
http://dx.doi.org/10.1023/A:1007626017208


Mach. Learn. Knowl. Extr. 2024, 6 579

55. Michalski, R.S. Attributional calculus: A logic and representation language for natural induction. Reports of the Machine Learning
and Inference Laboratory, MLI 04-2; George Mason University: Fairfax, VA, USA, 2004.

56. Bloedorn, E.; Michalsi, R. Data-driven constructive induction. IEEE Intell. Syst. Their Appl. 1998, 13, 30–37. [CrossRef]
57. Wnek, J.; Michalski, R.S. Hypothesis-driven constructive induction in AQ17-HCI: A method and experiments. Mach. Learn. 1994,

14, 139–168. [CrossRef]
58. Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In

Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378.
59. Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal

Inf. Process. 2013, 4, 173. [CrossRef]
60. Saeed, N.; Nam, H.; Haq, M.I.U.; Muhammad Saqib, D.B. A survey on multidimensional scaling. ACM Comput. Surv. (CSUR)

2018, 51, 1–25. [CrossRef]
61. Chang, V.; Ganatra, M.A.; Hall, K.; Golightly, L.; Xu, Q.A. An assessment of machine learning models and algorithms for early

prediction and diagnosis of diabetes using health indicators. Healthc. Anal. 2022, 2, 100118. [CrossRef]
62. Efron, B. Logistic regression, survival analysis, and the Kaplan-Meier curve. J. Am. Stat. Assoc. 1988, 83, 414–425. [CrossRef]
63. Janssen, F.; Fürnkranz, J. On the quest for optimal rule learning heuristics. Mach. Learn. 2010, 78, 343–379. [CrossRef]
64. RuleKit Documentation. Available online: https://github.com/adaa-polsl/RuleKit/wiki (accessed on 24 November 2023).
65. Janssen, F.; Fürnkranz, J. Heuristic Rule-Based Regression via Dynamic Reduction to Classification. In Proceedings of the IJCAI

2011 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 1330–1335. [CrossRef]
66. Harrington, D.P.; Fleming, T.R. A class of rank test procedures for censored survival data. Biometrika 1982, 69, 553–566. [CrossRef]
67. Sidhu, S.; Meena, U.K.; Nawani, A.; Gupta, H.; Thakur, N. FP Growth algorithm implementation. Int. J. Comput. Appl. 2014, 93.

[CrossRef]
68. Bruha, I. Quality of decision rules: Definitions and classification schemes for multiple rules. In Machine Learning and Statistics:

The Interface; John Wiley: Hoboken, NJ, USA, 1997; pp. 107–131.
69. Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and comparison of prognostic classification schemes for survival

data. Stat. Med. 1999, 18, 2529—2545. [CrossRef]
70. Benjamini, Y.; Yekutieli, D. False discovery rate–adjusted multiple confidence intervals for selected parameters. J. Am. Stat. Assoc.

2005, 100, 71–81. [CrossRef]
71. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
72. Wnek, J. MONK’s Problems. UCI Machine Learning Repository, 1992. Available online: https://doi.org/10.24432/C5R30R

(accessed on 21 February 2024). [CrossRef]
73. Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. Update 2007, 1, 2007.
74. Nosofsky, R.M.; Palmeri, T.J.; McKinley, S.C. Rule-plus-exception model of classification learning. Psychol. Rev. 1994, 101, 53.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/5254.671089
http://dx.doi.org/10.1023/A:1022622132310
http://dx.doi.org/10.4236/jsip.2013.43B031
http://dx.doi.org/10.1145/3178155
http://dx.doi.org/10.1016/j.health.2022.100118
http://dx.doi.org/10.1080/01621459.1988.10478612
http://dx.doi.org/10.1007/s10994-009-5162-2
https://github.com/adaa-polsl/RuleKit/wiki
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-225
http://dx.doi.org/10.1093/biomet/69.3.553
http://dx.doi.org/10.5120/16233-5613
http://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
http://dx.doi.org/10.1198/016214504000001907
https://doi.org/10.24432/C5R30R
http://doi.org/10.24432/C5R30R (accessed on 21 February 2024)
http://dx.doi.org/10.1037/0033-295X.101.1.53

	Introduction
	Related Work
	Rule Induction Algorithms
	Learning Complex Elementary Conditions

	Methods
	Basic Notion
	Learning Rules with Simple Conditions
	Rules with Complex Conditions
	Learning Rulesets with M-of-N Conditions

	Experiments and Results
	Experiments Methodology
	Results
	Case Studies
	Iris Dataset
	MONK's Problems
	Bone Marrow Transplantation


	Conclusions
	References

