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Abstract: Perhaps the first nonparametric, asymptotically optimal prediction intervals are provided
for univariate random walks, with applications to renewal processes. Perhaps the first nonparametric
prediction regions are introduced for vector-valued random walks. This paper further derives
nonparametric data-splitting prediction regions, which are underpinned by very simple theory. Some
of the prediction regions can be used when the data distribution does not have first moments, and
some can be used for high-dimensional data, where the number of predictors is larger than the sample
size. The prediction regions can make use of many estimators of multivariate location and dispersion.

Keywords: conformal prediction; high dimensional data; renewal processes; shorth

1. Introduction

This paper suggests prediction intervals and regions for univariate and vector-valued
random walks. This section reviews random walks, renewal processes, nonparametric
prediction intervals, and nonparametric prediction regions. Section 2.1 presents new
nonparametric data-splitting regions.

A random walk (with drift) is defined as Yt = Yt−1 + et, where et are independent
and identically distributed (iid). Suppose there is a sample Y1, . . . , Yn and we want a
prediction interval (PI) for Yn+h. Then, Yt = Yt−2 + et−1 + et = Yt−h + et−h+1 + · · ·+ et =
Y0 + e1 + · · ·+ et, or Yn+h = Yn + en+1 + en+2 + · · ·+ en+h = Yn + εn,h. Let ej = Yj − Yj−1
for j = 2, . . . , n. Divide e2, . . . , en into blocks of length h and let εi be the sum of the ei in each
block. Hence, ε1 = e2 + · · ·+ eh+1, ε2 = eh+2 + · · ·+ e2h+1, and εi = e(i−1)h+2 + e(i−1)h+3 +
· · · + e(i−1)h+h+1 for i = 1, . . . , m = bn/hc. These εi are iid from the same distribution
as εn,h. The same decomposition can be made for a vector-valued random walk, Y t =
Y t−1 + et, where the vectors are p× 1. Thus, εi = e(i−1)h+2 + e(i−1)h+3 + · · ·+ e(i−1)h+h+1
for i = 1, . . . , m.

The random walk can be written as Yt = Y0 +∑t
i=1 ei, where Y0 = y0 is often a constant.

A stochastic process {N(t) : t ≥ 0} is a counting process if N(t) counts the total number of
events that occurred in the time interval (0, t]. Let en be the interarrival time or waiting time
between the (n− 1)th and nth events counted by the process, n ≥ 1. If the nonnegative ei
are iid with P(ei = 0) < 1, then {N(t), t ≥ 0} is a renewal process. Let Yn = ∑n

i=1 ei denote
the time of occurrence of the nth event = waiting time until the nth event. Then Yn is a
random walk with Y0 = y0 = 0. Let the expected value E(ei) = µ > 0. Then E(Yn) = nµ
and the variance V(Yn) = nV(ei) if V(ei) exists. A Poisson process with rate λ is a renewal
process where the ei are iid exponential EXP(λ) with E(ei) = 1/λ. See Ross [1] for the
Poisson process and renewal process. Given Y1, . . . , Yn, then n events have occurred, and
the 1-step-ahead PI denotes the time until the next event, the 2-step-ahead PI denotes the
time until the next 2 events, and the h-step-ahead PI denotes the time for the next h events.

For forecasting, we predict the test data Yn+1, . . . , Yn+L using the past training data
Y1, . . . , Yn. A large sample 100(1− δ)% prediction interval for Yn+h is [Ln, Un], where the
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coverage P(Ln ≤ Yn+h ≤ Un) = 1− δn is eventually bounded below by 1− δ as n → ∞.
We often want 1− δn → 1− δ as n→ ∞. A large sample 100(1− δ)% PI is asymptotically
optimal if it has the shortest asymptotic length: the length of [Ln, Un] converges to Us − Ls
as n → ∞, where [Ls, Us] is the population shorth: the shortest interval covering at least
100(1− δ)% of the mass.

The shorth estimator of the population shorth will be defined as follows. If the
data are Z1, . . . , Zn, let Z(1) ≤ · · · ≤ Z(n) be the order statistics. Let dxe denote the
smallest integer greater than or equal to x (e.g., d7.7e = 8). Consider intervals that con-
tain c cases [Z(1), Z(c)], [Z(2), Z(c+1)], . . . , [Z(n−c+1), Z(n)]. Compute Z(c) − Z(1), Z(c+1) −
Z(2), . . . , Z(n) − Z(n−c+1). Then the estimator shorth(c) = [Z(s), Z(s+c−1)] is the interval
with the shortest length.

For a large sample 100(1− δ)% PI, the nominal coverage is 100(1− δ)%. Undercov-
erage occurs if the actual coverage is below the nominal coverage. For example, if the
actual coverage is 0.93 when n = 100, then for a large-sample 95% PI, the undercoverage is
0.02 = 2%. Suppose the data Z1, . . . , Zn are iid, and a large sample 100(1− δ)% PI is desired
for a future value Z f . The shorth(c) interval is a large sample 100(1− δ)% PI if c/n→ 1− δ
as n → ∞, which often has the asymptotically shortest length. Frey [2] showed that
for large nδ and iid data, the shorth(kn = dn(1− δ)e) prediction interval has maximum
undercoverage ≈ 1.12

√
δ/n, and uses the large sample 100(1− δ)% PI shorth(c) =

[Ln, Un] = [Z(s), Z(s+c−1)] with (1)

c = min(n, dn[1− δ + 1.12
√

δ/n ] e).

The shorth PI (1) often has good coverage for n ≥ 50 and 0.05 ≤ δ ≤ 0.1, but the
convergence of Un − Ln to the population shorth length Us − Ls can be quite slow. Under
regularity conditions, Grübel [3] showed that for iid data, the length and center of the
shorth(kn) interval are

√
n-consistent and n1/3-consistent estimators of the length and

center of the population shorth interval, respectively. The correction factor also increases
the length of PI (1). Einmahl and Mason [4] provides large sample theory for the shorth
under slightly milder conditions than Grübel [3]. Chen and Shao [5] shows that the shorth
PI converges to the population shorth under mild conditions for ergodic data.

The large sample 100(1− δ)% shorth PI (1) may or may not be asymptotically optimal
if the 100(1 − δ)% population shorth is [Ls, Us] and the cumulative distribution func-
tion (cdf) F(x) does not strictly increase in intervals (Ls − ε, Ls + ε) and (Us − ε, Us + ε)
for some ε > 0. Suppose that Y has a probability mass function (pmf) p(0) = 0.4,
p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and p(4) = 0.04. Then, the 90% population
shorth is [0,2] and the 100(1− δ)% population shorth is [0,3] for (1− δ) ∈ (0.9, 0.96]. Let
Wi = I(Yi ≤ x) = 1 if Yi ≤ x and 0, otherwise. The empirical cdf

F̂n(x) =
1
n

n

∑
i=1

I(Yi ≤ x) =
1
n

n

∑
i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, . . . , Yn are iid, then for fixed x, nF̂n(x) ∼
binomial(n, F(x)). Thus, F̂n(x) ∼ AN(F(x), F(x)(1− F(x))/n) where AN stands for asymp-

totically normal. For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P(F̂n(2) <

0.9) → 0.5 and P(F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence, the large sample 90% PI (1) will
be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with an expected asymptotic length
of 2.5 and expected asymptotic coverage converging to 0.93. However, the large sam-
ple 100(1− δ)% PI (1) converges to [0,3] and is asymptotically optimal with asymptotic
coverage 0.96 for (1− δ) ∈ (0.9, 0.96).

To describe the Olive [6] nonparametric prediction region, Mahalanobis distances will
be useful. Let the p× 1 column vector T be a multivariate location estimator, and let the
p× p symmetric positive definite matrix C be a dispersion estimator. Then the ith squared
sample Mahalanobis distance is the scalar
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D2
i = D2

i (T, C) = D2
wi

(T, C) = (wi − T)TC−1(wi − T) (2)

for each observation wi, where i = 1, . . . , n. Notice that the Euclidean distance of wi from
the estimate of center T is Di(T, Ip), where Ip is the p× p identity matrix. The classical
Mahalanobis distance Di uses (T, C) = (w, S), the sample mean, and sample covariance
matrix, where

w =
1
n

n

∑
i=1

wi and S =
1

n− 1

n

∑
i=1

(wi −w)(wi −w)T. (3)

Consider predicting a future test value w f , given past training data w1, . . . , wn, where
w1, . . . , wn, w f are iid. Prediction intervals denote a special case of prediction regions with
p = 1 so the wi are random variables.

A large sample 100(1− δ)% prediction region is a set An, such that P(w f ∈ An) ≥
1− δ asymptotically. A prediction region is asymptotically optimal if its volume converges
in probability to the volume of the minimum volume covering region or the highest-density
region of the distribution of w f .

Like prediction intervals, prediction regions often need correction factors. For iid
data from a distribution with a p× p nonsingular covariance matrix, it was found that the
simulated maximum undercoverage of the prediction region (5) without the correction
factor was about 0.05 when n = 20p. Hence, the correction factor (4) is used to provide
better coverage for small n. Let qn = min(1− δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δp/n), otherwise. (4)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let D(Un) be the 100qnth sample
quantile of the Di, where i = 1, . . . , n.

The large sample 100(1− δ)% nonparametric prediction region for a future value w f
given iid data w1, . . . , wn is

{z : (z−w)TS−1(z−w) ≤ D2
(Un)
} = {z : D2

z(w, S) ≤ D2
(Un)
}. (5)

The nonparametric prediction region is a large sample prediction region if the iid
wi have a nonsingular covariance matrix, and is asymptotically optimal for a large class
of elliptically contoured distributions, including multivariate normal distributions with
nonsingular covariance matrices. Regions with smaller asymptotic volumes can exist if
the distribution is not elliptically contoured. From Olive [7], simulated coverage was often
near the nominal for n ≥ 20p, but simulated volumes behaved better for n ≥ 50p. The
shorth PIs do not need the mean or variance of the et to exist.

There are many prediction intervals and regions in the literature. See Beran [8],
Fontana, Zeni, and Vantini [9], Guan [10], Olive [11], Steinberger and Leeb [6], Tian [7],
Nordman [12], and Meeker [13], for references. The new prediction regions can be used
for distributions that do not have an expected value if appropriate (T, C) is used, e.g.,
(T, C) = (MED(W), Ip), where MED(W) is the coordinate-wise median. Olive [14] and
Lei et al. [15] use data splitting to obtain prediction intervals for the multiple linear
regression model.

Prediction regions have some nice applications besides prediction. Applying a predic-
tion region to data generated from a posterior distribution provides an estimated credible
region for Bayesian Statistics. See Chen and Shao [5]. Certain prediction regions ap-
plied to a bootstrap sample result in a confidence region. See Rajapaksha and Olive [16],
Rajapaksha [17], and Olive [18]. Mykland [19] converts prediction regions into invest-
ment strategies.

New data-splitting prediction regions that do not need the nonsingular covariance
matrix to exist are provided in Section 2.1, Section 2.2 describes the prediction intervals
and regions for the random walk, while Section 3 presents two examples and simulations.
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2. Materials and Methods
2.1. A Data-Splitting Prediction Region

Some of the new data-splitting prediction regions, described in this section, can handle
εi from a distribution where the population mean does not exist. Data splitting divides the
training data x1, . . . , xn into two sets: H and the validation set V, where H has nH of the
cases and V has the remaining nV = n− nH cases i1, . . . , inV . A common method of data
splitting randomly divides the training data into two sets, H and V. Often, nH ≈ dn/2e.

The estimator (TH , CH) is computed using dataset H. Then, the squared validation
distances D2

j = D2
xij

(TH , CH) = (xij − TH)
TC−1

H (xij − TH) are computed for the j =

1, . . . , nV cases in the validation set V. Let D2
(UV)

be the UVth order statistic of the D2
j , where

UV = min(nV , d(nV + 1)(1− δ)e). (6)

The new large sample 100(1− δ)% data-splitting prediction region for x f is

{z : D2
z(TH , CH) ≤ D2

(UV)
}. (7)

To show that (7) is a prediction region, suppose the xi are iid for i = 1, . . . , n, n + 1,
where x f = xn+1. Compute (TH , CH) from the cases in H. Consider the squared validation
distances D2

k for k = 1, . . . , nV and the squared validation distances D2
nV+1 for case x f .

Since these nV + 1 cases are iid, the probability that D2
t has rank j for j = 1, . . . , nV + 1 is

1/(nV + 1) for each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV + 1
and let D2

(j) denote the ordered squared validation distances using j = 1, . . . , nV . That
is, we obtain the order statistics without using the unknown squared validation distance
D2

nV+1. Then D2
(i) has rank i if D2

(i) < D2
nV+1 but rank i + 1 if D2

(i) > D2
nV+1. Thus, D2

(UV)

has rank UV + 1 if D2
x f

< D2
(UV)

and

P(x f ∈ {z : D2
z(TH , CH) ≤ D2

(UV)
}) = P(D2

x f
≤ D2

(UV)
) ≥ UV/(1 + nV)→

1− δ as nV → ∞. If there are no tied ranks, then

P(D2
x f
≤ D2

(UV)
) = P(D2

x f
< D2

(UV)
) = P(rank of D2

xf
≤ UV) = UV/(1 + nV).

Note that we can obtain the actual coverage UV/(1 + nV) close to 1− δ for nV ≥ 20
for δ = 0.05 even if (TH , CH) is a bad estimator. The volume of the prediction region tends
to be much larger than that of the highest density region, even if CH is well-conditioned.
We likely need UV ≥ 50 for D2

(UV)
to approximate the population percentile of D2

j =

(xij − TH)
TC−1

H (xij − TH).
The above prediction region coverage theory does not depend on dimension p as long

as C is nonsingular. If C = Ip or C = diag(S2
1, . . . , S2

p), then the prediction region (7) can be
used for high-dimensional data, where p > n. Regularized covariance matrices or precision
matrices could also be used.

2.2. Prediction Intervals and Regions for the Random Walk

To our knowledge, asymptotically optimal nonparametric prediction intervals for the
random walk have not previously been proposed. The nonparametric prediction regions
described in this section may be the first ones proposed for vector-valued random walks,
and are asymptotically optimal if the εi = εi,h are iid from a large class of elliptically
contoured distributions. The random walk with drift is an AR(1) model with unit root
and an ARIMA(0,1,0) model since Yt − Yt−1 = et. Parametric prediction intervals are
given by Niwitpong and Panichkitkosolkul [20] and Panichkitkosolkul and Niwitpong [21].
Wolf and Wunderli [22] considers time series prediction regions for (Yn+1, . . . , Yn+L)

T .
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Parametric prediction regions have been given for vector autoregression (VAR) models.
See Kim [23,24] for details and references.

The new prediction intervals and regions for random walks are simple. First, consider
the random walk Yt = Yt−1 + et, where et are iid. Find the εi for i = 1, . . . , m = bn/hc.
Assume n ≥ 50h and let [L, U] be the shorth(c) PI (1) for a future value of ε f based on
ε1, . . . , εm with m ≥ 50. Then, the large sample 100(1− δ)% PI for Yn+h is [Yn + L, Yn + U].
This PI tends to be asymptotically optimal as along as et are iid. This PI is equivalent to
applying the shorth(c) PI (1) on Yn + ε1, . . . , Yn + εm.

For the vector-valued random walk Y t = Y t−1 + et, find ε1,h, . . . , εm,h. The nonpara-
metric 100(1− δ)% prediction region for a future value ε f ,h is

{z : (z− ε)TS−1
h (z− ε) ≤ D2

(Um)} = {z : D2
z(ε, Sh) ≤ D2

(Um)} (8)

where Sh is the sample covariance matrix of the εi,h and D2
i = (εi,h − ε)TS−1

h (εi,h − ε). This
prediction region is a hyperellipsoid centered at the sample mean ε. The following large
sample 100(1− δ)% prediction region for Yn+h shifts the hyperellipsoid (8) to be centered
at Yn + ε:

{z : [z− (Yn + ε)]TS−1
h [z− (Yn + ε)] ≤ D2

(Um)}. (9)

Since Yn+h has the same distribution as Yn + ε f ,h, P(Yn+h ∈ (9)) = P(ε f ,h ∈ (8)) = 1− δn,
which is bounded below by 1− δ, asymptotically. The prediction region (9) is equivalent to
applying the nonparametric prediction region (5) to Yn + ε1,h, . . . , Yn + εm,h. The prediction
region (9) is similar to the Olive [7] prediction region for the multivariate regression model.

Given that the εi = εi,h are iid, alternative prediction intervals and regions, such as
those in Sections 2.1 or Hyndman [25] for small p, could be used.

3. Results

Example 1. Common examples of random walks are stock prices. The EuStockMarkets dataset,
available from the R software, is a multivariate time series with 1860 observations on 4 variables.
The observations are the daily closing prices of major European stock indices: Germany DAX,
Switzerland SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e., weekends
and holidays are omitted. If we consider Yt = DAX, the plot of the random walk et = Yt −Yt−1 is
rectangular around the e = 0 line for cases 1–1460. Cases 1461–1800 scatter about the e = 0 line,
but have much more variability (not shown, but see Figure 9.1 in Haile [26]). Let cases 1–1450 be
the training data, and let cases 1451–1460 be the test data. Figure 1 shows a plot of Yt−1 versus Yt
on the vertical axis for t = 2 to 1450. The two parallel lines correspond to the one-step-ahead 95%
prediction intervals, which cover slightly more than 95% of the training data.

Example 2. The Wisseman, Hopke, and Schindler-Kaudelka [27] pottery data consist of a chemical
analysis of pottery shards. The dataset has 36 cases and 5 groups corresponding to types of pottery
shards. The variables x1, . . . , x20 correspond to the p = 20 chemicals analyzed. Consider the
n = 18 group 1 cases where the pottery shards are Arretine, which is a type of Roman pottery. We
randomly select case 4 from group 1 to be x f and compute the 88.89% data-splitting prediction
region with the remaining 17 cases, nV = 8, and (T, C) = (MED(W), Ip), where MED(W) is
the coordinate-wise median computed from the 9 cases in H. The cutoff is D2

(UV)
= 612.2, and

D2(x f ) = 353.8. Hence, x f is in the 88.89% prediction region. Next, we make x f equal to each of
the 36 cases. Then, 8 cases x f are not in the above prediction region, including 7 of the 18 cases that
are not from group 1.

The remainder of this section presents simulations for the prediction intervals and
regions. More simulations and tables are presented in Haile [26]. With 5000 runs, coverages
between 0.94 and 0.96 suggest that there is no reason to believe that the nominal coverage
is not 0.95.
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Figure 1. PI plot of the DAX dataset.

A small random walk simulation is conducted for the large-sample 95% PIs us-
ing 5000 runs with Y0 = 1. The errors et are iid from four distributions: (i) N(1,1),
(ii) Cauchy (1,1), (iii) EXP (1), and (iv) uniform (0, 2). Only distribution (iii) is not symmetric.
We compute the h-step-ahead 95% PIs for h = 1, 2, 3, 4 = L. We want n ≥ 50L, but simula-
tions may use smaller n, such as n = 25L. The asymptotic optimal lengths are (i) 3.92, 5.54,
6.79, 7.84, (ii) 25.41, 50.82, 76.24, 101.65, (iii) 3.00, 4.72, 6.11, 7.22, (iv) 1.90, 3.11, 3.87, 4.48.

Let the population forecast error be e(h). For type 1, the asymptotic optimal lengths
of the large-sample 95% PIs are 3.92

√
h, where e(h)∼N(h, σ2 = h). For type 2, e(h)∼

C(h, σ = h) denotes a Cauchy distribution. For type 3, e(h)∼G(h, 1) denotes a Gamma
distribution. For type 4, e(2)∼triangular (0,4). The distribution of the sum of n iid U (0,1)
random variables is known as the Irwin–Hall distribution. See Gray and Odell [28],
Marengo, Farnsworth, and Stefanic [29], and Roach [30].

The results are shown in Table 1. We roughly need n ≥ 50 h for good coverage.
Thus, n = 100 is too small for the h-step-ahead PIs with h = 3 and h = 4. The Cauchy
distribution requires large n before the average PI lengths get close to the asymptotically
optimal lengths. Two lines are given for each distribution–sample size combination. The
first line provides the coverages while the second line provides the average PI lengths with
the standard deviation of the lengths in parentheses. The coverage denotes the proportion
of the 5000 PIs that contain the test data case Yf = Yf i for i = 1, . . . , 5000. The last two
lines of Table 1 correspond to the uniform (0,2) distribution with n = 800. The h = i
label corresponds to the i-step-ahead 95% prediction interval with i = 1, 2, 3 and 4. The
coverages are near 0.95 and the simulated average lengths (1.9014, 3.1666, 3.9651, 4.6357)
are near the asymptotically optimal lengths (1.90, 3.11, 3.87, 4.48).
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Table 1. Random walk 95% PI, parentheses:sd (length).

n dist h = 1 h = 2 h = 3 h = 4

100 N 0.9528 0.9578 0.9456 0.9220
100 4.1683 (0.3923) 6.3504 (0.9390) 7.2516 (1.2066) 7.8247 (1.4372)
100 C 0.9606 0.9656 0.9472 0.9262
100 47.33 (39.38) 1075.43 (41,234.9) 1079.36 (41,233.0) 1065.19 (41,233.7)
100 EXP 0.9552 0.9562 0.9408 0.9242
100 3.6615 (0.6325) 6.3141 (1.4891) 7.1391 (1.6336) 7.6647 (1.8121)
100 U 0.9486 0.9584 0.9408 0.9212
100 1.9023 (0.0408) 3.2878 (0.2577) 3.9791 (0.5093) 4.4074 (0.6977)
400 N 0.9526 0.9506 0.9556 0.9508
400 4.0646 (0.1868) 5.7753 (0.3813) 7.2431 (0.6028) 8.3282 (0.7921)
400 C 0.9600 0.9622 0.9654 0.9632
400 32.7277 (8.3139) 71.7138 (28.29) 133.9884 (79.20) 188.3578 (146.52)
400 EXP 0.9582 0.9598 0.9602 0.9578
400 3.3131 (0.2598) 5.1497 (0.4369) 6.7619 (0.6877) 7.9367 (0.8970)
400 U 0.9542 0.9534 0.9568 0.9558
400 1.9028 (0.0193) 3.1602 (0.1268) 4.0569 (0.2564) 4.7092 (0.3808)
800 N 0.9514 0.9520 0.9536 0.9514
800 4.0205 (0.1334) 5.7498 (0.2720) 7.0086(0.4012) 8.1579 (0.5338)
800 C 0.9520 0.9550 0.9516 0.9522
800 29.7122 (4.9301) 65.2292 (16.21) 98.9266 (31.08) 144.3277 (57.72)
800 EXP 0.9564 0.9550 0.9518 0.9596
800 3.2000 (0.1727) 5.0514 (0.3100) 6.4202 (0.4333) 7.6747 (0.5787)
800 U 0.9506 0.9522 0.9522 0.9518
800 1.9014 (0.0132) 3.1666 (0.0908) 3.9651 (0.1835) 4.6357 (0.2693)

A small vector-valued random walk simulation is also done for the large-sample 95%
prediction regions using 5000 runs. We use distributions with nonsingular population
covariance matrices. Let ut = (ut1, . . . , utp)T where uti are iid from type (1) N(1, 1), (2) 1 +
t5, (3) EXP(1), or (4) U(0,2) distribution. Then et = Aut, where p× p matrix A = (aij) with
the diagonal elements aii = 1, and aij = ψ for i 6= j.

Table 2 shows some results from when p = 8, giving the coverages. We roughly need
n ≥ 20ph to obtain good coverage near 0.95. Thus, n = 400 is too small for p = 8 with h = 3
or h = 4, although undercoverage is small for h = 3. Note that εt = (ε1t, . . . , ε8t)

T . Value
ψ = 0 makes the εit uncorrelated. Increasing ψ increases the correlation ρ = cor(εit, εjt),
where i 6= j. The prediction regions are hyperellipsoids, which have volumes (not given),
instead of lengths.

Table 2. Random walk 95% prediction regions, p = 8.

n ψ Type h = 1 h = 2 h = 3 h = 4

400 0 1 0.9426 0.9438 0.9370 0.9214
400 0 2 0.9490 0.9502 0.9444 0.9270
400 0 3 0.9466 0.9530 0.9476 0.9392
400 0 4 0.9416 0.9446 0.9388 0.9216
400 0.354 1 0.9514 0.9446 0.9456 0.9186
400 0.354 2 0.9450 0.9572 0.9460 0.9290
400 0.354 3 0.9556 0.9546 0.9496 0.9314
400 0.354 4 0.9416 0.9412 0.9340 0.9182
400 0.9 1 0.9484 0.9462 0.9424 0.9198
400 0.9 2 0.9524 0.9502 0.9480 0.9310
400 0.9 3 0.9482 0.9576 0.9546 0.9392
400 0.9 4 0.9458 0.9376 0.9346 0.9228
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Table 2. Cont.

n ψ Type h = 1 h = 2 h = 3 h = 4

800 0 1 0.9458 0.9450 0.9460 0.9484
800 0 2 0.9516 0.9554 0.9514 0.9506
800 0 3 0.9494 0.9508 0.9480 0.9544
800 0 4 0.9432 0.9408 0.9438 0.9418
800 0.354 1 0.9456 0.9464 0.9478 0.9450
800 0.354 2 0.9474 0.9550 0.9540 0.9488
800 0.354 3 0.9534 0.9516 0.9532 0.9536
800 0.354 4 0.9494 0.9466 0.9480 0.9518
800 0.9 1 0.9436 0.9482 0.9478 0.9450
800 0.9 2 0.9500 0.9494 0.9512 0.9514
800 0.9 3 0.9552 0.9520 0.9514 0.9484
800 0.9 4 0.9474 0.9450 0.9494 0.9464
1600 0 1 0.9506 0.9516 0.9476 0.9464
1600 0 2 0.9522 0.9534 0.9532 0.9514
1600 0 3 0.9496 0.9530 0.9524 0.9522
1600 0 4 0.9418 0.9428 0.9414 0.9430
1600 0.354 1 0.9506 0.9472 0.9504 0.9502
1600 0.354 2 0.9440 0.9520 0.9488 0.9502
1600 0.354 3 0.9506 0.9572 0.9574 0.9570
1600 0.354 4 0.9488 0.9418 0.9444 0.9462
1600 0.9 1 0.9510 0.9496 0.9476 0.9458
1600 0.9 2 0.9492 0.9500 0.9532 0.9474
1600 0.9 3 0.9524 0.9558 0.9548 0.9540
1600 0.9 4 0.9450 0.9508 0.9452 0.9500

Simulations for the data-splitting prediction region.
The theory for the new prediction regions is simple; thus, Table 3 serves more as a

verification that the programs work than a test of the theory itself. See Zhang [31] for
more simulations. The output variables include cov = observed coverage, up = ≈ actual
coverage, and mnhsq = mean cutoff D2

(UV)
. With 5000 runs, expect observed coverage

∈ [0.94, 0.96] if the actual coverage is close to 0.95. The random vector is x = Aw, where
x = w ∼ Np(0, Ip) for xtype = 3, and x ∼ Np(0, diag(1, . . . , p)) for xtype = 1. For xtype = 2,
w has the wi iid lognormal(0,1) with A = diag(1,

√
2, . . . ,

√
p). The dispersion matrix types

are dtype = 1 if (T, C) = (x, Ip) and dtype = 2 if (T, C) = (MED(W), Ip), where MED(W)
is the coordinate-wise median of the xi.

Table 3. Data-splitting nominal 95% prediction region.

n p nv xtype dtype cov

50 100 20 1 1 0.9560
50 100 20 2 1 0.9466
50 100 20 3 1 0.9504
50 100 20 1 2 0.9558
50 100 20 2 2 0.9508
50 100 20 3 2 0.9522
100 100 50 1 1 0.9620
100 100 50 2 1 0.9622
100 100 50 3 1 0.9596
100 100 50 1 2 0.9638
100 100 50 2 2 0.9578
100 100 50 3 2 0.9638
100 100 25 1 1 0.9588
100 100 25 2 1 0.9658
100 100 25 3 1 0.9568
100 100 25 1 2 0.9622
100 100 25 2 2 0.9672
100 100 25 3 2 0.9662
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When xtype = 3 and dtype = 1, (T, C) = (x, Ip), where xi ∼ Np(0, Ip). Then D2
(UV)

should estimate the population percentile χ2
p,0.95 if n ≥ max(20p, 200) and nV = 100. This

result did occur in the simulations.
Table 3 gives n, p, nV , a number ‘xtype’ corresponding to the distribution of x, and a

number ‘dtype’ corresponding to (T, C) used in the prediction region (7). High-dimensional
data were used since p ≥ n. With nV = 20, the actual coverage is 20/21 = 0.9524; nV = 25
has actual coverage of 25/26 = 0.9615, and nV = 50 has actual coverage of 49/51 = 0.9608.
The observed coverages are close to the actual coverages in Table 3.

4. Discussion

The new nonparametric, asymptotically optimal h-step-ahead prediction intervals for
the random walk appear to perform well if n ≥ 50h. The new nonparametric h-step-ahead
95% prediction regions for the vector-valued random walk appear to have coverages near
0.95 for n ≥ 20ph. The new nonparametric prediction regions are fast, with simple theory,
and have coverage ≥ min(nV , d(nV + 1)(1− δ)e)/(nV + 1).

Datasets where future data do not behave like past data are common, and then the
prediction intervals and regions tend to perform poorly. In Example 1, cases 1–1460 appear
to follow one random walk, while cases 1461–1800 follow another random walk with more
variability.

Some prediction intervals for stochastic processes include Pan and Politis [32], Vi-
doni [33], and Vit [34]. Makridakis et al. [35] noted that a PI for the random walk, derived
assuming normal errors, often failed to give good coverage. Pankratz [36] noted that the
random walk model has been found to be a good model for many stock price time series.

Conformal prediction gives precise levels of coverage for one future observation,
and prediction region (7) is a conformal prediction region that can have large volume.
As an example, consider using (T, C) = (MED(W), Ip). Then the prediction region is
a hypersphere centered at the coordinate-wise median. The prediction region is good if
the iid wi ∼ Np(µ, σ2 Ip), but if wi ∼ Np(µ, Σ), such that the highest density region is a
hyperellipsoid tightly clustered around a vector in the direction of 1 = (1, 1, . . . , 1)T , then
the prediction region (7) has large volume compared to the highest density region.

There are many methods where prediction is useful. For example, Garg, Aggarwal,
et al. [37] used support vector machines while Garg, Belarbi, et al. [38] used Gaussian
process regression. Olive [7] shows how to obtain prediction intervals when the model is
Yi = m(xi) + ei if the errors are iid. If heterogeneity is present, and there are enough cases
xi with m̂(xi) near m̂(x f ), we make a prediction interval using Yi corresponding to the xi.
Graphically, in a plot of m̂(xi) versus Yi (on the vertical axis), we make a narrow vertical
slice centered at m̂(x f ), and then make the PI from the Yi in the slice.

Plots and simulations were conducted in R. See R Core Team [39]. Programs are in the
collection of functions tspack.txt. See (http://parker.ad.siu.edu/Olive/tspack.txt), accessed
on 15 December 2023. Tables 1 and 2 used functions rwpisim and rwprsim for random walk
simulations. Function predsim2 simulates the data-splitting prediction region for Table 3.
Function predrgn2 computes the prediction region (7) using (T, C) = (MED(W), Ip). The
pottery data are available from (http://parker.ad.siu.edu/Olive/sldata.txt), accessed on 15
December 2023.
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