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Abstract

This Supplement contains three Sections: First we discuss some miscellaneous issues

like the notation in survey sampling, sample size requirements for approximation by nor-

mality, and bootstrap procedures for �nite populations. This is followed by a Section

that revisits the considered estimators with their properties and variance estimators

employed in the main article. Finally, the third Section presents a simulation study for

complex indicators in domains with moderate and small samples. We see there that

again the max-type statistic approach yields a dramatic improvement compared to the

classical ones. However, for the considered sample sizes it would still be recommend-

able to switch to mixed model-based methods, i.e. the so-called small area estimation

techniques.

Keywords: domain estimation; simultaneous con�dence intervals; uniform inference;

comparative statistics

1 Miscellaneous: Notation, Normal approximation, and

Bootstrap for �nite populations

1.1 Notations in Survey Sampling

This Section provides a brief introduction to the used notation, and to some principles of
design-based estimation; for more details you may consult (Cochran, 1977; Fuller, 2009;
Tillé, 2020). Recall that we are interested in estimating θd, depending on observations yk,
for all domains d in a �nite population U � t1, . . . , k, . . . , Nu with N subjects. Population
U is partitioned into D domains, say Ud, from which we select a random sample S. Direct
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estimators for θd only use the observations made in domain d, i.e. subsamples denoted by
sd � s

�
Ud with sampling size nd, where s is the realized sample of size n �

°D
d�1 nd, i.e. a

speci�c realization of S.

A sampling design pp�q is a probability distribution on S � ts : s � Uu such that ppsq ¥ 0 for
all s P S and

°
sPS ppsq � 1. The following notation and assumption is somewhat unusual in

other �elds of statistics: While sample S is considered to be a multivariate random variable,
each yk is constant. Instead, for each unit k in the population, one denotes by Ik a random
variable indicating its inclusion in the sample, and by πk its �rst order inclusion probability,
i.e. the probability that unit k is selected:

πk � Ppk P Sq � EpIkq �
¸

sPS:sQk
ppsq.

Similarly, one denotes by πkℓ the probability that units k and ℓ are selected together:

πkℓ � Ppk P S and ℓ P Sq � EpIkIℓq �
¸

sPS:sQk,ℓ
ppsq,

where πkℓ is called the second order (inclusion) probability with πkk � πk. An important
quantity for variance estimation, see Section 2, is the covariance between two indicator
variables Ik and Iℓ:

∆kℓ :� Cov pIk, Iℓq � E pIkIℓq � E pIkqE pIℓq � πkℓ � πkπℓ , ∆kk :� πk � π2
k � πkp1� πkq.

In the main article the considered parameter θd is the total of all yk in domain d, denoted
as Yd with its mean Ȳd.

1.2 Sample Size for Normality Approximation

In the main article, a major reason for the failure of classical approaches for simultaneous
inference methods like Bonferroni and �Sidák correction is the poor distributional approxima-
tion by normality or Student's t. Clearly, there must be a relation between the distribution
of the original variable Y in the population, the complexity of the parameter and its estima-
tor θ̂d, and �nally the sample size nd. The question we brie�y discuss in this subsection is:
What does the literature say about the sample size to rely on a normality approximation?

The problem is that practical rules will ignore that θ̂d prevents us from linking the distribu-
tion of Y directly to nd. Yet, like in the main article we can limit our considerations here
to parameters that are just linear combinations of the yk, like for instance the total Yd and
the mean Ȳd. Consequently, it should be su�cient to look at the literature discussing the
estimation of the mean. For such a problem, di�erent authors have proposed di�erent rules
to determine an appropriate sample size for making the normal approximation work. We
only sketch here a few of them. Not surprisingly, the all relate the sample size to higher
orders of the underlying distribution.

More speci�cally, Cochran (1977) recommends to apply the rule nd ¡ 25G2
1 @d, where

G1 :�
1

Nσ3
y

¸
kPU

pyk � ȳq3, (or where appropriate, for Nd, Ud, etc.)
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is a measure of skewness, and σy the standard deviation of ty1, . . . , yNu. It is said that this
rule could be applied whenever the sample distribution is positively skewed.

Similarly, Dalén (1986) modi�es this rule concentrating on the α-quantiles, suggesting s a
consequence to take nd ¡ KαG

2
2, where

G2 :�
1

Nσ3
y

¸
kPU

|yk � ȳ|3

is the standardized absolute third moment of the population, and Kα a constant depending
on α, see his article for more details.

Sugden et al. (2000) propose other re�nements of Cochran (1977) that are independent of
the α quantiles. One of these re�nements re�nement is nd ¡ 28 � 25G2

1, i.e. to add the
constant 28 which results from some higher order approximations.

Recalling the problem considered in our main article, any of these rules if employed, would
have to be applied to all domains. Unfortunately, we would need then to �nd for each domain
estimators for G1 or G2, potentially together with an adequate Kα. While already this is
typically unfeasible, in some domains sample sizes or even population sizes may be smaller
than the required (or say, suggested) sample size(s). All together, this may render these
methods little helpful in practice.

1.3 Bootstrap for Finite Population

As explained in the main article, we cannot use any of the bootstrap methods proposed in
the papers Reluga et al. (2023a,b), since they were made for mixed e�ects regression models.
In contrast, we need a bootstrap method that directly resamples from the yk and accounts
for the fact that we consider �nite populations.

Admittedly, there exist various suggestions for bootstrapping in �nite populations, although
in di�erent contexts, and developed for other purposes. For general reviews on bootstrap
methods for �nite populations see Gross (1980); Booth et al. (1994). Further, Rao et al.
(1992) considered procedures for complex survey and multi-stage sampling designs that
rescaled the sampling weights, while Antal and Tillé (2011) proposed a so-called direct
bootstrap for complex designs.

In our main article we follow Chauvet (2007): he recommends that for a low sampling rate
f � n{N , with n being the overall sample size and N the population size, one should use
a method derived in Gross (1980); for larger sampling rates one should use the method of
Booth et al. (1994). Consequently, in our main article we apply the former for sampling rate
f � 1{6 and the latter for f � 2{3. Where necessary, these methods are adapted to each
particular estimator considered; keep in mind that we are studying di�erent estimators for
the estimation of the domain parameters θd, d � 1, ..., D.

The bootstrap procedure works generally as follows: The algorithms for �nite populations
aim to construct a pseudo-population U� from a sample S taken from population U ��D

d�1 Ud, or more precisely from its realisation s. From U� one draws B samples Sb, b �
1, . . . , B with the same sampling design as one had for S. Then a bootstrap analogue of
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θ̂, i.e. θ̂�b , is computed from each sample Sb. From the bootstrap estimates one obtains an

empirical bootstrap distribution F �

θ̂
of θ̂.

The speci�c resampling procedure is one of the following two, designed for small, respectively
large sampling rates f : Our procedures construct pseudo-populations U� by replicating the
sampled data. Gross (1980) proposes to replicate each observation in S exactly p � rN{ns
times to obtain U�, whereas Booth et al. (1994) proposes to replicate each observation in
S only p � rN{n � 0.5s times, and to add a random subsample of S of size r � N � np to
obtain U�. Clearly, the former bootstrap population is of size np, whereas the latter is of
size N . For the statistical properties of these, or to learn more about alternative methods,
you may consult Chauvet (2007).

2 Revisiting Direct and Indirect Domain Estimators and

Their Properties

2.1 Direct Estimators

Even though the de�nitions of the considered estimators are already given in the main article,
for the ease of reading and presentation we list them here again, this time together with their
statistical properties.

Recall that the Horvitz-Thompson estimator pθ̂dq of the domain total θd � Yd is

Ŷ ht
d :�

¸
kPsd

yk
πk

(2.1)

and similarly ˆ̄Y ht
d � N�1

d Ŷ ht
d for the mean withNd the domain size. Both are design unbiased,

EpŶ ht
d q � Yd. Their variance and covariance(s) can be estimated by

yVar�Ŷ ht
d

�
�
¸
kPsd

¸
ℓPsd

∆kℓykyℓ
πkℓπkπℓ

, yCov�Ŷ ht
d , Ŷ ht

d1

�
�
¸
kPsd

¸
ℓPsd1

∆kℓykyℓ
πkℓπkπℓ

. (2.2)

When auxiliary variables xk P Rp, p ¥ 1 are available, the direct-GREG estimator assisted
by the regression model with errors ϵkd is de�ned as

ykd � xJkdβd � ϵkd, Var pϵkdq � σ2
kd, (2.3)

where βd is a parameter vector associated with domain Ud, typically estimated by

β̂d �

�¸
kPsd

xkx
J
k

πk

��1�¸
kPsd

xkyk
πk

�
. (2.4)

Then, for ŷkd � xJkdβ̂d and residuals ekd � ykd � ŷkd, the direct-GREG is

Ŷ dgreg
d :�

¸
kPUd

ŷk �
¸
kPsd

ek
πk

� Ŷ ht
d � pXd � X̂ht

d q
Jβ̂d, (2.5)
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where Xd is the vector of true domain totals for each auxiliary variable, and X̂ht
d its Horvitz-

Thompson estimator. Note that it is not necessary to know xk for each unit in the population;
the (true) totals and their values for the observed sample are su�cient. This is certainly due
to the linear form of (2.3), it cannot be gerenalised that easily to more complex models.

The variance of the direct-GREG estimator can be approximated by Taylor's linearization
which in turn can be estimated by

yVar �Ŷ dgreg
d

�
�
¸
kPsd

¸
ℓPsd

ekeℓ∆kℓ

πkπℓπkℓ

. (2.6)

An alternative variance estimator was given in Särndal et al. (1989) who used the g-weights,

gk :� Idk � IdkpXd � X̂ht
d q

J

�¸
kPsd

xkx
J
k

πk

��1

xk,

where Idk denotes the domain indicator. The resulting estimator is

yVar2 �Ŷ dgreg
d

�
�
¸
kPsd

¸
ℓPsd

gkekgℓeℓ∆kℓ

πkπℓπkℓ

. (2.7)

In practice the latter (alternative) is often preferable, see Särndal et al. (1989) for details.

2.2 Indirect Estimators

Indirect estimators borrow strength from other domains (Ghosh and Rao, 1994). In order
to do so, we need to introduce the notion of groups that are di�erent from domains. These
groups are subsets Ug, g � 1, . . . , G, not necessarily of interest, that partition the population,

i.e.
�G

g�1 Ug � U , with Ug

�
Ug1 � H for g � g1. Typically, G is small as in our simulations

in the main article. Obviously, an estimator of a group's mean Ȳg is given by

ˆ̄Yg :�
1

N̂ht
g

¸
kPsg

yk
πk

�
Ŷ ht
g

N̂ht
g

where N̂ht
g :�

¸
kPsg

1

πk

, (2.8)

also known as the Hajek estimator of the mean (Hájek, 1971). Then, a synthetic estimator
for the total is given by the combination

Ŷ synth
d :�

Ģ

g�1

Ndg
ˆ̄Yg, (2.9)

whereNdg are the crossed population sizes between domain d and group g. The expectation is

EpŶ synth
d q �

°G
g�1NdgȲg with bias BpŶ

synth
d q �

°G
g�1NdgpȲg�Ȳdgq which is zero for Ȳg � Ȳdg.

Again, its variance can be estimated by linearization,

yVar�Ŷ synth
d

�
�

Ģ

g�1

Ģ

g1�1

NdgNdg1
yCov� ˆ̄Yg,

ˆ̄Yg1

�
, (2.10)
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where the covariance between two Hajek estimators can be estimated by

yCovpŶ ht
g , Ŷ ht

g1 q � ˆ̄Yg1
yCovpŶ ht

g , N̂ht
g1 q � ˆ̄Yg

yCovpŶ ht
g1 , N̂ht

g q � ˆ̄Yg
ˆ̄Yg1
yCovpN̂ht

g , N̂ht
g1 q

N̂ht
g N̂ht

g1

. (2.11)

A modi�cation of the synthetic estimator is the so-called post-strati�ed version. Here, instead
of using the group's mean, one uses the means in subsets Udg � Ud

�
Ug,

Ŷ psts
d :�

Ģ

g�1

Ndg
ˆ̄Ydg, where ˆ̄Ydg :�

1

N̂ht
dg

¸
kPsdg

yk
πk

with N̂ht
dg :�

¸
kPsdg

1

πk

. (2.12)

The post-strati�ed synthetic estimator is generally unbiased, see Morales et al. (2021) for
details, and performs better than the basic synthetic estimator when yk has a large variation
within groups.

A variance estimate is

yVar�Ŷ psts
d

�
�

Ģ

g�1

Ģ

g1�1

NdgNdg1
yCov� ˆ̄Ydg,

ˆ̄Ydg1

�
, (2.13)

where the covariance can be estimated by

yCovpŶ ht
dg , Ŷ

ht
dg1q � ˆ̄Ydg1

yCovpŶ ht
dg , N̂

ht
dg1q � ˆ̄Ydg

yCovpŶ ht
dg1 , N̂ht

dgq �
ˆ̄Ydg

ˆ̄Ydg1
yCovpN̂ht

dg , N̂
ht
dg1q

N̂ht
dgN̂

ht
dg1

. (2.14)

Another alternative is the so-called indirect-GREG estimator (still for the total). It can
also be considered as an indirect estimator under regression yk � xJkβ � ϵk, i.e. with a
common parameter vector β for the population instead of one for each domain (Lehtonen
and Veijanen, 2009). Similarly to the direct-GREG estimator, the regression parameter can
be estimated by

β̂ �

�¸
kPs

xkx
J
k

πk

��1¸
kPs

xkyk
πk

.

Then the indirect-GREG estimator of the total is for ŷk � xJk β̂ and ek � yk � ŷk given as

Ŷ igreg
d :�

¸
kPUd

ŷk �
¸
kPsd

ek
πk

� Ŷ ht
d �

�
Xd � X̂ht

d

	J
β̂ �

¸
kPs

gdkyk
πk

, (2.15)

where gdk :� Idk � pXht
d � X̂ht

d q
Jp
°

kPs xkx
J
k {πkq

�1.

Variance estimators for this estimator are similar to the ones for the direct-GREG estimator,
i.e. yVar �Ŷ igreg

d

�
�
¸
kPs

¸
ℓPs

ekeℓ∆kℓ

πkπℓπkℓ

, yVar2 �Ŷ igreg
d

�
�
¸
kPs

¸
ℓPs

gkekgℓeℓ∆kℓ

πkπℓπkℓ

,
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where the sums run over the entire sample (Särndal et al., 1992). If Nd is known, (2.15) can
be simpli�ed (Lehtonen and Veijanen, 2009) to

Ŷ igreg
d :�

¸
kPUd

ŷk �
Nd

N̂ht
d

¸
kPsd

ek
πk

. (2.16)

For more details about these estimators consult Morales et al. (2021); Rao and Molina (2015);
Särndal et al. (1992); Lehtonen and Veijanen (2009).

3 A Simulation Study for Poverty Indicators

3.1 Indicator and Simulation Design

In the main article we conducted simulations for estimating totals, which forms the basis of
survey sampling theory. While our �ndings should apply to all kind of linear functions of
them, often more complex estimators are considered in practice.

Here our interest is to see if our results carry over to those, and if so, to what extent.
Quite frequently used complex indicators are those related to poverty studies (Pratesi, 2016).
Although there exist many proposals in the literature, we restrict here to a generalized
measure of poverty of Foster et al. (1984) (FGT):

F pλ, γq :�
1

N

¸
kPU

�
γ � yk

γ


λ

1yk¤γ, (3.1)

where γ a given poverty line, yk a measure of income for individual k, and λ ¥ 0 a param-
eter of sensitivity: λ � 0 gives the Head Count Ratio (HCR), which is the percentage of
individuals under the poverty line, and λ � 1 gives the Poverty Gap (PG) measuring how
far the poor are from this line. Both, the HCR and PG are popular measures, as well as
the methods we study in the following, are applicable for any value λ ¡ 0. If we replace
the indicator functions by a dichotomous variable χk � 1yk¤γ it is easier to see that actually
even the HCR could be interpreted as a (special case of a) mean estimator. In this sense,
we have already examined this case in the main article. Consequently, in the following we
concentrate on the PG version of the FGT.

A direct domain estimator for the PG is obviously

F̂ ht
d p1, γq :�

1

Nd

¸
kPsd

1

πk

�
γ � ydk

γ



1ydk¤γ � P̂G

ht

d pγq. (3.2)

As it is common for complex parameters, an analytic expression of the variance is hard to
obtain. In practice one estimates the variance of PG estimators by linearization or bootstrap.
In the former case, one hopes that, among other assumptions (Deville, 1999), the variance
of a linearized variable z̃k approximates well the variance of the original estimator. In case
of the above PG estimators, one could use for instance

z̃kd �
1

Nd

��
γ � ykd

γ



1ydk¤γ �

P̂G
ht

d pγq

Nd

�
.
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Then the variance of interest is approximated by the variance of
°

kPsd
z̃kd{πk; for more

details see Verma and Betti (2011). However, today it has become much more popular to
use a bootstrap approximation of the variance. As we will use bootstrap for approximating
the critical values of the max-type statistic anyway, it is more natural to use it also here.

We next describe the data generating process applied for our simulations. A common variable
for determining any measure of poverty is the (logarithm of) wage of individuals or households
since the alternative 'expenditures' is typically much harder to measure. To generate some
income observations, consider the popular Mincer earnings function (Mincer, 1958, 1974)
with a synthetic population of individuals with wages:

logwkd � logw0 � β1edkd � β2exkd � β3ex
2
kd � ud � ϵkd, k � 1, . . . , Nd, d � 1, . . . , D, (3.3)

where w0 indicates wage without any experience and education, ed the years of education and
ex labour experience. Following the literature, variable ed is generated by a discrete uniform
distribution with parameters min � 0,max � 14, and ex by a Weibull distribution with
parameters shape � 3, scale � 40. As before, u and ϵ follow mean-zero normal distributions
with σ2

u, σ
2
ϵ . We do not vary the parameters since we have seen that those have only little

impact on the coverage probability of our simultaneous con�dence intervals (SCI). For all
simulations we set γ � log 4000, w0 � 2000, σu � 0.5, σϵ � 0.2, β1 � 0.07, β2 � 0.05 and
β3 � �0.001. Those parameters loosely reproduce the distribution of wages in Switzerland
(see Federal Statistical O�ce, 2022b,a). We generate data for D � t10, 100u domains with
population sizes N � t300, 3000u respectively. As before, consider sampling rates f �
t1{6, 2{3u giving samples of sizes n � tp50, 200q, p500, 2000qu, and employ the bootstrap
algorithms described in Gross (1980) and Booth et al. (1994), cf. Section 1, the former for
both f , the latter f � 2{3. The nominal error level α is always set to 0.05 as it was the case
in the main article.

3.2 Simulation Results

Like we did for the totals, we compare the three methods (Bonferroni and �Sidák correction as
well as the max-type statistic) used to construct SCI. We hope to see from our simulations, in
which situations they achieve or fail to deliver an appropriate coverage for the true parameters
(i.e. our generated poverty rates). An important di�erence to the main article is that here
we have only one PG estimator at hand. The results shown are in Table 3.1. Recall that
bootstrap is use for the Bonferroni and �Sidák correction when estimating the standard errors.

For this complex estimator and the given sample sizes nd, none of the proposed methods is
able to deliver SCI with the desired nominal coverage. For the low sampling rate (f � 1{6)
all methods have an uniform coverage close or equal to 0. For a high sampling rate (f � 2{3)
the situation is much better for the max-type approach but clearly not satisfactory, and of
no use for large D. While Bonferroni and �Sidák corrections fail completely, probably because
the distribution of the estimator is too far from normality, cf. Figure 3.1, also the max-type
method exhibits serious problems now, though its coverage is by far higher than the ones of
the other methods.
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D = 10 D = 100

f bootstrap method Bonferroni �Sidák Max-type Bonferroni �Sidák Max-type
1{6 Gross 0.019 0.019 0.079 0 0 0
2{3 Gross 0.458 0.458 0.716 0.001 0.001 0.061
2{3 Booth 0.506 0.506 0.735 0.004 0.004 0.052

Table 3.1: Results of the simulations for the PG estimator. Each cell is the estimated joint
coverage of our 95% SCI.

Figure 3.1: Kernel densities of the PG estimators for N � 300, f � 2{3 and D � 10. The
two domains not shown gave even discrete probability distributions. The values are divided
by 109 for presentation purpose.

In Figure 3.1 you also see that the PG's are quite small quantities. One may argue then
correctly, that to obtain reliable quantiles for them, large domain sample sizes are required.
We therefore changed the distribution producing much larger PG, and e�ectively, the results
for those income distributions gave better results for the max-type statistic but not so for
the others. As you always can simulate populations and situations in which your method
works very well, let us continue the discussion along our �rst choice.
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A larger domain sample size can be obtained through larger domain population sizes and
high sampling rates. Therefore we conducted simulations increasing the populations size to
N � 5000, and examining the cases for D � 10 and D � 50, with results in Table 3.2.

D � 10 D � 50

f bootstrap method Bonferroni �Sidák Max-type Bonferroni �Sidák Max-type
1{6 Gross 0.68 0.68 0.92 0 0 0.01
2{3 Booth 0.957 0.957 0.984 0.27 0.27 0.65

Table 3.2: Additional results for the PG estimator; population size is N � 5000. Each cell
is the estimated uniform coverage probability of our 95% SCI.

Now the results look much better, though mainly for the larger sampling rate. There is even
some hope that for a su�ciently large population with high sampling rate, it also works for
D � 50. But it is hard to say what the necessary N and f are. For D � 10 we see that the
two simple, classical methods work only for large sampling rates. Then they are even less
conservative than the max-type one, which is expected since the max-type method accounts
for the worst case (Reluga et al., 2023b).

Supposing you have a much larger population size N , even with an unlimited budget that
allows to take samples of size n close to N , the desired coverage of an SCI is not guaranteed
if D is big. Certainly, only the number of domains simultaneously studied matters; you may
have 100 domains but study only D � 10 of them jointly, then there is some hope for valid
SCI. That is, practitioners have to be cautious when computing SCI for a complex problem
with direct estimators. Obviously, for uniform or simultaneous inference you either have
to drop domains with small samples or to switch to model-based methods (Reluga et al.,
2023b,a). It is true that this issue is where SAE is all about, but comparative statistics seems
to already call for model-based or -assisted estimation when for individual domain analysis
samples are still su�ciently large.
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