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Abstract: Early identification of acute gout is crucial, enabling healthcare professionals to implement
targeted interventions for rapid pain relief and preventing disease progression, ensuring improved
long-term joint function. In this study, we comprehensively explored the potential early detection
of gout flares (GFs) based on nurses’ chief complaint notes in the Emergency Department (ED).
Addressing the challenge of identifying GFs prospectively during an ED visit, where documentation
is typically minimal, our research focused on employing alternative Natural Language Processing
(NLP) techniques to enhance detection accuracy. We investigated GF detection algorithms using both
sparse representations by traditional NLP methods and dense encodings by medical domain-specific
Large Language Models (LLMs), distinguishing between generative and discriminative models.
Three methods were used to alleviate the issue of severe data imbalances, including oversampling,
class weights, and focal loss. Extensive empirical studies were performed on the Gout Emergency
Department Chief Complaint Corpora. Sparse text representations like tf-idf proved to produce
strong performances, achieving F1 scores higher than 0.75. The best deep learning models were
RoBERTa-large-PM-M3-Voc and BioGPT, which had the best F1 scores for each dataset, with a 0.8 on
the 2019 dataset and a 0.85 F1 score on the 2020 dataset, respectively. We concluded that although
discriminative LLMs performed better for this classification task when compared to generative
LLMs, a combination of using generative models as feature extractors and employing a support
vector machine for classification yielded promising results comparable to those obtained with
discriminative models.

Keywords: gout flare; chief complaint; natural language processing; deep learning; large language
models

1. Introduction
1.1. Gout as a Global Health Burden

Gout is a painful form of arthritis characterized by sudden and severe joint inflammation,
which is believed to be caused by the formation and accumulation of needle-shaped crystals
in and around the joints. According to the National Institute of Health of the USA, there are
four stages of gout development [1]. It is typically triggered by high levels of uric acid in
the blood, called asymptomatic hyperuricemia. After that, the second stage of development
is gout flares, i.e., periodic attacks of intense pain and swelling in the joints, which is the
most recognizable stage of gout. This is followed by intercritical gout (the time between
gout attacks without symptoms) and tophi (a later stage of the building up of crystals that
may cause permanent joint damage). Early identification of gout flares (GFs) is one of the
critical approaches to preventing the development of chronic gout and irreversible damage
to patients.
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Gout has become a significant health concern globally. A recent report on the global,
regional, and national prevalence of gout estimated that, as of 2019, about 53 million people
worldwide suffer from gout, a significant 63.44% increase from 22 million globally in 1990 [2].
In the USA, more than nine million people suffer from gout [3], which is the most prevalent
type of inflammatory arthritis among men, affecting over 5% of them. The burden of gout
in young populations (under 40) was estimated to have increased drastically from 38.71 to
45.94 per 100,000 population during 1990–2019, and a consistent trend was observed globally
among countries of all sociodemographic index quantiles [4]. In addition to the painful
experience, physical disability, and lowered quality of life [5], gout has also been implied
to have links to other conditions or complications, for example, with the heart [6], such as
hypertension, myocardial infarction (heart attack), congestive heart failure, etc.

1.2. Early Detection of Gout at Emergency Department

According to the U.S. National Emergency Department Sample (NEDS), gout accounts
for more than 200,000 visits to the Emergency Department (ED) every year, making up
0.2% of all ED visits and costing more than $280 million in annual charges [7]. It is
important to improve the continuity of care for gout patients, especially after an ED
visit. Often, gout flares (GFs) treated in the ED lack optimal follow-up care, necessitating
the development of methods for identifying and referring patients with GFs at an early
stage during an ED visit [8]. While retrospective studies have leveraged natural language
processing (NLP) for GF detection, the prospective identification of patients in real time
ED settings presents a unique challenge, especially within the constraints of Emergency
Department environments.

Despite the success of NLP techniques in healthcare [9], NLP-based Gout Flare Early
Detection (GFED) is in severe lack of study. Only a few were identified, like Zheng et al. [10]
which, however, worked on Electronic Medical Records. The problem of early warning
of acute GFs becomes more challenging in the ED setting where the chief complaints
of patients are only taken by nurses in an extremely succinct format. It is of paramount
challenge to develop an effective GFED algorithm using such limited amount of information.
The current study tries to address this critical gap by advancing the methodologies proposed
by Osborne et al. [8]. Our study builds upon the groundwork laid by Osborne et al., who
annotated two corpora of ED chief complaint notes for GFs and paves the way for our
exploration of effective text representation methods and state-of-the-art medical/clinical
Large Language Models (LLMs).

1.3. Rationale for Using Large Language Models

Large language models, such as BERT [11] (Bidirectional Encoder Representations
from Transformers), GPT [12] (Generative Pre-trained Transformer), and their variants,
have demonstrated remarkable success in a wide range of natural language processing tasks.
The use of large language models in text classification offers several compelling reasons:

Contextual understanding: Large language models leverage deep learning techniques
to encode contextual information and relationships between words in a sentence. This
contextual understanding allows them to capture subtle nuances and semantics, which is
especially relevant in the medical domain where precise interpretation of clinical text is vital.

Transfer learning: Pre-training on vast corpora of textual data enables large language
models to learn general language patterns. This pre-trained knowledge can be fine-tuned
on domain-specific datasets, making them adaptable and effective for text classification
tasks in the medical field with relatively limited labelled data.

These technologies have the potential to revolutionize the healthcare industry by
enhancing medical decision-making, patient care, and biomedical research. Some tasks
in NLP could be automated using LLMs, such as text classification [13,14], keyword
extraction [15,16], machine translation [17], and text summarization [18]. Furthermore,
NLP and LLMs can assist in the early detection and diagnosis of diseases by sifting through
vast datasets to identify patterns, symptoms, and risk factors.
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1.4. Gaps and Limitations of Current Literature

While some studies have compared a single generative LLM (GPT) with discriminative
LLMs, a comprehensive comparison between multiple domain-specific generative LLMs
and discriminative LLMs for disease detection is lacking. Such comparisons are essential to
determine the performance disparities between different LLM types and guide the selection
of the most suitable model for our specific medical intent and classification task.

In light of these gaps, our research aims to bridge these deficiencies in the current
literature. We specifically focus on GFED by leveraging domain-specific generative LLMs
as feature extractors. Additionally, our study includes comparative analyses of multiple
domain-specific generative LLMs and discriminative LLMs to gain comprehensive insights
into their performance on this particular medical classification task.

1.5. Our Contributions

In this paper, we make three contributions to the task of gout flare detection from nurse
chief complaints. First, we compare the performance of domain-specific discriminative
and generative models that are fine-tuned for the task. Second, we propose an alternative
approach that uses domain-specific generative LLMs as feature extractors and a support
vector machine as classifier. Third, we benchmark our methods against a baseline that uses
sparse text representation (tf-idf). Our results demonstrate the effectiveness of using LLMs,
such as RoBERTa-large-PM-M3-Voc, BioELECTRA, and BioGPT, for processing medical
text and detecting GFs.

2. Materials and Methods
2.1. Data Collection

We utilized the dataset of ED Chief Complaints (abbreviated as CC hereafter) notes,
which were annotated by Osborne et al. for the presence of GFs [19]. Each CC text in the
dataset was annotated to determine its indication of a GF, a non-GF, or remained unknown
in terms of the status of GF. Following this, a manual chart review was conducted by
a rheumatologist and a post-doctoral fellow to ascertain the GF status for a small portion
of the ED counters. These served as the gold standard annotations of the real GF status.
More details about dataset creation and dataset statistics can be found in Osborne et al.’s
original paper [8].

The corpora contain two datasets for the year 2019 and 2020, namely GOUT-CC-
2019-CORPUS and GOUT-CC-2020-CORPUS, respectively. Table 1 shows the annotation
statistics of the two datasets. In our experiments, we used the human-annotated samples
using chart review, as did Osborne et al. This means we used the two rows in Table 1 with
an asterisk, where the “Review” column contains “Chart”. Table 2 shows some exemplars
of annotations taken from Osborne et al.’s paper, where the “Predicted” and “Actual”
columns are labels annotated by using CC texts alone and by using complete chart review,
respectively. As ED nurses use large amounts of medical abbreviations when taking CC
notes, we provided brief explanations for the CC notes to facilitate understanding.

Table 1. Annotation Statistics of the Gout Flare Chief Complaint Datasets (from Osborne et al. [8]).

Dataset Name GF-POS
(Positive)

GF-NEG
(Negative)

GF-UNK
(Unknown) Review Agreement Cohen’s κ

GOUT-CC-2019-CORPUS 93 194 13 CC 0.883 0.825

GOUT-CC-2019-CORPUS * 70 118 9 Chart 0.849 0.774

GOUT-CC-2020-CORPUS 14 7992 129 CC 0.977 0.965

GOUT-CC-2020-CORPUS * 25 232 7 Chart 0.904 0.856

* Used in our experiments as Osborne et al. [8] “CC” and “Chart”, respectively, represent that the gold labels were
determined by using chief complaints alone and by using a full chart review.
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Table 2. Examples of Chief Complaint Notes for Gout Flare (from Osborne et al. [8]).

Chief Complaint Text * Predicted ** Actual ***

AMS, lethargy, increasing generalized weakness over 2 weeks.
Hx: ESRD on hemodialysis at home, HTN, DM, gout, neuropathy No No

“I started breathing hard” hx-htn, gout, anxiety, No No

R knee pain × 8 years. pmh: gout, arthritis Unknown No

Doc N Box DX pt w/R hip FX on sat. Pt states no falls or injuries.
PMH: gout Unknown No

out of gout medicine Yes Yes

sent from boarding home for increase BP and bilateral knee pain
for 1 week. Hx of HTN, gout. Yes Yes

* Explanations for medical abbreviations in the CC notes: AMS—Altered Mental Status; Hx—History; ESRD—End-
Stage Renal Disease; HTN—Hypertension; DM—Diabetes Mellitus; pmh—past medical history; Doc N Box—doc-
in-the-box (meaning “any doctor at a walk-in clinic”); DX—diagnosis; pt—patient; FX—fracture; BP—Blood
Pressure. ** Consensus predicted gout flare status determined by annotator examination of CC. *** Gout flare
status determined by chart review, which is the true prediction.

2.2. Feature Extraction

In the feature engineering approach, we extracted the n-grams (n = 1, 2, 3) and
tested different combinations of n-grams. CC texts were converted into sparse represen-
tations using tf-idf (Term Frequency-Inverse Document Frequency) [20] as initial feature
values. A linear support vector machine (Linear SVM) was trained for classification. All
implementations were done using the scikit-learn library (https://scikit-learn.org/, accessed
on 29 February 2024).

It was challenging to extract more advanced syntactic or semantic features due to the
noisiness of CC texts. As can be observed from Table 2, CC texts are extremely succinct,
often containing a sequence of medical terms or abbreviations which record the facts
reported by patients. Such CCs are not meaningful sentences for us to extract features
from using the syntactic analysis results. Semantic analysis tools are either immature or
non-existent in this particular area. However, we could still observe good performances
from fine-tuning a machine learning model using the right sparse feature representation of
CC texts.

2.3. Large Language Models

We employed several LLMs tailored for the medical domain with the hope to discern
nuances in GF-related CCs, relying on their ability to capture intricate patterns within
medical texts. All LLMs belong to the Transformers family [21], as we hoped that the multi-
headed self-attention mechanism of the Transformers architecture could allow for learning
meaningful associations between certain CC words to indicate the existence of GFs.

2.3.1. Discriminative Models

We strategically incorporated three robust discriminative LLMs renowned for their
discriminative power—RoBERTa-large-PM-M3-Voc [22], BioELECTRA [23], and BioBART [24].
These are the domain-specific versions of the RoBERTa [25], Electra [26], and BART [27]
models, respectively. Although BART was a language model pretrained in a sequence-
to-sequence fashion, it can be used equally well and in the same way as a discriminative
model [27]. As such, we treated it as one representative of the discriminative category. The
details of the discriminative LLMs are shown in Table 3.

https://scikit-learn.org/
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Table 3. Description of Discriminative LLMs Implemented.

Model Name RoBERTa-Large-PM-M3-Voc BioELECTRA BioBART

Model Size 355M Parameters --- 139M Parameters

Hidden Size 1024 768 768

Model Size 24 Layers, 16 heads 12 Layers, 12 heads 12 Layers, 12 heads

Base Model RoBERTa-large Electra Base BART Base

Training Data PubMed articles and
MIMIC-III corpora [28] PubMed articles PubMed abstracts

and articles

2.3.2. Generative Models

In the realm of generative LLMs, we strategically chose BioGPT [29], BioMedLM (https://
github.com/stanford-crfm/BioMedLM, accessed on 29 February 2024, by Stanford University
and MosaicML), and PMC_LLaMA_7B [30] for their renowned scale and exceptional
performance in natural language processing tasks. BioGPT and PMC_LLaMA_7B are the
domain-specific versions of the GPT-2 [31] and LLaMA [32,33] models, respectively, while
BioMedLM is a bespoke LLM pretrained for medical applications. These models represent
the forefront of generative language understanding, and their comprehensive specifications,
training data, and architectural features are elucidated in Table 4.

Table 4. Description of Generative LLMs Implemented.

Model BioGPT BioMedLM PMC_LLaMA_7B

Model Size 347M Parameters 2.7B Parameters 7B Parameters

Hidden Size 1024 2560 4096

Model Size 24 Layers, 16 heads 32 Layers, 20 heads 32 Layers, 32 heads

Base Model GPT2-medium GPT2 LLaMA_7B

Training Data 15M PubMed
abstracts from scratch

All PubMed abstracts
and full texts from The

Pile benchmark [34].

4.8 million Biomedical
publications from the
S2ORC dataset [35].

2.4. Fine-Tuning

Fine-tuning was implemented to improve the models’ ability to understand and
capture the nuances in the texts. For the discriminative models, full fine-tuning was
implemented, but for the generative models, due to the size of the models and hardware
constraints, full fine-tuning was not possible.

2.4.1. Fine-Tuning of Discriminative LLMs

All three discriminative LLMs use a bidirectional encoder as BERT [11]. The encoder
part of these models was used to encode each CC text, and the “[CLS]” token was used
as the dense representation. For RoBERTa-large-PM-M3-Voc and BioELECTRA, a further
feature transformation was applied. Essentially, the classification head was a Multiple
Layer Perceptron (MLP), the hidden layer of which made a nonlinear transformation (of
the same size). On the contrary, BioBART used a linear classification head following the
tradition of BART usage.

In the fine-tuning process, the following hyperparameters were used: learning
rate = 1 × 10−5, epoch number = 10, batch size = 14, early stopping patience = 3. The
AdamW optimiser was used for training [36].

https://github.com/stanford-crfm/BioMedLM
https://github.com/stanford-crfm/BioMedLM
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2.4.2. Fine-Tuning of Generative LLMs

Similarly, generative LLMs were used for encoding CC texts, and the “Extract” tokens
(for all three models, as they all belong to the GPT family) were used to extract the dense
representation, which was then sent to a linear classification head. Due to their large
sizes, the generative LLMs were not fully fine-tuned. Instead, we used LoRA (Low Rank
Adaptation) [37] to efficiently adapt the LLMs to specific tasks by only modifying a small
portion of the whole parameter space.

The main idea behind LoRA is to exploit the low-rank structure of the model’s weight
matrices during task adaptation, resulting in reduced memory usage and computational
complexity [37]. The idea was inspired by Aghajanyan et al.’s finding that pre-trained
language models have a low “intrinsic dimension,” meaning that they can still lean efficiently
when their weight matrices are randomly projected to a smaller subspace [38].

Figure 1 illustrates the idea of low rank adaptation for efficient training. More precisely,
LoRA hypothesizes that updates to model’s weight matrix, W0, can be represented by a low-
rank decomposition, which is given by W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k,
and ∆W = BA represents weight updates. During training (i.e., fine-tuning), W0 is frozen
while A and B contain the trainable parameters.
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In our fine-tuning process, we applied the following LoRA parameters:

• The rank (r) of A and B was set to 8.
• The LoRA regularization coefficient α was set to 16.
• To prevent overfitting and enhancing model generalisation, we applied a LoRA

dropout rate of 0.1.
• A learning rate of 3 × 10−4 was used, enabling efficient convergence during training.

2.5. Classification

In the feature engineering approach, a linear SVM (Support Vector Machine) for
classification was trained. We opted for a SVM because it has been empirically proven to
be a strong classifier across a wide range of applications in biomedical informatics [39]
and bioinformatics [40]. When fine-tuning discriminative LLMs, either an MLP or a linear
classifier was applied. Similarly, a linear layer was used for classification with generative
LLMs. In the experiments, we also tested using generative LLMs only as the feature
extractor and trained a SVM for classification. In this alternative approach, which required
significantly less computational resources, generative LLMs were frozen, used to encode CC
texts, and the hidden states of the “Extract” token were extracted as dense representation.
A linear SVM was then trained in a similar way as in the feature engineering approach.
This was to demonstrate the LLMs’ native ability to understand and represent medical
texts for the downstream task.
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2.6. Optimisation

Figure 2 summarises the whole pipeline of the learning task and the optimisation
strategies that were employed to improve performance. We detail them one by one in the
following subsections.
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2.6.1. Class Weights

We also observed severe data imbalances in the corpora. The data imbalance ratio of
GOUT-CC-2019-CORPUS is (70 + 9)/118 = 0.6695, while the imbalance ratio of GOUT-CC-
2020-CORPUS is (25 + 7)/232 = 0.1379. Our first method to handle data imbalance was class
weights [41], which were set according to the relative sizes of each class as in Equation (1),

wj = N/
(
K × Nj

)
, (1)

where wj is the weight for the j-th class, K is the total number of classes, N is the total
number of samples, and Nj is the number of samples of the j-th class [42].

2.6.2. Oversampling

However, the class weighting alone in Equation (1) could not well handle the severe
data imbalance in the GOUT-CC-2020-CORPUS, which is 5 times more imbalanced than
GOUT-CC-2019-CORPUS. Although the discriminative LLMs performed strongly in our
experiments, they were extremely sensitive to this severe data imbalance. Therefore, we
performed random over-sampling on the GOUT-CC-2020-CORPUS. The positive samples
in the training split, including GF-POS and GF-UNK combined, were randomly duplicated
to match the size of GF-NEG.

The second approach we used to oversample the minority class was the Synthetic
Minority Over-sampling Technique (SMOTE) [43]. SMOTE generates synthetic examples
of the minority class by interpolating the feature space of the existing minority samples,
thereby balancing the class distribution. This approach was only implemented in the
method where we used the LLMs as feature extractors and classified with an SVM.

2.6.3. Focal Loss

In the context of our classification tasks with severely skewed data distribution, the
choice of a suitable loss function also played a pivotal role in training and optimizing
our models. Treating loss function as an additional “hyperparameter”, we employed two
distinct loss functions per dataset and model requirement, namely cross-entropy loss and
focal loss [44], to effectively guide the training process and address specific challenges
posed by our datasets.
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In instances where class imbalance persisted even after oversampling the training data,
such as in the case of GOUT-CC-2020-CORPUS, we employed focal loss as an alternative to
cross-entropy to combat class imbalance, which is defined in Equation (2).

FL(pt) = −αt(1 − pt)
γlog(pt), (2)

where pt is the posterior probability of each target t (here t = 0 or 1), αt ∈ [0, 1] is the
scaling parameter, γ is the focusing parameter, and (1 − pt)

γ is the modulating factor of
the original cross-entropy loss [44]. When using focal loss, αt was simply calculated by the
class weighting in Equation (1).

3. Results

In this section, we meticulously analyse and compare the performances of all methods.
The performance of each model was evaluated using standard metrics, including precision
(a.k.a. Positive Predictive Value or PPV), recall (a.k.a. Sensitivity), and macro F1 score
(a trade-off between precision and recall, averaged over the F1 scores for all classes). We
compared our results with the original algorithm proposed by Osborne et al. [8], ensuring
a comprehensive assessment of the advancements achieved.

3.1. Fine-Tuned LLM

This subcategory encompasses the results obtained by directly employing LLMs for
CC classification. Table 5 shows the results, where the best performances in each metric
were highlighted in bold. RoBERTa-large-PM-M3-Voc outperformed the other four models
in the 2019 dataset in terms of precision, recall, and F1 score, followed by BioBART and
BioELECTRA who exhibited similar performance, while BioGPT and BioMedLM had the
lowest performance among the five models.

Table 5. Performances of Gout Flare Detection using Fine-Tuned LLMs.

GOUT-CC-2019-CORPUS GOUT-CC-2020-CORPUS

Model Precision Recall F1 Score Precision Recall F1 Score

RoBERTa-large-PM-M3-Voc 0.80 0.79 0.80 0.62 0.72 0.63

BioELECTRA 0.76 0.76 0.76 0.63 0.68 0.65

BioBART 0.74 0.73 0.73 0.65 0.70 0.67

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52

On the 2020 dataset, the best model was by far BioGPT, outperforming the other LLM
competitors by large margins. Good performances were obtained due to oversampling,
which improved the results from 0.67 to 0.85 in terms of F1 score. However, it is unclear
whether this suggests that BioGPT might be able to handle the data imbalance better.
Nevertheless, it seems that large language models are sensitive to data size (unfortunately
small in our application setting) and data imbalance (unfortunately severe data imbalance
in GOUT-CC-2020-CORPUS). In addition, oversampling seems to be an effective way to
boost the performance of generative LLMs for this task.

BioMedLM did not achieve good performances on either dataset. It seems that it is not
always “the bigger, the better” for domain-specific language models. The poor performance
was possibly due to the limitations of the LoRA adaptor, which made it harder to fully
adapt the large model to the special domain of gout flare CC texts, compared to BioGPT
which was fully fine-tuned and adapted better. Indeed, choosing the “right” language
model suitable for the downstream task is challenging.
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3.2. Frozen LLMs as Feature Extractors

In this subcategory, we used LLMs to embed CC texts to dense feature vectors and
used a SVM for classification. Table 6 shows the results. A SVM with BioGPT embeddings
had the best performance on both datasets. It achieved an F1 score of 0.67 on GOUT-CC-
2019-CORPUS and 0.71 on GOUT-CC-2020-CORPUS. This indicates that this algorithm can
effectively extract the relevant features from CC texts and classify them accurately.

Table 6. Performances of Gout Flare Detection using LLM Embeddings.

GOUT-CC-2019-CORPUS GOUT-CC-2020-CORPUS

Algorithm Precision Recall F1 Score Precision Recall F1 Score

SVM with BioGPT
Embeddings 0.68 0.67 0.67 0.69 0.73 0.71

SVM with BioMedLM
Embeddings 0.69 0.66 0.66 0.59 0.70 0.61

SVM with
PMC_LLaMA_7B

Embeddings
0.66 0.66 0.66 0.60 0.60 0.60

It can be also observed that the SVM with BioMedLM embeddings and the SVM
with PMC_Llama_7B embeddings have similar performance, but lower than the SVM
with BioGPT embeddings. This may partially explain BioGPT’s good performance on
GOUT-CC-2020-CORPUS. Again, bigger models do not always lead to better performance.
On the other hand, while counterintuitive, the results are encouraging because healthcare
institutions may invest less on smaller models to achieve competitive results in certain
clinical applications. This has more impact on small organizations such as local general
practices or community health centres, which are limited in computational resources.

3.3. Sparse Text Representation

This group of experiments involved the traditional feature engineering approach
based on the tf-idf of n-gram features. Table 7 shows the results, where the baselines
(discussed in the following paragraph) were lightly shaded. The best-performing settings
were C = 0.15 (for SVM) and n = (1, 2) (meaning the combination of unigrams and bigrams)
on GOUT-CC-2019-CORPUS and C = 1.5 and n = (1, 2) on GOUT-CC-2020-CORPUS. The
performances of the SVM could be deemed as promising. Though not beating the best-
performing fine-tuned LLMs, the performances were stronger than other competitors, and
more stable across datasets than other competitors, implying its better generalisability and
better robustness, which echoes the findings in [40].

Table 7. Performances of Gout Flare Detection using Sparse Text Representations.

GOUT-CC-2019-CORPUS GOUT-CC-2020-CORPUS

Algorithm Precision Recall F1 Score Precision Recall F1 Score

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57

In this section we have also included the results from the original publication of
Osborne et al. [8], which are shaded. NAÏVE-GF predicts every mention of “gout” in CC
texts as GF. SIMPLE-GF relies on the patient’s past medical history (PMH) (detectible by
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a compiled PMH gazetteer) and reported locations of potential GFs (based on a compiled
location-gazetteer). If “gout” appears to the left of past medical history, or both a location
keyword anywhere and “gout” appears in past medical history, then a GF alarm is
triggered. BERT-GF is a fine-tuned BERT model for GF identification. See [8] for details of
these baselines.

3.4. Comparative Analysis

Table 8 compares the results acquired from this study with the results obtained from
the paper by Osborne et al. RoBERTa was the best-performing model on the GOUT-CC-2019-
CORPUS dataset, followed by BioELECTRA, showcasing the superiority of discriminative
LLMs in classification tasks. The SVM with BioGPT embedding and tf-idf also performed
well in relation to the other models. In the GOUT-CC-2020-CORPUS dataset, the best
was BioGPT which outperformed all the discriminative LLMs. This model responded
very well to the fine-tuning and oversampling. This result was still outperformed by the
SVM with tf-idf features. All our models outperformed the models used in the study by
Osborne et al. (in grey) in both datasets. Overall, RoBERTa-large-PM-M3-Voc, BioGPT,
and tf-idf on n-grams were more robust models across datasets, particularly the latter. In
addition, BioGPT was a more robust feature extractor when model parameters were frozen.
Finally, this indicates a promising future direction in which to employ the strengths of
different classifiers to achieve better recall while at the meantime keeping a better balance
for precision.

Table 8. Comparing the Performances of All Gout Flare Detection Methods.

GOUT-CC-2019-CORPUS GOUT-CC-2020-CORPUS

Algorithm Precision Recall F1 Score Precision Recall F1 Score

RoBERTa-large-PM-M3-Voc 0.80 0.79 0.80 0.62 0.72 0.63

BioELECTRA 0.76 0.76 0.76 0.63 0.68 0.65

BioBART 0.74 0.73 0.73 0.65 0.70 0.67

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52

SVM with BioGPT
Embeddings 0.68 0.67 0.67 0.69 0.73 0.71

SVM with BioMedLM
Embeddings 0.69 0.66 0.66 0.59 0.70 0.61

SVM with PMC_LLaMA_7B
Embeddings 0.66 0.66 0.66 0.60 0.60 0.60

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57

4. Discussion
4.1. Potential and Limitations

The best performance on these datasets was achieved by the fine-tuned RoBERTa-
large-PM-M3-Voc on GOUT-CC-2019-CORPUS and the fine-tuned BioGPT on GOUT-CC-
2020-CORPUS (after handling class imbalance), outperforming other machine learning
counterparts. This suggests that RoBERTa-large-PM-M3-Voc and BioGPT can somehow
capture the semantic features of CC texts and distinguish between GFs and non-flares in
certain circumstances. However, the results also show that there is still a large gap between
the performance of LLMs and the desired accuracy for GF detection. Meanwhile, large
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models seem to be more sensitive to or less robust to data imbalance and data size (recall
that the number of positive cases in GOUT-CC-2020-CORPUS is much smaller than in
GOUT-CC-2019-CORPUS).

Furthermore, the results also indicate that some models have a bias towards the
negative class, which may affect their ability to predict the positive label. Therefore, more
research is needed to address these challenges and improve the performance of LLMs
for GF detection. One of the main challenges is the nature of the dataset. All the chief
complaints contain the keyword “gout” (indicated by the 100% recall of the NAÏVE-GF
baseline in Tables 7 and 8) and most of them did not contain any clear indicator of gout flare.
This makes it difficult for the models to learn the subtle differences between gout flares
and non-flares. Upon analysing the ”Predicted” column of our test set (which contains
the prediction of the human annotators based solely on the CC), we found that this is
a challenging problem even for professional rheumatologists, which achieved less than
50% accuracy in our test set, if considering GF-UNK (unable to determine) as a failure
in prediction.

Although the performance on GOUT-CC-2020-CORPUS was not as good as GOUT-
CC-2019-CORPUS, it was still an improvement compared to the baseline. We acknowledge
that the dataset is challenging due to its data imbalance and small size, which contributed
to the performance decline. Our approaches to tackling the data imbalance did improve the
performance, but future work is still required to tackle this issue. One potential direction
is the use of semi-supervised learning or weakly-supervised learning to utilize implicit
knowledge from the large pool of unannotated data (i.e., not annotated by full chart review),
which is left for our future work, if it proves difficult to encourage the medical community
to share more high-quality annotated data.

4.2. Generalisability

A prominent phenomenon we observe is that the fine-tuned LLMs did not generalize
well across datasets, in the sense that the best-performing model on one dataset (either 2019
or 2020) has a significant performance discrepancy on the other, which is especially obvious
for the two best-performing deep learning models, RoBERTa-large-PM-M3-Voc and BioGPT.
It is hard to conclude the causes for this. First of all, even in the natural language processing
domains, the study of the capabilities and limitations of different types of LLMs is still
an open domain with more hypotheses and debates than conclusions and consensus.

There is also possibility that the two models are good at capturing some specific
patterns in one dataset but not the other. Indeed, the texts of the two datasets may have
some different patterns that are worth digging deeper into (although this is beyond the
scope of the current paper). This can be partially justified by some initial generalisation
experiments we performed. We trained a SVM classifier using tf-df n-gram features using
the optimised setting selected by five-fold cross-validation (see Section 3.3) on GOUT-
CC-2019-CORPUS and found the test performance on GOUT-CC-2020-CORPUS was only
0.46 F1; conversely, the generalisation performance was only 0.59. The most stable SVM
classifier that was trained on one dataset did not generalize well to the other, and it looked
that GOUT-CC-2020-CORPUS had more challenges.

As stated before, the encouraging news is that SVMs seem to bring good performance
and more stability [40], including SVMs trained using LLM embeddings as dense feature
vectors. On the other hand, deep learning methods may be more sensitive to data volume,
data size, and data imbalance, especially in the size of minority classes. This is especially
obvious in GOUT-CC-2020-CORPUS where the imbalance ratio is close to 1:10. Therefore,
random up-sampling was adopted. It is, however, unclear whether this sampling-based
rebalancing strategy led to the performance discrepancy. On the contrary, SMOTEing using
LLM embeddings seems to be more stable. However, the results in general also imply the
possibility of using ensemble learning for training a more robust classifier because most
baseline methods achieved reasonable performance [45].
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Finally, we noticed that the 2020 dataset also included a huge number of unannotated
CC texts. There is thus potential for us to apply semi-supervised learning [46] or weakly-
supervised learning techniques [47]. More robust performance and better generalizability
might be achieved by eliciting implicit knowledge from unannotated CC texts through
learning from weakly-assigned pseudo-labels. Most of the discussions above, indeed, are
part of future directions the authors would like to explore in more depth.

4.3. Ethical Issues

There are some potential ethical issues needing discussion. First of all, the dataset was
compiled and shared by the authors of the original paper on PhysioNet [19]. The creation
and publication of the dataset conformed to the national ethical requirements of the USA.
The dataset is anonymised, and there is no information in the dataset that can be used to
re-identify patients.

The method discussed in this study has by now proved its potential in “identifying”
a large portion of patients who were indeed diagnosed with a gout flare after a complete
chart review (and other diagnosis methods). This is encouraging because human annotators
failed to make decisions for 127 out of 264 cases of the 2020 dataset. We also “evaluated”
human performance on the remaining 137 cases, which was around 0.7755, similar to our
SVM algorithms. Generally, we believe that the algorithms do not aim to replace ED doctors
but to complement them. As such, the ultimate aim is to set alarms to as many patients at
high risk of gout flare as possible while maintaining reasonably good precision.

4.4. Future Directions

We have discussed in detail about potential future directions in Section 4.2 when
discussing ways of improving classifier generalizability. This section includes some further
discussions from a few additional angles.

Full fine-tuning and distributed computing: While parameter-efficient fine-tuning,
specifically LoRA, was applied in this study due to hardware constraints and the models’
size, pursuing full fine-tuning would enhance the results of the models. Implementing
distributed computing is necessary to apply full fine-tuning. Due to the very large size
of the models, this process requires distributing the model load across different GPUs to
perform the calculations. This strategy would enable more comprehensive fine-tuning,
potentially leading to an increase in model performance.

Enhanced dataset quality and size: With such a limited number of samples, the
models cannot be properly trained, validated, and tested. To address this, more samples or
whole new datasets must be acquired to test the models effectively.

Ensemble learning for enhanced embeddings: A promising route is the utilization
of deep learning models to create an ensemble that enhances embeddings before their
application in text classification. This strategy could potentially enhance the information
captured by the embeddings, thereby leading to improved classification outcomes.

Task-specific continuous pre-training: Another possible direction is to use unsupervised
learning to continuously pre-train the LLMs on the task-specific data, i.e., the chief complaint
texts. This could help the models to adapt to the domain and the vocabulary, and to tackle
the particular writing styles of CC notes in this task.

5. Conclusions

Overall, this study highlights the potential of generative LLMs for classification tasks,
achieving results comparable to discriminative models. Additionally, the models also have
shown potential as feature extractors for classification tasks, even without fine-tuning,
due to their ability to understand contextual information and produce rich contextual
embeddings. Despite the results between the two types of models being comparable,
the computational requirements to perform the same task are much greater when using
the generative LLMs employed in this study. Similar or superior results can be obtained
using much smaller discriminative models. Still, this research highlights the importance of
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using the domain-specific variants of the models when the text contains specialized and
out-of-word vocabulary. Our results are important because they demonstrate the feasibility
and effectiveness of using generative LLMs for gout flare detection from chief complaints,
which is a novel and challenging task that can benefit both clinical practice and research.
Furthermore, our approaches can potentially improve the quality of care for gout patients,
a large portion of whom could now receive proper and in-time follow-up after an ED visit.
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