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Abstract: A Pickering double emulsion (DE) with an outer (O:W2) interface stabilized by cellulose
nanocrystals (DE-CNC) was designed as a co-delivery systems for chlorogenic acid (CA) and cur-
cumin, then compared with a control DE emulsion with an O:W2 interface stabilized with sodium
caseinate (DE-NaCas). DE-CNC was more resistant to creaming during storage (6.79%, day 42) and
showed higher encapsulation efficiency (EE) of CA (>90%). Conversely, both DEs exhibited similarly
high EE for curcumin (>97%). The ζ-potential values were highly negative in both DEs, but tended to
be lower in DE-CNC due to the highly negative charge of the CNCs. DE-CNC allowed for a steady
release of CA during the oral, gastric, and intestinal phases of digestion, while a total release of
CA was already observed in the gastric phase in case of DE-NaCas. The bioaccessibility of CA was
similar in both DEs (~57–58%). Curcumin was mainly released in the intestinal phase with both DEs,
reaching slightly lower bioaccessibility values with DE-CNC. The use of CNCs as a stabilizer for
the outer interface of DEs is a promising strategy to increase the stability and EE of these systems,
providing oral co-delivery vehicles capable of releasing significantly bioactive compounds during the
intestinal phase of digestion.

Keywords: cellulose nanocrystals; Pickering double emulsion; co-delivery; chlorogenic acid;
curcumin; in vitro digestion

1. Introduction

Emulsions play an important role in various industries, including foods, pharmaceu-
ticals, and cosmetics. However, their low kinetic stability is a critical factor influencing
their shelf life, functionality, and performance [1]. Water-in-oil-in-water (W1/O/W2) dou-
ble emulsions (DEs) are multicompartment systems characterized by the dispersion of a
water-in-oil (W1/O) emulsion as droplets within an external aqueous phase (W2). These
emulsions offer an advantage over simple emulsions, since they can co-encapsulate hy-
drophilic bioactive compounds in the W1 phase and hydrophobic ones in the oil phase [2].
This makes DEs a promising co-delivery system for the controlled release of both hy-
drophilic and hydrophobic bioactive compounds. Over the past few years, numerous
hydrophilic and lipophilic bioactive compounds have been simultaneously encapsulated
in DEs, including catechin/curcumin [3], EGCG/lycopene [4], EGCG/quercetin [2], vi-
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tamin C/xanthoxylin [5], phycocyanin/astaxanthin [6], vitamin B12/Cydia pomonella
granulovirus (CpGV) [7], and rivoflavin/β-carotene [8].

Most DEs are stabilized using conventional emulsifiers, such as small synthetic surfac-
tants, and predominantly biopolymers such as proteins and polysaccharides, since they
migrate less from the outer to the inner droplets and form viscoelastic layers [1]. However,
DEs stabilized with conventional emulsifiers are subject to several instability phenomena
during both storage and gastrointestinal (GI) digestion, such as coalescence of oil droplets
and W1 droplets, the flux of water and water-soluble components between W1 and W2, and
migration of emulsifiers between both interfaces, among other mechanisms that trigger the
release and degradation of the bioactive compounds encapsulated during oral or gastric
digestion [9,10]. In this context, recent advancements have led to exploring alternative
stabilizing agents, such as solid particles, to enhance the stability of DEs and their perfor-
mance as delivery systems during digestion [9]. Pickering stabilization uses solid particles
that irreversibly adsorb to the interface, forming a rigid barrier that prevents coalescence
and reduces the loss of W1, enhancing the stability of DEs [11]. Biomaterial-based solid
particles have gained great interest in recent years for stabilizing Pickering DEs, such as
oligosaccharide and polysaccharide particles, water-insoluble protein particles, fat particles,
or protein–polysaccharide conjugates [11]. Cellulose nanocrystals (CNCs), obtained from
cellulose fibers by acid hydrolysis, are composed of linear chains of β-D-glucopyranose
molecules bonded by hydrogen bonds, forming nanorods with diameters ranging from
5 to 70 nm in width and from 100 nm to several micrometers in length [12,13]. This bio-
compatible, sustainable, and biodegradable material can be used to stabilize Pickering
o/w emulsions, as it exhibits a rod-like nanometric structure with a high aspect ratio
and amphiphilic nature, allowing for irreversible adsorption at the O:W interface and the
formation of a thick electrically charged coatings around oil droplets [11,14]. CNCs have
been primarily used to stabilize simple o/w emulsions [12,15,16], where the stabilization
effect depends on various factors such as its biological origin, concentration, surface charge
and aspect ratio [15,17–20]. However, a limited number of studies have investigated the
use of CNCs to stabilize the O:W2 interface in DEs, either in their unmodified form or
chemically modified, or by forming complexes with proteins [14,17,21]. These Pickering
DEs have been reported to show high stability over time [17], high resistance to both heat
and salt stress, and greater encapsulation stability [14]. To the best of our knowledge, there
is only one study in which the performance of CNC-stabilized DEs has been evaluated
as co-delivery vehicles for hydrophilic and hydrophobic bioactive compounds during GI
digestion [14]. In that study, the use of protein fibrils and CNC complexes at the outer
interface of DEs resulted in higher bioaccessibility of both hydrophilic and hydrophobic
bioactive compounds.

This study focuses on the co-encapsulation of chlorogenic acid (CA) in W1 and cur-
cumin in the linseed oil phase of W1/O/W2 double emulsions. CA, abundant in coffee and
tea, and curcumin, found in turmeric, exhibit numerous health benefits such as antioxidant
and anti-inflammatory activity, among others [22,23]. However, curcumin’s bioavailability
is limited by its poor water solubility, chemical instability, and rapid metabolism [3], while
CA’s stability is affected by pH changes during digestion, resulting in low bioaccessibility
values [24]. The outer interface of these DEs was stabilized with CNCs, providing an
innovative approach to enhance the stability and functionality of these emulsions and to
control the release of both bioactive compounds during in vitro gastrointestinal digestion.

The aim of this research was to assess the bioaccessibility of CA and curcumin si-
multaneously encapsulated in DEs with the outer interface stabilized using unmodified
CNCs. Additionally, these Pickering DEs underwent characterization regarding droplet
size, encapsulation efficiency, morphology, rheological properties, and creaming stability.
A comparative analysis was conducted with DEs stabilized with sodium caseinate at the
outer interface.
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2. Materials and Methods
2.1. Materials

Chlorogenic acid (with a purity of 98%) was obtained from AK Scientific (Union City,
CA, USA). Linseed oil was acquired from Nutra Andes Ltd. (Valparaíso, Chile). Curcumin
(total curcuminoids > 95%) was sourced from Xi’an Xin Sheng Bio-Chem Co. (Xi’an,
China). Cellulose nanocrystals (CNCs) obtained from cotton cellulose pulp via sulfuric
acid hydrolysis were purchased in freeze-dried form from the Process Development Center
of the University of Maine (Orono, ME, USA). Porcine bile extract (B8631) and digestive
enzymes (pepsin from porcine gastric mucosa, P7012, 2500 AU/mg; pancreatin from
porcine pancreas, P7545, 8× USP specifications) were purchased from Sigma-Aldrich
(Santiago, Chile). Polyglicerolpolyricinoleate (PGPR) was acquired from Dimerco S.A.
(Santiago, Chile). Sodium caseinate was sourced from Prinal S.A. (Santiago, Chile). Grupo
Blumos (Santiago, Chile) donated the high methoxy pectin (Aglupectin HS-RAM).

2.2. Characterization of CNC

The ζ-potential, hydrodynamic size, and size distribution of CNCs were measured
by laser Doppler velocimetry and dynamic light scattering (DLS), respectively, at 25 ◦C
(Zetasizer Nano-ZS, Malvern Instruments, Worcestershire, UK). CNCs were previously
dispersed in milli-Q water (0.1% w/w) with an ultrasonic processor (30 KHz, 100% am-
plitude) for 5 min. The ζ-potential of CNCs was also measured at pH 2 (−15.9 ± 0.9 mV)
and pH 7 (−42.0 ± 1.8 mV), following dilution with water adjusted to the corresponding
pH. Topographic images of CNCs were obtained by atomic force microscopy (AFM) in air-
tapping mode at a frequency of 100 kHz using a high-resolution tip (model DP18/HiRes-C,
mmasch, Watsonville, CA, USA). In this analysis, an aliquot of a CNC dispersion (1.5 g/L)
was deposited on a mica substrate that was previously cleaved and conditioned at 20 ◦C.
The sample was dried under a stream of nitrogen gas and placed in an AFM measuring
cell (AFM Veeco, Plainview, NY, USA), where images were acquired using the software
program Nanoscope AFM v6.13r1.

2.3. Formulation of Pickering DE-CNC

A two-step emulsification process was used to obtain the DEs. Initially, an ultrasonic
processor (30 KHz, 100% amplitude, work time 1 s, rest time 1 s) was used for 3 min to
prepare the W1/O emulsions. CA was dissolved in the inner aqueous phase (W1; 0.1%
w/w). Linseed oil with curcumin (0.3% w/w) and PGPR (6% w/w) composed the oil phase.
The W1:O ratio was 20:80. Subsequently, the W1/O emulsion was slowly added, drop
by drop, onto the W2, employing a rotor–stator homogenizer (Omni GLH 850, OMNI
International, Kennesaw, GA, USA). The W2 consisted of sodium azide (0.02% w/w) and
CNCs (8.3% w/w) dispersed in deionized water using an ultrasonic processor (30 KHz,100%
amplitude) for 5 min. To optimize the homogenization conditions for DE-CNC, a central
composite + star design was employed. The independent variables were homogenization
speed (ranging from 5000 to 15,000 rpm) and homogenization time (from 1 to 15 min),
while the response variables were the oil droplet size (D4,3) of freshly prepared DEs and the
creaming index after 7 days of storage at 4 ◦C (CI7), which were determined as described
in Section 2.4.1. The experimental data was fitted to a second-order regression model using
the following equation (Equation (1)):

Y = b0 + ∑2
i=1 biXi + ∑2

i=1 biiX2
i + ∑1

i=1 ∑2
j=i+1 bijXiXj (1)

where Y was the estimated response (CI7 or D4,3), subscript i and j ranged from 1 to 2 (n = 2),
b0 was the intercept term, bi, bii, and bij values were the linear, quadratic, and interaction
coefficients, respectively, and Xi and Xj were the levels of the independent variables.

In the equation, terms that were not statistically significant (p > 0.05) were eliminated,
with the exception of linear forms of the homogenization speed or homogenization time,
which are fundamental components of the mathematical model. The software program
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Statgraphics Centurion XVI, version 16.2 (Statistical Graphics Corporation, Rockville, MD,
USA) was used to perform the analysis of variance (ANOVA), lack-of-fit, and the deter-
mination of regression coefficients. The optimal conditions for each independent variable
were determined by the response surface methodology (RSM). Multiple optimization of
the response variables, where CI7 and D4,3 were minimized, was performed using the
desirability function.

For comparison, a control DE (DE-NaCas) was prepared with W2 containing sodium
caseinate (NaCas, 0.5% w/w), high methoxy pectin (3% w/w), and sodium azide (0.02%
w/w) in deionized water. The homogenization parameters for DE-NaCas were optimized
in prior research (6000 rpm and 4.64 min). Consistently, the W1/O:W2 ratio was the same
for all DEs (40:60). An osmometer (3320, Advanced Instruments, Norwood, MA, USA) was
used to equilibrate the osmolarity of W1 and W2.

2.4. Characterization of DEs Obtained under Optimal Conditions
2.4.1. Oil Droplet Size and Size Distribution, Microstructure, Creaming Stability,
and ζ-Potential

The size distribution of oil droplets and volume mean diameter (D4,3) were determined
in freshly prepared DEs and after 21 days of storage at 4 ◦C. This was accomplished using
light-scattering techniques with a particle analyzer (LA-960V2, Horiba, Kyoto, Japan). The
refractive index of linseed oil, set at 1.479, was taken into account, and the samples were
appropriately diluted in distilled water (at a ratio of 1:2500).

Confocal laser scanner microscopy (CLSM; LSM 700, Carl Zeiss Microscopy GmbH,
Jena, Germany) was used to evaluate the microstructure of DEs at days 0 and 21 of storage at
4 ◦C. The oil phase was fluorescently labelled with Nile red (0.01% w/w; excitation and emis-
sion wavelengths of 488 nm and 580 nm, respectively). The CLSM images were analyzed
with the ZEN 2012 (Blue Edition, Carl Zeiss Microscopy GmbH, Jena, Germany) software.

A vertical scan analyzer (Turbiscan, MA2000, Formulaction, Toulouse, France) was
used to assess the creaming stability of DEs at regular intervals throughout a 21-day storage
period at 4 ◦C. The creaming index (CI) was calculated from the backscattering profiles
according to the following equation (Equation (2)):

Creaming Index =
HS
HE

× 100 (2)

where HS is the height of the serum layer, and HE is the total height of the DE.
A Zetasizer Nano ZS instrument (Malvern Instruments Ltd., Worcestershire, UK)

was employed to evaluate the ζ-potential of the freshly prepared DEs at 25 ◦C by laser
Doppler velocimetry. The DEs were appropriately diluted with water adjusted to a pH of 7
(1:2500 v/v).

2.4.2. Encapsulation Efficiency of CA and Curcumin in DEs

The concentration of CA and curcumin in the W2 phase of fresh DEs was quantified
to determine the encapsulation efficiency (EE) of the bioactive compounds in DEs [25].
This was accomplished using an UPLC system (UltiMate 3000, Thermo Fisher Scientific,
Waltham, MA, USA) coupled with a UV/VIS detector (VWD-3100). Following gentle
centrifugation at 2400× g for 15 min, the W2 phase containing the non-encapsulated CA
and curcumin was isolated and injected into the UPLC system. The concentration of CA
was determined according to [26] (Epic C18, 250 × 4.6 mm, 5 µm; Perkin Elmer, Waltham,
MA, USA), while curcumin concentration was determined according to [27] (Acquity BEH
shield RP18, 130 Å, 2.1 mm × 100 mm, 1.7 µm; Waters, Milford, MA, USA). Standard
calibration curves (0.1–100 µg/mL; R2 = 0.99 in both cases) were used for quantification of
both bioactive compounds. The following equation (Equation (3)) was used to calculate
the EE:

EE(%) = 100 − Cw2 × 100
C0

(3)
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where CW2 was the concentration of CA or curcumin recovered in W2, and C0 was the
initial total concentration of CA or curcumin in the DEs.

2.4.3. Rheological Properties

Rheological measurements were conducted on fresh DEs using a Discovery Hybrid
Rheometer (HR-1, TA Instruments, New Castle, DE, USA), equipped with a cone-plate
geometry (60 mm diameter, 1◦ angle, 29 µm gap). DE samples were carefully loaded
onto the measuring system and allowed to rest for 5 min to facilitate structure recovery
and temperature equilibration. An increasing shear rate from 0.01 to 1000 s−1 at 25 ◦C
was applied to determine the viscosity of each DE, and the apparent viscosity (Pa·s) was
recorded as a function of the shear rate.

2.5. Bioaccessibility of CA, Curcumin, Total Free Fatty Acids (FFA) and Major FFA

DEs were subjected to a standardized in vitro gastrointestinal digestion [28], simulat-
ing oral, gastric, and intestinal phase conditions. Simulated salivary fluid (4 mL), distilled
water (4.375 mL), and 0.3 M CaCl2 (25 µL) were added to freshly prepared DE (1.6 g) for
the oral phase. Since none of the samples contained amylase-sensitive polysaccharides, no
amylases were added. The mixture was adjusted to pH 7.0 and incubated at 37 ◦C with
continuous shaking at 170 rpm for 2 min. Following this, the bolus obtained after the oral
phase was mixed with the simulated gastric fluid (8 mL), pepsin (2000 U/mL gastric phase),
and HCl (0.1 M) to achieve a pH of 2.0, 0.3 M CaCl2 (5 µL), and distilled water up to 20 mL.
The mixture was incubated at 37 ◦C under continuous shaking at 170 rpm for 120 min.
Afterward, the gastric chyme (20 mL) was mixed with the simulated intestinal fluid (16 mL),
0.3 M CaCl2 (40 µL), NaOH (1 M) to adjust pH to 7.0, bile extract (10 mM), and pancreatin
(2000 U lipase activity/mL intestinal phase) to simulate the intestinal phase. The pH was
maintained at 7.0 for 2 h at 37 ◦C by the addition of NaOH (1 M) under constant stirring
using a pH-stat (902 Titrando, Metrohm, Herisau, Switzerland).

Optical microscopy (DM500, Leica Microsystems, Germany) was used to evaluate the
microstructure of DEs following each digestion phase. The amount of CA and curcumin
released following the oral and gastric phase was assessed by quantifying the concentration
of bioactive compounds in the aqueous phase of each gastrointestinal in vitro digestion
phase as described in Section 2.4.2. To quantify the release of CA and curcumin following
the intestinal phase, the digested material was subjected to centrifugation (7500× g for
60 min) to collect the micellar phase (aqueous phase), and the concentration of CA and
curcumin was assessed following the procedure outlined in Section 2.4.2.

The retrieval of free fatty acids (FFA) liberated during the intestinal phase followed the
procedure described by [29]. FFA were methylated using a solution of H2S2O4 in methanol
(0.06% v/v), and the resulting fatty acid methyl esters (FAMEs) were subjected to gas
chromatography analysis (7890B, Agilent Technologies, Santa Clara, CA, USA) as detailed
by Álvarez et al. [30]. Gas chromatography was equipped with a flame ionization detector
and an HP-88 column (fused silica capillary column with 0.25 mm inner diameter, 0.20 µm
film thickness, and 100 m length, Agilent Technologies, Santa Clara, CA, USA). Individual
fatty acids were identified and quantified with calibration curves generated with FAME
external standards (R2 > 0.99 for all of them). The bioaccessibility of CA, curcumin, and
every major FFA was determined using Equation (4).

Bioaccessibilty(%) = 100 − (CAD/Ci)× 100 (4)

where CAD was the concentration of CA, curcumin, or FFA in the micellar phase after the
intestinal phase of digestion and Ci was the concentration of CA, curcumin, or FFA in the
undigested DE.

2.6. Statistical Analysis

All experiments were conducted in triplicate. Statistical analysis was performed using
ANOVA and Tukey’s multiple range test to determine statistically significant differences
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(p ≤ 0.05) among samples. Data analysis was carried out using Statgraphics Centurion XVI
software, version 16.2 (Statistical Graphics Corporation, Rockville, MD, USA).

3. Results and Discussion
3.1. Characterization of CNC

The particle size distribution and microstructure of CNCs are shown in Figure 1. The
CNCs presented a bimodal particle size distribution ranging from 9 to 200 nm (Figure 1A)
and a Z-average of 64.74 ± 1.27 nm. The polydispersity index was 0.250 ± 0.007. The broad
range of particle sizes suggests the presence of particles of varying sizes within the disper-
sion. However, the microstructure of the CNCs, as observed in AFM images (Figure 1B),
revealed rod-shaped crystals measuring 100–200 nm in length and approximately 10–20 nm
in width. This observation explains the wide distribution obtained with the DLS method,
as DLS measures particle size from any angle, approximating a spherical shape.
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Figure 1. Particle size distribution measured by DLS (A) and AFM topographic images (B) of CNC.

The sizes observed in the AFM images fall within the range described in the literature
for CNC, usually ranging from 5 to 70 nm in width and from 75 nm to several micrometers
in length [12,13]. The ζ-potential of CNCs was −41.8 ± 1.4 mV, attributed to the presence
of negatively charged sulfate groups at its surface as a consequence of the processing con-
ditions involving sulfuric acid hydrolysis [31]. This elevated ζ-potential value is expected
to prevent the coalescence of oil droplets due to the electrostatic repulsion generated by the
CNCs adsorbed at the outer interface of DE-CNC.
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3.2. Optimal DE-CNC Homogenization Parameters

Table 1 displays the central composite + star design alongside the ANOVA results
pertaining to the preparation of DE-CNC.

Table 1. Central composite + start design and ANOVA for the preparation of DE-CNC.

Run HS (rpm)
(X1)

HT (min)
(X2)

Droplet Size
(D4,3) (µm) CI7

1 11,000 16.4 26.15 ± 0.36 5.91 ± 0.10
2 5000 8.5 42.33 ± 1.00 9.35 ± 0.83
3 6000 2.0 42.16 ± 0.51 6.34 ± 0.15
4 16,000 8.5 24.77 ± 0.20 8.27 ± 0.54
5 15,000 15.0 25.48 ± 0.13 11.89 ± 0.93
6 15,000 2.0 24.72 ± 0.13 5.62 ± 0.21
7 6000 15.0 32.69 ± 0.19 5.53 ± 0.17
8 11,000 0.6 29.85 ± 0.35 5.57 ± 0.23
9 11,000 8.5 26.83 ± 0.11 6.09 ± 0.31

10 11,000 8.5 25.00 ± 0.15 4.55 ± 0.19
11 11,000 8.5 25.36 ± 0.09 5.98 ± 0.56
12 11,000 8.5 26.62 ± 0.03 5.65 ± 0.43

ANOVA Droplet size (D4,3) (µm) CI7

Estimate p-value Estimate p-value
βo 77.88 19.24
X1 −0.0071 0.0003 * −0.0024 0.0948
X1

2 2.31 × 10−7 0.0117 * 9.80 × 10−8 0.0094 *
X2 −1.21 0.0008 * −0.5070 0.0479 *

X1X2 8.74 × 10−5 0.0111 * 6.07 × 10−5 0.0141 *
Lack of fit 0.236 0.113

R2 (adj. for d.f.) 96.31 65.18
HS: homogenization speed; HT: homogenization time; CI7: creaming index after 7 days of storage at 4 ◦C; adj. for
d.f.: adjusted for degrees of freedom. βo: intercept term; X1: Homogenization speed; X2: homogenization time; X1
X2: interaction between HS and HT. Data are average ± standard deviation (n = 3).

The D4,3 of freshly prepared DEs and CI7 were in the range of 24.7–42.3 µm and
4.6–11.9%, respectively. The linear forms of both the homogenization time and speed, the
quadratic form of the homogenization speed and the interaction form of homogenization
time and speed were significant (p < 0.05) for both D4,3 and CI7. The model explained
96.3% and 65.2% of the variability (R2 adjusted by degrees of freedom) in D4,3 and CI7,
respectively, and the lack of fit was not significant (p > 0.05) in any case. The response
surface graphics (Figure 2A–C) showed that the higher the homogenization speed, the
smaller the droplet size, especially at short homogenization times (Figure 2A). This is
because higher speed results in greater shear force applied, which promotes the reduction
of oil droplet size. Regarding the CI7 (Figure 2B), at short homogenization times, the
percentage of creaming tended to increase as the homogenization speed decreased, which
may be because insufficient energy is applied during such a short period to generate
small droplets, thus promoting creaming. However, at longer homogenization times, the
percentage of creaming tended to increase with increasing speed, suggesting that an excess
of shear force may induce some emulsion breaking and favor creaming.

The desirability function was used for the multiple optimization of the response
variables, where both D4,3 and CI7 were minimized (Figure 2C). The highest desirability
value (0.98) was achieved with 13,599 rpm and 0.63 min, which were adjusted to 13,000 rpm
and 1 min for practical reasons. Under these optimal conditions, the predicted values for
D4,3 and CI7 by the model were 24.5 µm and 4.5%, respectively.



Colloids Interfaces 2024, 8, 24 8 of 18

Colloids Interfaces 2024, 8, x FOR PEER REVIEW 8 of 19 
 

 

percentage of creaming tended to increase with increasing speed, suggesting that an 
excess of shear force may induce some emulsion breaking and favor creaming. 

The desirability function was used for the multiple optimization of the response 
variables, where both D4,3 and CI7 were minimized (Figure 2C). The highest desirability 
value (0.98) was achieved with 13,599 rpm and 0.63 min, which were adjusted to 13,000 
rpm and 1 min for practical reasons. Under these optimal conditions, the predicted values 
for D4,3 and CI7 by the model were 24.5 µm and 4.5%, respectively. 

 
Figure 2. Response surface graphics for D4,3 (A), IC7 (B), and desirability function (C) for the 
preparation of DE-CNC. 

3.3. Characterization of DEs Obtained under Optimal Conditions 
3.3.1. Oil Droplet Size and Size Distribution, Microstructure, Creaming Stability, and ζ-
Potential 

Both DE-CNC and DE-NaCas showed a bimodal size distribution (Figure 3), with a 
larger oil droplet population with sizes between 10 and 100 µm, and a smaller oil droplet 
population with sizes between 0.8 and 4–5 µm. At day 0 of storage, DE-CNC displayed 
the smallest droplet size (~20 µm), while DE-NaCas exhibited a significantly (p < 0.05) 
larger D4,3 value (~25 µm). After 21 days of storage at 4 °C, a slight but significant increase 
in droplet size was observed for DE-CNC (p < 0.05), reaching approximately 27 µm, 
indicating some degree of oil droplet coalescence. Other studies [14,21] showed larger oil 

Figure 2. Response surface graphics for D4,3 (A), IC7 (B), and desirability function (C) for the
preparation of DE-CNC.

3.3. Characterization of DEs Obtained under Optimal Conditions
3.3.1. Oil Droplet Size and Size Distribution, Microstructure, Creaming Stability,
and ζ-Potential

Both DE-CNC and DE-NaCas showed a bimodal size distribution (Figure 3), with a
larger oil droplet population with sizes between 10 and 100 µm, and a smaller oil droplet
population with sizes between 0.8 and 4–5 µm. At day 0 of storage, DE-CNC displayed the
smallest droplet size (~20 µm), while DE-NaCas exhibited a significantly (p < 0.05) larger
D4,3 value (~25 µm). After 21 days of storage at 4 ◦C, a slight but significant increase in
droplet size was observed for DE-CNC (p < 0.05), reaching approximately 27 µm, indicating
some degree of oil droplet coalescence. Other studies [14,21] showed larger oil droplet sizes
(50–100 µm) in DEs stabilized with CNC, likely due to the utilization of lower CNC concen-
trations in W2 (1.5 and 3.8 wt% vs. 8.3 wt%). Conversely, CNCs with similar characteristics
than those employed in this study in terms of size and ζ-potential were utilized at 0.3 wt%
for stabilizing o/w simple emulsions obtained by sonication [12], resulting in smaller oil
droplet sizes (3 µm). Besides the type and concentration of emulsifiers, emulsification
method, as well as the density and viscosity of the phases, may also influence oil droplet
size [32].
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Figure 3. The distribution of oil droplet sizes, and D4,3 values of freshly prepared DE-NaCas and
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Figure 4 shows the microstructure of DE-CNC obtained under optimal conditions and
the control DE-NaCas at days 0 and 21 of storage at 4 ◦C. On day 0, both DE-CNC and
DE-NaCas showed the characteristic multicompartmentalized structure representing DEs,
with small water droplets inside the oil droplets that are dispersed in the W2. However,
noticeable increases in the size of W1 droplets were observed in DE-NaCas after 21 days
of storage, accompanied by a greater abundance of small oil droplets (Figure 3) that can
be observed in the oil droplet size distribution but did not affect the D4,3 values, probably
because this parameter is sensitive to the presence of large particles within a polydisperse
system [33]. The changes observed in DE-NaCas may be attributed to the occurrence
of coalescence among W1 inner droplets and their migration into W2. Regarding DE-
CNC, minimal changes were observed in their microstructure during storage. A slight
enlargement in oil droplet size was observed after 21 days of storage, aligning with the
rise in D4,3 values. Nevertheless, the formation of compact CNC layers on the surface of
oil droplets, created through strong interactions among CNC nanoparticles via van der
Waals and hydrogen bonding [34], resulted in the retention of the multicompartmentalized
structure, with no observable changes in the size of the W1 droplets.

Emulsions exhibit resistance to droplet aggregation by maintaining a high surface
potential, which is closely associated with the ζ-potential, a measure of surface charge.
This results in robust electrostatic repulsion among the droplets, effectively preventing
their coalescence [16]. Both DE-CNC and DE-NaCas initially exhibited highly negative ζ-
potential values of −44.1 ± 5.4 and −35.7 ± 0.3 mV, respectively, indicating favorable initial
stability for both emulsions [16]. In the case of DE-CNC, the low ζ-potential values closely
resembled those of CNC (−41.8 ± 1.35 mV), indicating that the electrostatic repulsion
among DE-CNC oil droplets is governed by the surface potential of CNC, attributed to
the presence of hydroxyl and sulfate groups [31]. Conversely, the highly negative values
observed in DE-NaCas can be attributed to the negative charge of ionized carboxyl groups
present in caseinate and pectin [35]. A decrease in the absolute value of ζ-potential during
storage may affect the emulsion stability, as colloidal systems are prone to flocculate when
ζ-potential approaches zero [36]. At day 21 of storage, both DEs showed ζ-potential values
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close to their initial ones (−43.4 ± 3.0 mV for DE-CNC and −38.6 ± 0.9 mV for DE-NaCas),
which contributes to the high creaming stability found up to day 21 of storage (Figure 5).
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In the natural aging process of a W/O/W emulsion, similar to other emulsified
systems, changes in appearance and structure may occur due to creaming induced by
gravity and macroscopic phase separation [36]. The CI values for days 0, 7, 14, 21, and 42
of storage at 4 ◦C for both DE-CNC and DE-NaCas are depicted in Figure 5. Initially, both
DE-CNC and DE-NaCas exhibited CI below 7% and 5%, respectively, with no significant
differences (p < 0.05) observed. Over 21 days of storage at 4 ◦C, neither emulsion showed
notable increases in creaming (p > 0.05), showing values lower than 7%. Pectin, recognized
for its stabilizing properties in o/w emulsions due to its ability to increase the viscosity of
the continuous phase and hinder the upward movement of oil droplets [37,38], contributed
to the stability of DE-NaCas during storage. In the case of DE-CNC, the CNC not adsorbed
at the interface and present in the continuous phase may enhance the viscosity of W2
through the formation of a gel-like network, restricting the ascent of oil droplets [39,40].
Furthermore, the highly negative ζ-potential values found in both DEs during storage
are associated with the high creaming stability observed, despite the presence of droplets
larger than 25 µm, which typically promotes creaming. However, after 42 days of storage,
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significant differences (p < 0.05) in creaming stability were observed, with DE-NaCas
exhibiting a CI of 23.75 ± 1.48%, whereas DE-CNC showed a CI of 6.79 ± 0.16% (Figure 5).
This suggests that despite the increased viscosity and electrostatic repulsive forces in DE-
NaCas, the stabilization mechanism with this conventional emulsifier does not provide long-
term creaming stability. This could be attributed to the fact that CNCs not only generate
electrostatic repulsive forces between the droplets but also create strong steric forces,
thereby enhancing their resistance to aggregation during a prolonged storage time [16].
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3.3.2. Encapsulation Efficiency of CA and Curcumin

The EE of CA, representing the percentage of CA retained within W1 droplets, was
significantly higher (p < 0.05) in DE-CNC (92.6 ± 0.9%) than in DE-NaCas (23.7 ± 2.7%).
Despite similar microstructural features (Figure 4), suggesting comparable W1 content, the
EE indicates that CA migrated from W1 to W2 during homogenization, possibly through
the oil phase and both DE interfaces. The use of solid particles as emulsion stabilizers,
specifically CNC in this case, provides enhanced stability due to their adsorption at the
oil droplet surface, forming a compact layer at the interface [40]. In general, it has been
reported that particles with appropriate wettability characteristics and sizes greater than
approximately 10 nm irreversibly adsorb to the O:W interface [41]. Cui et al. [14] also
reported EE close to 90% for hydrophilic epigallocatechin gallate in DEs stabilized by
protein fibrils and CNC at the outer interface. Other studies employing other solid particles
to stabilize the outer interface in DEs, such as chemically modified quinoa starch granules,
have also reported high values of EE for the hydrophilic bioactive compound encapsulated
in W1 (~98.5%), highlighting the ability of solid particles to retain W1 and the encapsulated
compounds within it [42]. Reports indicate that EE values of CA in DEs depend on the
emulsion composition [43]. These authors encapsulated CA in DEs of linseed oil stabilized
with conventional emulsifiers. The highest EE values for CA (84–88%) were found in DEs
stabilized with a mixture of Span 80 and lecithin as lipophilic emulsifier, Tween 20 as
hydrophilic emulsifier, and containing chitosan in W1 and/or W2.

Regarding the EE of curcumin, both DEs exhibited high EE values without signifi-
cant differences between them (98.6 ± 0.1% for DE-NaCas and 97.4 ± 0.1% for DE-CNC;
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p > 0.05), owing to its lipophilic nature (logP = 3.10 [3]), which prevents curcumin from
migrating to either of the two aqueous phases (W1 or W2). Similarly, high EE values of
curcumin (approximately 88%) have also been reported in DEs stabilized with conven-
tional emulsifiers (PGPR and Tween 80) [3]. Curcumin has also been encapsulated in
DEs stabilized by Pickering mechanism, although studies are limited. For instance, it
has been reported a high EE of curcumin (approximately 97%) in emulsion droplets with
the O:W2 interface stabilized by whey protein fibrils or by whey protein fibrils and CNC
complexes [14].

3.3.3. Rheological Properties

The flow curve recorded at 25 ◦C for both studied DEs is presented in Figure 6.
Although both DEs showed similar initial viscosity at the onset of the shear rate sweeping
(1 Pa·s at 0.02 s−1), DE-NaCas showed higher viscosity values than DE-CNC across the
entire range of tested shear rates, due to the viscosity imparted by 3% pectin in W2. The
presence of pectin leads to a higher effective volume fraction of the dispersed phase due
to its relatively large and flexible structure. Additionally, pectin molecules can interact
with each other through hydrophobic interactions and hydrogen bonding, contributing
to the high observed viscosity [37]. The viscosity of CNC-stabilized Pickering emulsions
is attributed to the formation of a three-dimensional network between nanoparticles and
water molecules by van der Waals forces, electrostatic forces, and hydrogen bonds [44].
Both DEs presented a non-Newtonian behavior, with viscosity values decreasing as the
shear rate increased, depicting a pseudoplastic behavior. Interestingly, in the case of DE-
CNC, three regions were distinguished in the flow curve: a shear thinning regime at low
strain (<0.1 s−1), a Newtonian-plateau at strain values within the range 1–10 s−1, and a
further decrease in viscosity at strains above 100 s−1. This rheological behavior has been
described as typical for lyotropic liquid crystals [45] and has been previously reported
in CNC suspensions [46] and CNC-stabilized emulsions [44]. Herein, the shear thinning
behavior could be explained by the alignment of the chiral domains of the liquid crystal
in the flow direction, and revealing that interaction between oil phase, water phase and
solid emulsifier were weak [44]. This behavior has been previously observed in Pickering
emulsions due to the absence of any chemical bonds [44]. The Newtonian-plateau would
be related with the CNC concentration, suggesting that CNC-stabilized DEs may undergo
microstructure change at higher shear rates [47].
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3.4. Release of CA and Curcumin from DEs during In Vitro Gastrointestinal Digestion

The microstructure of DE-CNC and DE-NaCas, alongside the percentage of curcumin
and CA released following each phase of the in vitro gastrointestinal digestion, is displayed
in Figure 7. As inferred from the EE values of CA, the concentration of CA in the W2 of
freshly prepared DE-CNC and DE-NaCas was 7.4 ± 0.9% and 76.3 ± 2.7%, respectively.
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Post-oral digestion, a significant release of CA was observed in both DEs, approximately
15% for DE-CNC and 9% for DE-NaCas, reaching 22.3 ± 0.2% and 84.9 ± 3.8% of CA
released at the end of the oral phase, respectively. Despite coalescence occurring in both
DEs (Figure 7(A1,A2)), numerous W1 droplets were present in DE-CNC, while DE-NaCas
had few water droplets, correlating with the released CA percentages.
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among DEs for the same phase of digestion. Different uppercase letters (A–D) indicate significant
differences (p < 0.05) among the different digestion phases for the same sample.

During the gastric phase, a substantial release of CA occurred in both DEs (Figure 7),
reaching 64.0 ± 1.6% in DE-CNC and complete release in DE-NaCas (101.3 ± 3.0%). In
the case of DE-NaCas, coalescence was the most significant microstructural change in oil
droplets (Figure 7(A2)), possibly due to sodium caseinate hydrolysis by pepsin. Coalescence
and loss of round contours were observed in DE-CNC oil droplets, but still maintained
the typical multicompartmentalized structure with numerous water droplets inside the
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oil droplets (Figure 7(B2)), suggesting that CA was mainly released by diffusion due to
osmotic effects in this phase. This coalescence may result from a weakened electrostatic
repulsion between oil droplets due to the gastric phase of digestion being performed at pH
2, at which CNC exhibited a low ζ-potential (−15.9 ± 0.9) as a consequence of the partial
protonation of covalently bound sulfate ester groups (pKa = 1.9) [48]. Additionally, the
high ionic strength of the gastric fluids may lead to electrostatic screening, contributing to a
reduction in the electrostatic repulsion of oil droplets [49,50]. Sharkar et al. [51] formulated
o/w emulsions using a composite layer of whey protein and CNCs as stabilizers. They
observed that the presence of CNC enhanced the resistance of the interfacial protein film to
pepsin hydrolysis, thus inhibiting droplet coalescence during the gastric phase. However,
it is important to note that this digestion took place at pH 3, where CNC exhibited a high
ζ-potential (−43.8 mV) and had the capability to bind with positively charged whey protein,
leading to the formation of a rigid composite protein–particle layer. In other study, Cui
et al. [14] formulated DEs stabilized by whey protein isolate fibrils and CNC complexes at
the outer interface, as co-delivery systems of curcumin and epigallocatechin gallate. These
DEs experienced some coalescence of individual oil droplets and exhibited loss of their
round shape after gastric phase, which was conducted at pH 2.5. However, the percentage
of epigallocatechin gallate release from the DEs after the gastric phase was not reported.

After the intestinal phase of digestion, the bioaccessible fraction of CA was around
57–58% in both DEs (Figure 7), and no significant differences (p > 0.05) were found between
DE-NaCas (58.0 ± 3.4%) and Pickering DE-CNC (56.8 ± 2.8%). In the case of DE-NaCas,
CA underwent partial degradation during the intestinal phase, given its low stability at pH
7 [52], since CA had been completely released in the gastric phase and thus exposed to the
adverse intestinal conditions. In the case of DE-CNC, there was both a release of CA that
remained trapped in W1, due to the collapse of the DE structure observed as a result of the
action of lipases on the triacylglycerides present in the oil phase, and a degradation of CA
exposed to digestion conditions. As shown in Figure 7(A3,B3), the complete destruction
of the DEs structure was observed after 2 h of in vitro intestinal digestion, characterized
by the appearance of free oil following the breakdown of the emulsion. These findings
suggest that the use of CNC-stabilized DEs facilitated a consistent release of CA throughout
the oral, gastric, and intestinal phases of digestion. These bioaccessibility values notably
surpassed those documented in other studies (~18% [53]; ~23% [24]; ~35% [54]), indicanting
the protective function of DEs in maintaining CA stability during in vitro digestion. This
could be attributed to the potential entrapment of CA within the formed micelles during
the intestinal phase [3].

The release of curcumin during simulated digestion phases is shown in Figure 7.
During oral and gastric digestion, curcumin release to W2 was below 1% in DE-NaCas,
while DE-CNC showed a slightly higher (p < 0.05) release, reaching 2.76 ± 0.58% after the
gastric phase. In any case, the percentage of curcumin released to the W2 phase during the
oral and gastric phases in both DEs was much lower than the percentage of CA released
during the same digestion stages, owing to the lipophilic nature of curcumin.

During the intestinal phase, the triglycerides in the flaxseed oil, which constitute the oil
phase of the DE, were hydrolyzed by the lipases present in pancreatin, leading to the release
of curcumin dissolved in the oil and its incorporation into the mixed micelles formed from
bile salts and fatty acids. The DE-CNC exhibited significantly lower (p < 0.05) curcumin
bioaccessibility values (65.3 ± 2.0%) than DE-NaCas (79.1 ± 1.5%). The reduced curcumin
release in the case of DE-CNC at the intestinal level can be attributed to the presence of
CNC around the oil droplets, which may hinder the access of lipases as reported in O/W
emulsions stabilized with CNC [46,49]. However, it has also been described that nanometric
CNC rods leave uncovered spaces on the surface of the oil droplets due to non-aligned
adsorption to the interface [15]. These spaces allow bile salts and lipases to access the
oil droplets [46,55], explaining the bioaccessibility values obtained for curcumin in the
DE-CNCs that can still be considered high (65.3 ± 2.0%). These values were comparable
to those reported by Cui et al. [14] for the bioaccessibility of curcumin (68.9%) when co-
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encapuslated with epigallocatechin gallate in DEs stabilized by whey protein isolate fibrils
and CNC complexes at the outer interface.

3.5. Bioaccessibility of Total Free Fatty Acids and Individual FFA

The fatty acids released after the intestinal phase of digestion were used to evaluate
the extent of DE lipolysis. Figure 8 shows the bioaccessibility of the total FFA and the
major individual fatty acids at the end of the intestinal phase of the in vitro gastrointestinal
digestion of DE-CNC and DE-NaCas. Although the bioaccessibility of the total FFA in
DE-CNC and DE-NaCas was statistically similar (p > 0.05), the values tended to be lower
in DE-CNC (49.91 ± 0.77%) than in DE-NaCas (59.54 ± 5.17%), suggesting that CNC
may hinder lipase access to the oil droplets, in line with the lower bioaccessibility values
observed for curcumin. A significantly lower extent of lipolysis has been reported in other
studies where CNC-stabilized o/w emulsions have been subjected to in vitro digestion.
This has been attributed to the CNC irreversibly adsorbed to oil droplets, which limits the
adsorption of bile salts and lipases [49].
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testinal digestion of DE-CNC and DE-NaCas. Distinct uppercase letters (A, B) denote significant
differences (p < 0.05) between samples for the same fatty acid. Distinct lowercase letters (x, y) denote
significant differences (p < 0.05) among fatty acids for the same DE.

In both digested DEs, a trend towards reduced bioaccessibility of the major individual
FFA was observed with an increase in the degree of unsaturation of the fatty acids (Figure 8),
aligning with the results obtained in other studies where the bioaccessibility of the major
fatty acids from linseed oil tended to decrease from C18:1 to C18:3 [56]. This effect has
been related to the enzymatic activity of lipases, which tend to preferentially hydrolyze less
unsaturated fatty acids because there is a greater distance between the first double bond and
the ester bond in the fatty acid chain [57]. Additionally, less unsaturated fatty acids may be
more effectively incorporated into mixed micelles due to their higher hydrophobicity [57],
which would also explain the observed trend in the bioaccessibility of the major fatty acids
from linseed oil in this study.

4. Conclusions

The outer interface of DEs, designed as co-delivery systems of CA and curcumin,
was successfully stabilized with CNC in this study. These Pickering DEs resulted in
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a noticeably higher EE for the hydrophilic bioactive compound (CA) and were more
resistant to creaming than conventional DEs stabilized with sodium caseinate in the outer
interface, showing good storage stability. These effects may be attributed to the formation of
compact layers of CNC around the oil droplets, resulting in electrostatic and steric repulsion
between the oil droplets, as well as to the restriction of the oil droplets movement due to
the viscosity imparted by CNC. They ensured a consistent CA release throughout digestion
and facilitated the intestinal release of curcumin, resulting in notable bioaccessibility values
for both CA and curcumin. CNC-stabilized DEs could thus represent a promising approach
for the simultaneous oral delivery of hydrophilic CA and hydrophobic curcumin.
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