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Abstract: Changes of mind can become less likely the longer an agent has adopted a given opinion
state. This resilience or inertia to change has been called “aging”. We perform a comparative study of
the effects of aging on the critical behavior of two standard opinion models with pairwise interactions.
One of them is the voter model, which is a two-state model with a dynamic that proceeds via social
contagion; another is the so-called kinetic exchange model, which allows a third (neutral) state,
and its formed opinion depends on the previous opinions of both interacting agents. Furthermore,
in the noisy version of both models, random opinion changes are also allowed, regardless of the
interactions. Due to aging, the probability of changing diminishes with the age, and to take this into
account, we consider algebraic and exponential kernels. We investigate the situation where aging acts
only on pairwise interactions. Analytical predictions for the critical curves of the order parameters
are obtained for the opinion dynamics on a complete graph, in good agreement with agent-based
simulations. For both models considered, the consensus is optimized via an intermediate value of the
parameter that rules the rate of decrease of the aging factor.

Keywords: aging; opinion formation model; voter model; kinetic exchange model; social dynamics

1. Introduction

As is known, the ideas and concepts coming from the statistical and nonlinear physics
have been applied successfully to understand social phenomena [1,2]. The main goal is
to explain “macroscopic” emergent behavior in terms of the “microscopic” individual’s
components in the same way that one derives the laws of macroscopic physical systems,
e.g., the equation of state, from microscopic information such as the forces amongst particles.
One lesson we have learnt from the modern development of statistical physics is that the
emergent behavior, manifested through macroscopic phase transitions, is largely dependent
on some details of the microscopic interactions and that there are some universal features
that only depend on a few ingredients, such as dimensionality, symmetries, etc. It is in this
spirit that the modeling of social systems has relied on the development of very simple
agent-based models that take as starting points some stylized facts about the interactions
amongst agents. Consider, for example, the subject of the evolution of cultures. In a
seminal paper, Robert Axelrod asked: “If people tend to become more alike in their beliefs,
attitudes, and behavior when they interact, why do not all such differences eventually
disappear?” [3]. He then introduced a model whose basic assumption is that interactions
amongst individuals lead to an augmentation in the similarity between them. A detailed
analysis [4] shows that, depending on the initial diversity, there is a phase transition
between an ordered monocultural state and a disordered multicultural state, demonstrating
the apparent paradox of the emergence of global polarization through the mechanism
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of local convergence. It was then established that the dimensionality of the space of
interactions was a relevant variable of the model [5]. Similar ideas appear in other areas.
In the context of opinion formation, for example, one expects, on the one hand, that
social influences reduce differences between individuals via social contagion, but, on the
other, interactions can also produce differentiation via repulsive forces, associated with
anticonformist “contrarian” agents that tend to deviate from the behavior adopted by the
neighbors in the network of connections [6,7]. Another example is Galam’s model for
minority opinion spread [8,9] that, although based on local majority rule, can lead to the
hostile minority views having an advantage.

Other diverse mechanisms can compete with the tendency toward uniformity pro-
moted by social contagion. One is the “noisy” behavior, ruled by a “social temperature”
parameter, associated with imperfect imitations due to random factors or independent
choices, such that random changes of opinion interpreted as idiosyncratic behavior can
occur. Standard models that study the effect of independence include the noisy voter model
and the noisy kinetic exchange model. In the former, agents adopt opinions ±1, copying
the opinion of a random contact. This model has been studied under a variety of different,
but formally equivalent setups [10–17]. In the latter, the states ±1 and 0 can be adopted
via a rule that takes into account the current opinion of both interacting contacts [18,19].
In both cases, the rule of social influence acts with a probability of (1 − a) while otherwise,
with a probability of a, a random change can occur. That is, these models rely on the
assumption that opinion dynamics are mainly governed by mechanisms of imitation or
social contagion that mold opinion formation through the interaction between individuals,
but random factors are always present. In both cases, noise opposes the system’s ability to
reach a self-organized state with a winning opinion. Furthermore, both present a critical
value ac below which order can be achieved, the main difference being that ac → 0 in the
thermodynamic limit, when the number of agents tends to infinity, for the noisy voter,
while ac remains finite in the kinetic exchange model in the same limit.

Another ingredient that has been proven to be relevant in the modeling of social
systems is that of “aging”. The effects of aging have been widely explored in several
areas of research. In the field of computational biology [20–22], aging is understood as
the increase of the mortality of a species as its population becomes older. In chemistry,
aging appears when the properties of a material change over time without the influence of
external forces but due to, for example, thermal degradation [23] or photo-oxidation [24].
In the context of social systems, aging is the concept that the larger resistance an agent offers
to changing its state of opinion, the longer it has been holding the current state. Initially
termed as “inertia” [25], it was shown that the slowing down of the microscopic dynamics
induced via aging actually decreased the time needed to reach the macroscopically ordered
state state of consensus. In this respect, and in alignment with previous studies [25–31], we
consider that aging acts on the mechanism associated with social contagion.

In this paper, we compare the effects of aging on the two above-mentioned paradig-
matic representatives of the class of noisy opinion models, the voter model and the kinetic
exchange model, highlighting the similarities and differences amongst them. To this end,
we consider an all-to-all interaction scheme in which every agent is connected to every other
agent and develop an adiabatic approximation able to provide us with the phase diagram,
including the location of the critical points separating regions of consensus from disordered
regions. Afterward, we compare the location of the critical points for both models.

The rest of the paper is organized as follows: In Section 2, we introduce a general setup
to study models of opinion dynamics under the presence of idiosyncratic, random changes
of opinion, as well as the interaction between the agents modulated by an aging mechanism.
In Section 3, we derive a mean-field-type approach for the noisy voter model under an
adiabatic approximation, leaving the more technical details for Appendix A.1. In Section 3,
we also compare the results of numerical simulations for two different functional forms
for the aging probability, algebraic and exponential, focusing mainly on the magnetization,
measuring the amount of order, or amount of consensus, in the system. In Section 4,
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after briefly reviewing the main results for the noisy kinetic exchange model, we compare
the results for the magnetization and the dependence of the critical value of the noise
intensity as a function of a parameter measuring the rate of decrease of the aging probability,
for the voter and the kinetic exchange model. Finally, in Section 5, we end with some
conclusions and an outlook for future work.

2. Models of Noisy Opinion Dynamics with Aging

In this study, we analyze two models that have been commonly used as prototypical
examples in the study of the dynamics of opinion formation in social systems: the noisy
voter model and the noisy kinetic exchange model. Both models consider a set of N agents
endowed with an internal state variable si, i = 1, · · · , N, representing the possible positions
of agent i concerning a given topic. For the voter model, the internal variable can take
two possible values si ∈ {−1,+1}, representing a position against or in favor of the topic.
The kinetic exchange model introduces a third neutral state such that si ∈ {−1, 0,+1}. This
internal variable evolves due to two different generic mechanisms that act stochastically:
idiosyncratic changes and social influence. The difference between them is that the former
randomly changes the state variable si independently of the states of other agents, while
the latter changes si following a rule that depends on the state variables of another agent sj.
In the voter model, the social rule is that si → S(si, sj) = sj, modeling the mechanism of
imitation. In the kinetic exchange model, the social rule is si → S(si, sj) = sgn[si + sj],
where sgn[s] is the sign function. The rule is such that neutral agents can not modify
the opinion of another agent, and agents with a well-defined opinion (either positive or
negative) can convince a neutral agent or turn to the neutral state an agent with the opposite
opinion. Let us mention that other rules for three-state models have been considered in
the literature before [32–35]. In Ref. [32], it is shown that the inclusion of a third neutral
state which individuals necessarily have to pass through increases the capability to reach
consensus in the extreme values.

Previously, both models here considered have been studied under the influence of
aging in the social mechanism [36,37]. In this paper, we generalize some of the previous
studies and compare the effects that aging induces in both models.

To be precise, let us spell out in detail the rules of evolution for these models. Initially,
we assign a random value to each state variable si and set all internal times τi to zero. Then,

1. At each iteration, an agent i is randomly selected.
2. With probability (1 − a), the social rule is chosen: with probability q(τi), modeling

the persistence or reaction of the individual i to change as a function of its age τi,
a neighbor j is randomly selected and the opinion of agent i is modified according to
the rule si → S(si, sj).

3. Otherwise, with probability a, the idiosyncratic rule is chosen: the state si is replaced
by a randomly selected value among all possible opinion states.

4. Irrespective of the update mechanism actually used by agent i (random change or
pairwise interaction, with aging or not), its age τi is updated in the following way: if
the state si has changed, then age is reset, i.e., τi → 0; otherwise, age is incremented in
one unit, i.e., τi → τi + 1.

We restrict ourselves in this paper to the all-to-all connectivity, where each agent is
linked to every other agent. Hence, the set of neighbors of an agent i is the whole set of
agents (excluding itself). Time is measured in Monte Carlo steps, such that one unit of time
corresponds to N agent selections for updating.

Although other forms are possible, in the present study, we adopt the following two
general functional forms for the probabilities (we use q(τ) ≡ qτ for brevity in the notation),

algebraic decay : qτ =
q∞τ + q0τ∗

τ + τ∗ , (1)

exponential decay : qτ = q∞ + (q0 − q∞)e−τ/τ∗ , (2)
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where q0 and q∞, satisfying 0 ≤ q∞ < q0 ≤ 1, denote, respectively, the initial (τ = 0) and
asymptotic (τ → ∞) values of qτ , and τ∗ is a parameter dictating the rate of decrease of
the aging-probability, i.e., a larger value of τ∗ implies a slower decay. Both forms have
been considered before in the context of the study of the way that the voter model (without
idiosyncratic changes) approaches the asymptotic consensus state [38]. A previous study
of the noisy voter model [29] was limited to the algebraic case with q0 = 1/2, τ∗ = 2.
The aging-less case is recovered, formally taking the limit τ∗ → ∞, implying qτ = q0 for all
values of the age τ. Our theoretical treatment is rather general, but we adopt the values
q0 = 1 and q∞ = 0 in the numerical simulations.

3. Noisy Voter Model with Aging

In this Section, we present the results obtained for the noisy voter model with aging.
We build over the treatment of Ref. [29] but present a more general one, valid for arbitrary
forms of the aging-update probability.

In this model, each agent i is characterized by its binary state variable, si ∈ {−1,+1},
and its age or residence time in state si, τi. We denote with x±τ (t) the fractions of agents in
states ±1 and with age τ, such that x(t) = ∑∞

τ=0 x+τ (t) is the total fraction of agents in state
+1 at time t, and 1 − x(t) = ∑∞

τ=0 x−τ (t) is the total fraction of agents in state −1 at time t.
As detailed in Appendix A.1, it is possible to derive a closed evolution equation for x(t).
The procedure starts by writing down rate equations for the densities x±τ (t). One then
performs an adiabatic approximation that assumes that the evolution of x±τ (t) is attached
to that of x(t) which evolves at a longer time scale. Under this approximation, the equation
for the dynamical evolution of the fraction x(t) of agents in state +1 at time t is

dx
dt

= GV(x),

GV(x) =
a
2
(1 − 2x) + (1 − a)x(1 − x)[ΦV(x)− ΦV(1 − x)],

(3)

where the function ΦV(x) is defined as

ΦV(x) = ∑∞
τ=0 qτ FV

τ (x)
∑∞

τ=0 FV
τ (x)

, (4)

with

FV
0 (x) = 1, FV

τ (x) =
τ−1

∏
k=0

γ2(qk x, a), τ ≥ 1, (5)

and
γn(z, a) =

a
n
+ (1 − a)(1 − z). (6)

The steady state-solutions, xst, are obtained by setting the time derivative of the density
x(t) to equal zero, or GV(xst) = 0, according to Equation (3). Note that, due to its very
nature, the adiabatic approximation does provide the correct values of these steady-state
solutions. This is because the exact calculation of the steady-state solutions requires that
the rates of change of all densities are set to zero. This leads to the condition GV(xst) = 0,
which is also a result of the adiabatic approximation. What the approximate dynamical
Equation (3) provides is the stability of the different steady-state solutions as determined
by the sign of the derivative dGV(x)/dx evaluated at xst.

In the aging-less case, qτ = q0, ∀τ, it is ΦV(x) = q0 and the only fixed point of
Equation (3) is xst = 1/2, which is stable. This indicates that the disordered phase is the
only asymptotic solution. It is quite clear from the structure of Equation (3) that xst = 1/2
is, trivially, also a steady-state solution for the aging situation, for an arbitrary function
ΦV(x). The stability of this trivial solution and the existence of other steady-state solutions
depend solely on the function GV(x).
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For the algebraic functional form of the aging-update probabilities given by Equation (1),
it is possible, as explained in Appendix B, to obtain an analytical form for the function ΦV(x)
in terms of hypergeometric functions. However, even in this case, the non-trivial steady
state values and their stability have to be obtained numerically. For the exponential form
of the aging-update probabilities given by Equation (2), it does not seem to be possible to
express ΦV(x) in terms of other known functions, but we outline in Appendix B.2 a convenient
numerical algorithm for its evaluation.

Both for the algebraic and the exponential forms of the aging-update probabilities,
the numerical analysis concludes that, in the case that q0 = 1, q∞ = 0, the solution xst = 1/2
is stable for a > ac(τ∗) and unstable for a < ac(τ∗) and that a new pair of symmetric stable
solutions xst, 1− xst emerge for a ≤ ac(τ∗). These two solutions share the same stability, as it
can easily be proven that dGV(x)/dx|x=xst

= dGV(x)/dx|x=1−xst
. This change of stability of

the symmetric solution xst = 1/2 is understood as a phase transition between a disordered
phase at a > ac(τ∗) where both opinions ±1 coexist in equal proportion to an ordered,
consensus phase for a < ac(τ∗) where one of the opinions is majoritarian. The existence
of this phase transition is one of the main results presented in Ref. [29] for a particular
form of the aging probability (corresponding to the algebraic case with q0 = 1/2, τ∗ = 2).
The same transition was understood as a mapping of the problem with aging to another one
with suitable nonlinear rates in the social mechanism [36]. We now present a general study
of both the algebraic and exponential dependence of the aging probability and different
values on the parameter τ∗.

In Figure 1, we plot the magnetization, mst = |2xst − 1|, as a function of the noise
intensity, a, both for the algebraic and the exponential functional forms of the aging update
probability and for several values of the parameter τ∗. In the same plot we show the
results of numerical simulations of the stochastic rules for the agent-based model detailed
in Section 2. The simulations agree remarkably well with the analytical results, validating
the adiabatic approximation introduced in the analysis. There are some deviations with
respect to the analytical calculation for values of the probability parameter a which are
close to the critical value ac. This is attributed to the necessary consideration of a finite
number of agents N = 104 in the numerical simulations, while the theoretical treatment
considers the thermodynamic limit N → ∞.
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Figure 1. Noisy voter model with aging. Magnetization, mst = |2xst − 1|, as a function of the noise
intensity, a, for different values of the τ∗ parameter, for the algebraic (left) and exponential (right)
kernels. Solid lines correspond to the theoretical results, while symbols represent the outcomes of
numerical simulations with N = 104 agents, averaged over 5 × 106 Monte Carlo steps (MCS) after
a transient of 5 × 106 MCS. Notice the non-monotonic dependency of the critical point with the
parameter τ∗. See text for details.

For a given value of τ∗, the critical value ac can be found by calculating the point at
which the symmetric solution xst = 1/2 changes from being stable to being unstable, i.e., by
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solving the equation dGV(x)/dx|x=1/2 = 0. A relatively simple calculation shows that this
condition is equivalent to

(1 − ac)
dΦV(x)

dx

∣∣∣∣
x=1/2

= 2ac. (7)

Note that ac also appears in the function ΦV(x). The dependence of the critical value
ac on the parameter τ∗, obtained by numerically solving the previous equation, is shown
in Figure 2. The larger the value of ac, the larger the region in parameter space in which a
consensus-like phase is present. Remarkably, both for the algebraic and the exponential
cases, the critical value tends toward zero for τ∗ → 0 and τ∗ → ∞, indicating that in
those limits, the only asymptotic solution is the disordered one. The limit τ∗ → ∞ leads to
qτ = 1, ∀τ, which corresponds to the standard version (without aging) of the noisy-voter
model. It is known that this model displays a finite-size noise-induced phase transition
between disorder and consensus at a critical value of the parameter ac = 2/N. In the
thermodynamic limit, it is ac → 0, in accordance with our result. The reason for the
disappearance of the consensus in the limit τ∗ → 0 stems from the fact that the social
mechanism is activated with a probability q(τ) that tends toward 0 for all τ, except τ = 0,
for which q(0) = q0 > 0. Hence, the only effective updating mechanism acting at all
times is the set of random updates that necessarily lead to disorder. In between these two
limits, there is an optimal value τ∗

c for which ac is the maximum. For the algebraic case,
it is τ∗

c = 2.01, and the corresponding value of the noise intensity is ac = 0.224, while for
the exponential case, we find that τ∗

c = 3.77 and ac = 0.242. The critical lines ac(τ∗) of
the algebraic and exponential cases cross at the point τ∗

0 = 2.33, such that for τ∗ < τ∗
0 ,

the algebraic aging shows a larger consensus region (larger value of ac) and the opposite
for τ∗ > τ∗

0 .

10−3 10−2 10−1 100 101 102 103

τ ∗

0.00

0.05

0.10

0.15

0.20

0.25
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V Algebraic

K Algebraic

V Exponential
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Figure 2. Theoretical curves of the critical noise value ac versus the τ∗ parameter in the algebraic
and exponential cases for the noisy voter (V) and kinetic exchange (K) models. The horizontal lines
correspond to the critical value in the aging-less case in the noisy voter (solid line) and in the kinetic
exchange (dashed line) models.

4. Comparison with the Noisy Kinetic Exchange Model with Aging

We now compare the main similarities and differences between the noisy voter model
and the kinetic exchange model, both under the presence of aging.

The kinetic exchange model introduces a third, neutral value of the state variable,
si ∈ {−1, 0,+1}. At variance with the noisy voter model, a macroscopic characterization
uses both densities x±(t) of agents in states ±1 at time t. Via normalization, the density of
the agents in state 0 is given by x0(t) = 1 − x+(t)− x−(t).
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Along the lines used for the voter model and developed in more detail in Ref. [37], it
is possible to write down a closed system of equations for the densities x±(t), namely,

dx+

dt
= GK(x+, x−),

dx−

dt
= GK(x−, x+),

GK(z, w) = (1 − a)[z(1 − z − w)ΦK(z + w)− z w ΦK(w)] +
a
3
(1 − 3z).

(8)

where

ΦK(x) ≡ ∑∞
τ=0 qτ FK

τ (x)
∑∞

τ=0 FK
τ (x)

. (9)

FK
0 (x) = 1, FK

τ (x) =
τ−1

∏
k=0

γ3(qk x, a), τ ≥ 1, (10)

where γn(z, a) is given by Equation (6). Although the dynamical system for the kinetic
model, Equation (8), is quite different from that of the voter model, Equation (3), a quite
similar structure is found for the functions ΦV(x) (4) and ΦK(x) (9). As explained in
Appendix B, both functions are expressible in terms of hypergeometric functions for the
algebraic dependence of the aging probabilities and can be computed using a very efficient
numerical algorithm in the case of the exponential dependence.

Let us summarize now the main results of the analysis of the dynamical system
Equation (8). In the aging-less case, ΦK(x) = q0, the dynamical equations always admit
the steady-state solution x+st = x−st = 1/3. This solution becomes unstable for values of the
noise intensity a less than the critical value ac = q0/(3 + q0), where a pair of non-symmetric
solutions x+st ̸= x−st emerge. The behavior of the magnetization mst = |x+st − x−st | is given by

mst =


√
(q0 − (3 + q0)a)(3q0 − (1 + 3q0)a)√

3 q0 (1 − a)
, a ≤ ac,

0, a ≥ ac,
(11)

a result already obtained by Nuno Crokidakis [18] in the case that q0 = 1.
When aging is included, the basic structure of the solution remains [37]: there is

always a symmetric phase x+st = x−st steady-state solution which is stable for a > ac(τ∗).
For a < ac(τ∗), this solution becomes unstable and a pair of non-symmetric stable
solutions emerge. It is not possible to give explicit expressions for the solutions x±st for
an arbitrary function ΦK(x), and they have to be determined numerically. The stability
of these solutions is also determined numerically from the sign of the eigenvalues of the
Jacobian matrix 

∂ẋ+

∂x+
∂ẋ−

∂x+

∂ẋ+

∂x−
∂ẋ−

∂x−


∣∣∣∣∣∣∣∣∣
x±=x±st

(12)

evaluated at the fixed points. Here, the dot over a letter denotes the time derivative.
In Figure 3, we show the results of the magnetization mst as a function of the noise

intensity a for two values of the τ∗ parameter for the noisy voter (mst = |2xst − 1|) and
for the kinetic exchange (mst = |x+st − x−st |) models with aging. In both cases, we find high
agreement between theoretical results and numerical simulations using the stochastic rules
of the processes.
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Figure 3. Comparison of the noisy voter model (V) and the noisy kinetic exchange model (K), both
under the influence of aging. Magnetization mst as a function of the noise intensity a in the algebraic
and in the exponential cases for two values of the τ∗ parameter: τ∗ = 2 (left) and τ∗ = 10 (right).
Results of the mean-field theory are plotted with solid lines, while those of numerical simulations are
displayed with symbols. The simulations have been performed with 104 agents and averaged over
5 × 106 MCS after 5 × 106 thermalization MCS.

As can be seen in Figure 2, for sufficiently small values of τ∗ (strong or moderate
aging, e.g., τ∗ = 2 in Figure 3), the most significant determining factor for the existence
of a given consensus region is not the type of model considered (either voter or kinetic
exchange), but the type of aging kernel. In particular, algebraic aging, which decays most
slowly with τ, is the one that most enhances this effect. On the other hand, for large
values of τ∗ (weak aging, e.g., τ∗ = 10 in Figure 3), the kinetic exchange model gives
rise to considerably larger consensus regions than the voter model, regardless of the type
of aging considered (algebraic or exponential), which is consistent with the feature that
in the aging-less limit (τ∗ → ∞), the kinetic model has a non-null critical point in the
thermodynamic limit, in contrast with the voter model.

The most interesting result for the kinetic model is the non-monotonic behavior of the
magnetization: the critical value ac(τ∗) exceeds the value corresponding to the aging-less
case ac = 1/4, and it then approaches asymptotically to 1/4. As can be seen in Figure 2,
this phenomenon occurs for both profiles of aging. Moreover, as in the noisy voter model
with aging, in the kinetic model there is also a value τ∗

0 such that for τ∗ < τ∗
0 , the algebraic

aging gives rise to a larger consensus region than the exponential aging, while for τ∗ > τ∗
0 ,

the situation is reversed. For the noisy kinetic exchange model, it is τ∗
0 = 5.40.

5. Final Remarks

We have considered two models of opinion formation, namely the noisy versions of
the 2-state voter and 3-state kinetic exchange models, and introduced the effect of aging
through the probability of change qτ acting on the interaction between agents. Moreover,
we considered two different families of kernels for qτ : either algebraically or exponentially
decaying with τ.

A mean-field description has been given for the generic form of q(τ), unifying the
previous results for the two models [29,37] and extending part of them to embrace a wider
family of models with n opinion states. This description relies on obtaining the evolution
equations for the density of the agents in each opinion state s and with the given age τ.
Then, the steady state solutions of this system of (infinite) equations and the analysis of
its stability (via an adiabatic approximation valid when separation of timescales holds)
allowed for the obtaining of the plots of the order parameter mst vs. the noise probability a,
in agreement with agent-based simulations in a complete graph.

We have particularly considered the algebraic form qτ = (q∞τ + q0τ∗)/(τ + τ∗)
and the exponential form qτ = q∞ + (q0 − q∞) exp(−τ/τ∗), with 0 ≤ q∞ < q0 ≤ 1.
In numerical examples, we focused on the case that (q0, q∞) = (1, 0). Our results indicate
that qualitatively similar tendencies emerge for both kernels in both models as follows.
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For sufficiently large τ∗ (weak aging), there is good agreement with the aging-less situation,
as expected. For all values of τ∗, the magnetization, mst, as a function of the noise intensity,
a, displays a continuous transition from order to disorder at a critical value ac. In all the
analyzed cases, we observed an optimal value of τ∗ to obtain a consensus (maximizing this
critical value ac). It is also noteworthy that, while both models produce different results
under weak aging, when aging is strong or moderate, the critical value ac becomes nearly
insensitive to the particular social interaction rule (si, sj) and number of opinion states n.

An interesting continuation would be to go beyond all-to-all interactions and to study
aging effects on the opinion dynamics in random networks. Moreover, other forms of the
aging kernel might also bring new features.
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Appendix A. Rate Equations

In the general case of n possible state values s, the rate equations for the density xs
τ of

the agents in state s and age τ are

dxs
τ

dt
= Ωss(τ − 1)− ∑

s′
Ωss′(τ), τ ≥ 1, (A1)

where Ωss′(τ) is the transition rate from state s to state s′. The first term accounts for
those updates that did not result in a change of state and hence increase their internal time
from τ − 1 to τ, while the second accounts for those that resulted in a change of state and
therefore resulted in a change τ → 0 of the internal time. For τ = 0, the rate equation
includes all those changes that result in a reset of the internal time,

dxs
0

dt
=

∞

∑
τ=0

∑
s′ ̸=s

Ωs′s(τ)− ∑
s′

Ωss′(0). (A2)

Adding Equations (A1) and (A2) over all values of τ, one obtains the rate equations for
the density of agents in each state s as xs = ∑∞

τ=0 xs
τ. We now derive the rate expressions for

the noisy voter. A similar treatment for the kinetic exchange model can be found in Ref. [37].

Appendix A.1. Noisy Voter Model with Aging

The state can take two possible values s ∈ {−1,+1}. For the all-to-all connectivity
adopted in this paper, the set of transition rates Ωss′ comprises

Ω−−(τ) = x−τ
( a

2
+ (1 − a)(1 − x+qτ)

)
,

Ω−+(τ) = x−τ
( a

2
+ (1 − a)x+qτ

)
,

Ω+−(τ) = x+τ
( a

2
+ (1 − a)x−qτ

)
,

Ω++(τ) = x+τ
( a

2
+ (1 − a)(1 − x−qτ)

)
.

(A3)
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In this paper, we have used the notation x for x+ and 1 − x for x−. We show now the
derivation of the expression for the first of these rates, Ω−−(τ): The probability that an
agent with internal time τ and state value s = −1 remains −1 first requires the selection
of an agent in that state (probability x−τ ); then, if the social rule is chosen (probability
1 − a), the copying mechanism activates with a probability of qτ and the selected neighbor
must be in the state −1 (probability x−), but if the copying mechanism is not activated
(probability 1 − qτ), the state remains −1. If, on the other hand, the idiosyncratic rule is
activated (probability a) and the new state is chosen to equal −1 with a probability of 1/2,
this leads to

Ω−−(τ) = x−τ

(
(1 − a)(x−qτ + (1 − qτ)) + a

1
2

)
, (A4)

which, after the replacement of x− = 1 − x+, leads to the first of Equation (A3). Other
transition rates in these equations are obtained similarly.

From these rates and Equations (A1) and (A2), one can derive the rate equations for
xs

τ as

dx−τ
dt

= Ω−−(τ − 1)− x−τ ,

dx+τ
dt

= Ω++(τ − 1)− x+τ ,
(A5)

for τ ≥ 1, and

dx−0
dt

=
a
2

x+ + (1 − a)x−y+ − x−0 ,

dx+0
dt

=
a
2

x− + (1 − a)x+y− − x+0 ,

(A6)

for τ = 0, where we have defined

ys ≡
∞

∑
τ=0

qτxs
τ . (A7)

To obtain a closed equation for the time evolution of the densities xs, we use an
adiabatic approximation whereby we assume that the time derivative Equation (A5) of the
age-dependent density xs

τ can be set to zero, allowing for the expression of x±τ in terms of
x±τ−1. The solution of this recursive relation is

x−τ = x−0 Fτ(x+),

x+τ = x+0 Fτ(x−),
(A8)

with

F0(x) = 1, Fτ(x) ≡
τ−1

∏
k=0

γ2(qk x, a), τ ≥ 1, (A9)

and the function γ2 is defined in Equation (6). Adding Equation (A8) over all τ ≥ 0,
we obtain

x− = x−0
∞

∑
τ=0

Fτ(x+),

x+ = x+0
∞

∑
τ=0

Fτ(x−),
(A10)

which, substituted in Equation (A8), leads to
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x−τ = x−
Fτ(x+)

∑τ Fτ(x+)
,

x+τ = x+
Fτ(x−)

∑τ Fτ(x−)
,

(A11)

which are now expressed in terms of the global variables x±.
Adding Equations (A5) and (A6) over all values of τ, we obtain the corresponding

equations for the density xs of each state s.

dx−

dt
=

a
2
(x+ − x−) + (1 − a)(x−y+ − x+y−),

dx+

dt
=

a
2
(x− − x+) + (1 − a)(x+y− − x−y+).

(A12)

Moreover, note that one of the two equations can be eliminated, since x+ + x− = 1.
Then, in order to obtain a closed evolution equation for the global variable x+, one needs
to express the variables ys appearing in Equation (A12) in terms of x+. This can be done by
using Equation (A11) into Equation (A7), yielding

y− = (1 − x+)Φ(x+), y+ = x+Φ(1 − x+), (A13)

where we have introduced the function

Φ(x) ≡ ∑∞
τ=0 qτ Fτ(x)

∑∞
τ=0 Fτ(x)

. (A14)

Let us note here, for consistency, that in the aging-less case, qτ = 1, it is Φ(x) = 1 and,
hence, ys = xs, for s = −1,+1.

The replacement of Equation (A13) in Equation (A12) leads to the rate equation for
x ≡ x+, Equation (3). Note that the function Φ(x) depends on the aging profile qτ both
through the explicit dependence on Equation (A14) and in the expression of the Fτ(x) of
Equation (A9). As shown in Appendix B, the function Φ(x) can be related to hypergeomet-
ric functions in the case of an algebraic dependence on the aging probability.

Appendix B. Calculation of Sums Involving Fτ(x)

Appendix B.1. Algebraic Aging

In the case of a rational function of the age of the general form

qτ =
q∞τ + q0τ∗

τ + τ∗ , (A15)

where τ∗ > 0 and 0 ≤ q∞ < q0, the function Fτ(x) defined is given by

Fτ(x) ≡
τ−1

∏
k=0

γn(qk x, a) = γn(q∞x, a)τ (τ
∗ξn(x, a))τ

(τ∗)τ
, τ ≥ 1, (A16)

where

ξn(x, a) ≡ γn(q0x, a)
γn(q∞x, a)

, (A17)

with the function γn(z, a) defined in Equation (6), and (z)τ ≡ Γ(z + τ)/Γ(z) is the
Pochhammer symbol and Γ is the gamma function.

In order to compute the function Φ(x) = ∑∞
τ=0 qτFτ(x)

∑∞
τ=0 Fτ(x)

, one needs the following sums:
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∞

∑
τ=0

Fτ(x) = 2F1(1, τ∗ξn(x, a); τ∗; γn(q∞x, a)), (A18)

∞

∑
τ=0

qτ Fτ(x) =q0 2F1(1, τ∗ξn(x, a); 1 + τ∗; γn(q∞x, a))+

q∞

1 + τ∗ γn(q0x, a) 2F1(2, 1 + τ∗ξn(x, a); 2 + τ∗; γn(q∞x, a)). (A19)

In this paper, we cover the algebraic case corresponding to q0 = 1 and q∞ = 0.

Appendix B.2. Exponential Aging

In the definition of Fτ(x), Equation (A16), where γn(z, a) is given by Equation (6),
the substitution of qτ = e−τ/τ∗ yields

Fτ(x) =
(

1 − n − 1
n

a︸ ︷︷ ︸
α

)τ(
nx

1 − a
n − (n − 1)a︸ ︷︷ ︸

b

; e−1/τ∗
)

τ

, (A20)

where (r; s)0 = 1 and (r; s)k = ∏k−1
i=0 (1 − rsi) for k ≥ 1 is the q-Pochhammer symbol, and

where α ∈ (1/n, 1) and b ∈ (0, 1). Therefore, the function Φ(x) is given by

Φ(x) = ∑∞
τ=0 qτ Fτ(x)

∑∞
τ=0 Fτ(x)

. (A21)

A way to compute numerically the infinite series in the numerator and denominator
of Equation (A21) is to cut them off by finite sums up to an upper index τ = M. However,
the convergence seems to be slow, and large values of M are needed for a precise calculation,
especially for small values of τ∗ or a. To overcome this difficulty, an efficient procedure has
been described in Ref. [37]. It starts by introducing the function

ϕ(z, b, s) =
∞

∑
τ=0

(b; s)τ zτ , (A22)

from which Equation (A21) reads

Φ(x) =
ϕ(αs, b, s)
ϕ(α, b, s)

, s = e−1/τ∗ ∈ (0, 1). (A23)

Then, we use the iteration relation that follows from its definition, Equation (A22), namely,

ϕ(α, bsk, s) = 1 + α(1 − bsk) ϕ(α, bsk+1, s), k = L, L − 1, . . . , 0 (A24)

with the initial condition
ϕ(α, bsL+1, s) =

1
1 − α

, (A25)

that results from the approximation bsL+1 ≈ 0 and the use of (0; s)k = 1 in the definition (A22).
We have taken L such that bsL+1 < ϵ = 10−12, or L ∼ log(ϵ/b)/ log s = τ∗ log(b/ϵ), although
other smaller values of ϵ produced the same results.
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