
Citation: Yang, Z.; Zhang, Q.; Chang,

W.; Xiao, P.; Li, M. EGFormer: An

Enhanced Transformer Model with

Efficient Attention Mechanism for

Traffic Flow Forecasting. Vehicles 2024,

6, 120–139. https://doi.org/10.3390/

vehicles6010005

Academic Editors: Chengming Zhang

and David Gerada

Received: 3 November 2023

Revised: 2 January 2024

Accepted: 3 January 2024

Published: 6 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

EGFormer: An Enhanced Transformer Model with Efficient
Attention Mechanism for Traffic Flow Forecasting
Zhihui Yang , Qingyong Zhang, Wanfeng Chang , Peng Xiao * and Minglong Li

School of Automation, Wuhan University of Technology, Wuhan 430070, China; yangzhihui@whut.edu.cn (Z.Y.);
liminglong@whut.edu.cn (M.L.)
* Correspondence: xp@whut.edu.cn

Abstract: Due to the regular influence of human activities, traffic flow data usually exhibit significant
periodicity, which provides a foundation for further research on traffic flow data. However, the
temporal dependencies in traffic flow data are often obscured by entangled temporal regularities,
making it challenging for general models to capture the intrinsic functional relationships within the
data accurately. In recent years, a plethora of methods based on statistics, machine learning, and
deep learning have been proposed to tackle these problems of traffic flow forecasting. In this paper,
the Transformer is improved from two aspects: (1) an Efficient Attention mechanism is proposed,
which reduces the time and memory complexity of the Scaled Dot Product Attention; (2) a Generative
Decoding mechanism instead of a Dynamic Decoding operation, which accelerates the inference
speed of the model. The model is named EGFormer in this paper. Through a lot of experiments
and comparative analysis, the authors found that the EGFormer has better ability in the traffic flow
forecasting task. The new model has higher prediction accuracy and shorter running time compared
with the traditional model.

Keywords: traffic flow forecasting; Transformer; Multi-Head Efficient Self-Attention mechanism;
Generative Decoding mechanism

1. Introduction

Transportation plays a crucial role in national construction and development. A stable
and efficient traffic management system forms the foundation for the normal transportation
of production materials and the regular functioning of residents’ lives [1,2]. However,
in recent years, the number of vehicles has been increasing annually, with the growth
rate in some cities exceeding 10%, leading to severe urban road congestion [3]. This not
only affects residents’ normal travel, increases the probability of traffic accidents, but also
severely restricts the development of urban areas [4].

In order to alleviate traffic jams, governments around the world have taken a series of
measures, such as widening roads, setting up traffic signals and implementing odd-even
license plate restrictions. However, these methods cannot solve the problem fundamentally.
The rapid development of information technology, computer science technology, and deep
learning technology provides new ideas for solving this problem. Scientists have proposed
the idea of intelligent control of traffic systems through high-speed data transmission
technology and efficient artificial intelligence algorithms. Against this backdrop, Intelligent
Transportation Systems (ITS) have emerged [5,6].

Among these, a viable strategy is to rapidly and accurately predict the traffic volume
passing through a particular section or network of roads over a future period. The system,
based on these predictions, can provide reasonable control measures, ultimately achieving
the goal of alleviating or even eliminating traffic congestion. Therefore, traffic flow forecast-
ing is of great significance to ITS [7]. Scholars at home and abroad have conducted in-depth
research on this issue and proposed a variety of prediction methods based on statistics,
machine learning, and deep learning [8].

Vehicles 2024, 6, 120–139. https://doi.org/10.3390/vehicles6010005 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles6010005
https://doi.org/10.3390/vehicles6010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0009-0005-1645-2006
https://orcid.org/0009-0008-8853-6841
https://orcid.org/0000-0001-8240-8293
https://doi.org/10.3390/vehicles6010005
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles6010005?type=check_update&version=1

Vehicles 2024, 6 121

In 2017, Google introduced the Transformer [9], which achieved the best results
in Natural Language Processing (NLP) tasks. Over time, this model has attracted the
attention of many scholars and has been improved and widely applied in time series
prediction problems such as Informer [10], Reformer [11], and Earthformer [12]. However,
the quadratic complexity of Scaled Dot Product Attention in time and memory has become
a bottleneck for model scaling, and the dynamic output of the decoder carries the risk of
error propagation and accumulation [10–13].

To address the above problems, this paper makes two improvements to the Trans-
former. Firstly, an Efficient Self-Attention mechanism is proposed, which reduces the
dimensions of the key and value matrices through a linear layer, effectively reducing com-
putational overhead. Secondly, a Generative Decoding mechanism is adopted in place of
the original Dynamic Decoding mechanism. By outputting the prediction results of all
steps at once, not only is the inference speed of the model accelerated, but the issues of
error propagation and accumulation are also reduced. The new model is named EGFormer
in this paper.

To verify the predictive performance of the new model, extensive experiments were
conducted on two public datasets. The Recurrent Neural Networks(RNN) and its variants,
as well as the Transformer and its improved model Informer, which are widely used in
NLP problems and time series prediction tasks, were chosen as comparison models. In the
analysis of experimental results, the authors conducted a detailed comparison with the
results of the comparison models in terms of running time, prediction accuracy, and model
robustness, and deeply analyzed the causes of the experimental results.

The results indicate that in traffic flow forecasting tasks, the newly proposed model
can effectively extract non-linear features from the data. Compared with the models
currently in widespread use, the EGFormer has higher prediction accuracy and shorter
computation time.

The main contributions of this paper can be summarized as follows:

1. To address the quadratic complexity issue of Scaled Dot Product Attention in terms
of time and memory, this paper proposes an Efficient Self-Attention mechanism. In
this mechanism, the key and value matrices are projected into a lower-dimensional
space through a linear layer, successfully reducing the computational overhead of
the algorithm.

2. In the Transformer, a Generative Decoding mechanism is used to replace Dynamic
Decoding. This operation not only accelerates the inference speed of the model but
also effectively suppresses the problem of error propagation and accumulation.

3. This paper establishes the EGFormer based on the encoder–decoder structure and im-
plements traffic flow forecasting tasks on this basis. The authors conducted extensive
experiments using the public traffic flow datasets Pems04 and Pems08 to verify the
performance of the model. The experimental results demonstrate the superiority of
the model.

2. Preliminary
2.1. Multi-Head Self-Attention Mechanism

In 2017, the Google team proposed the Transformer based on the Self-Attention
mechanism, achieving state-of-the-art results in the NLP field and attracting the interest
of numerous scholars at home and abroad. In this paper, for convenience, the author only
provides a brief introduction to the Self-Attention mechanism. The specific details of the
Transformer can be found in literature [9].

The Self-Attention mechanism is primarily used to learn the correlations between
tokens in a sequence. The values V ∈ RLV×dmodel are linearly mapped to the output through
the queries Q ∈ RLQ×dmodel and keys K ∈ RLK×dmodel , with the weights determined by the
correlation between Q and K. The computation process of the Attention mechanism can be
divided into the following three steps:

Vehicles 2024, 6 122

Step 1: The correlation between Q and K is calculated through Scaled Dot Product:

Corr =
QKT

√
dmodel

(1)

where KT denotes the transpose of K; dmodel is the dimension shared by the model.
Step 2: The Corr is normalized by row. To further highlight the differences between

the correlations, the SoftMax operation is usually used:

ai,j =
exp

(
corri,j

)
m
∑

k=1
exp(corri,k)

(2)

Step 3: Multiply the normalized Corr by V to obtain the final attention result:

Attention(Q, K, V) = aV (3)

In addition, to learn more about the correlations between sequences, linear neural
network layers with learnable parameters are typically used to map Q, K, and V to different
spaces and aggregate the attention results computed in each space. The final output is
then passed through a linear layer to maintain the same dimensionality. This operation,
an improvement on Self-Attention, is commonly referred to as the Multi-Head Attention
mechanism. Specifically, its computation method is as follows:

MHAttention(Q, K, V) = Concat(H1, L, Hh)Wo (4)

where. Hi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

where h denotes the number of heads. Hi represents the output result of the i-th Attention
head; WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dV and Wo ∈ RhdV×dmodel are
learnable parameters.

2.2. Related Work

The research on traffic flow forecasting can be traced back to the 1960s and 1970s.
After more than half a century of development, various prediction methods have been
continuously proposed and widely used in engineering practice. According to the model
type, these methods can be categorized into three groups: prediction methods based on
statistical theory, prediction methods based on machine learning, and prediction methods
based on deep learning.

2.2.1. Prediction Methods Based on Statistical Theory

The History Average (HA) model is the initial model of traffic flow forecasting re-
search, which predicts future traffic flow by a weighted average of historical data. Still, it
has been gradually discarded by researchers due to its oversimplification and low predic-
tion accuracy. The Autoregressive Integrated Moving Average (ARIMA) [14–16] model
and its variants are classical methods in traffic flow forecasting based on statistical theory.
Ahmed et al. [17] investigated highway traffic and occupancy time series using ARIMA
and finally found that the best metrics for all datasets were found when the model was
ARIMA (0,1,3). However, the model was limited by the assumption of smoothness of
the time series. In addition, Kalman Filtering (KF) is also a prediction method based on
statistical theory. Okutanil et al. [18] proposed two methods based on KF and achieved
better results in traffic flow forecasting. Xie et al. [19] investigated the application of KF
and Discrete Wavelet Transform (DWT) in short-term traffic flow forecasting, and found
that the wavelet-Kalman Filter performs better than the traditional KF.

Vehicles 2024, 6 123

2.2.2. Prediction Methods Based on Machine Learning

Machine learning-based prediction methods are one of the important branches of
traffic flow forecasting theory, mainly including Support Vector Regression (SVR) and
K-Nearest Neighbor (KNN) as well as variants of these two models. Li et al. [20] proposed
a short-duration traffic flow forecasting model based on improved SVR and achieved
the best results in the comparison model. Aiming at the difficulty of parameter selection
and the improvement of prediction accuracy, Li et al. [21] used the Artificial Bee Colony
algorithm (ABC) to optimize the SVR parameters and achieved satisfactory results in the
experiments. Lin et al. [22] used a combination of SVR and KNN to predict traffic flow and
demonstrated the superiority of the model through experiments. Liu et al. [23] proposed a
hybrid prediction model based on KNN and SVR features and found experimentally that
the prediction accuracy of this model is better than that of traditional prediction models
such as SVR.

2.2.3. Prediction Methods Based on Deep Learning

Deep learning models discard the analysis of complex physical principles and the
derivation of mathematical formulas, and the optimal combination of parameters in the
model is obtained through a large amount of data training. With the rapid development
of computer arithmetic, the potential of this field in the prediction of traffic flow has been
further explored.

Recurrent Neural Networks (RNN) [24] and its variants, Gated Recurrent Unit
(GRU) [25–28] and Long Short-Term Memory (LSTM) [4,29], are one of the commonly used
methods for traffic flow forecasting, where the model progressively analyzes and models
the data along the time axis during the training process. Venkatesan et al. [30] proposed
a prediction model based on CNN-LSTM, and the experimental results show that the
model has better prediction performance. Yang [31] proposed a traffic flow forecasting
model based on Recurrent Convolutional Neural Network and achieved good prediction
performance in the experimental results. However, these models place more weights on
several time steps closer to the current moment and cannot focus well on more distant
temporal information, so they perform poorly in long-time traffic flow forecasting and are
prone to the problems of gradient vanishing and gradient explosion.

Graph Neural Network (GNN) is another method commonly used in traffic flow fore-
casting. This type of model can effectively improve the prediction accuracy by considering
the sensors on the road as the nodes of the graph; the sensors speak of the connection
relationship of the nodes, then modeling the traffic road network as a graph to model the
spatial correlation, and then modeling the temporal correlation through networks such as
RNN. Yu et al. [32] proposed a framework of the Spatio-Temporal Graph Convolutional
Networks (STGCN), which employs graph convolution and ordinary convolution to extract
the spatial and temporal correlations of the traffic road network, respectively, and reduces
the computational overhead of the model by Chebyshev polynomial approximation and 1st
order approximation, finally verifying the superiority of the model through experiments.
Guo et al. [33] introduced the Attention mechanism into the STGCN model and proposed
the Attention based Spatial-Temporal Graph Convolutional Networks (ASTGCN) model;
the experimental results showed that the prediction performance of ASTGCN was better
than that of STGCN and other traditional prediction models. However, these models
require the researcher to have a good understanding of the spatial structure of the trans-
portation road network, and the connectivity between nodes has a more significant impact
on the prediction performance.

The Transformer-based method is one of the current research hotspots in traffic flow
forecasting. Modeling the correlations in the sequences through the Attention mechanism
in the model effectively exceeds the limitation of temporal distance, which allows the model
to learn more information between the sequences, and the performance is also better in
the task of long-time traffic flow forecasting. However, the quadratic time complexity of
the Attention mechanism limits the model’s extension to longer time series. In response,

Vehicles 2024, 6 124

many scholars have improved the Self-Attention mechanism in the Transformer model
to better extend it to longer sequences of prediction tasks. Zhou et al. [10] proposed a
ProbSparse Self-Attention mechanism that successfully reduces the time complexity to
O(L · log L). Wu et al. [13] used a decompositional framework and an Auto-Correlated
mechanism that reduces the time complexity to O(L · log L) and allows the model to focus
on series-wise connections. Kitaev et al. [11] used a hash Attention mechanism instead
of the original Self-Attention mechanism in the Transformer, again reducing the time
complexity to O(L · log L). However, these models select only Top-k Attention values in
the sequence, which may result in partial loss of information.

3. Methodology

Figure 1 shows the overall structure of the EGFormer. This model follows the
Transformer framework and consists of two main parts: the encoder and the decoder.
Both the encoder and the decoder are composed of one or more modules with the same
structure but non-shared parameters. Each encoder module consists of an Efficient Self-
Attention unit and a Feed-Forward Neural Network. Each decoder module first models
the input information through a Masked Efficient Self-Attention unit, then facilitates
information interaction between the encoder and decoder through an Efficient Attention
mechanism, and finally ensures the data dimension remains unchanged through a Feed-
Forward Neural Network. The output of the last decoder module is connected to a
feed-forward layer to obtain the final output of the model. Furthermore, to prevent the
model from experiencing the vanishing gradient problem as the network depth increases
during computation, the model adds a residual block [34,35] and layer normalization
operation [36] after each computation.

Vehicles 2024, 6, FOR PEER REVIEW 6

Figure 1. Structure of the EGFormer.

3.1. Efficient Self-A ention Mechanism
Equations (1)–(3) in the previous section describe the computation of the Self-A en-

tion mechanism. In this process, two matrices Q and K with sequence length L and
dimension modeld need to be multiplied. However, in prediction tasks dealing with long
sequences, the computation of A ention leads to huge storage requirements.

To address this problem, this paper proposes an Efficient Self-A ention mechanism,
which reduces the dimensions of K and V by incorporating a linear projection matrix
with learnable parameters in the process of calculating the Self-A ention, and thus real-
izes the purpose of reducing the computation of the model. Equation (6) shows the specific
calculation method:

 Attention Q K V
i i i i i iH = QW ,EKW ,FW (6)

where n k
iE and n k

iF are the projection matrices of two learnable parameters.
k is a custom parameter that can be set as a constant number smaller than n . In this

way, the original dimensionality of iH is maintained and the storage consumption is re-
duced.

Figure 2 shows the structure diagram of the Efficient Self-A ention mechanism.

Multi-Head
Efficient

Self-attention

Add&Norm

Feed Forward

Add&Norm

Masked Multi-Head
Efficient

Self-attention

Add&Norm

Feed Forward

Add&Norm

Multi-Head
Efficient Attention

Add&Norm

Fully Connected Layer

enX

deX

Q

Q

Q

K V

K V

K V
xN xM

Embedding

Embedding

0 0 0 0

y

Figure 1. Structure of the EGFormer.

Vehicles 2024, 6 125

3.1. Efficient Self-Attention Mechanism

Equations (1)–(3) in the previous section describe the computation of the Self-Attention
mechanism. In this process, two matrices Q and K with sequence length L and dimension
dmodel need to be multiplied. However, in prediction tasks dealing with long sequences, the
computation of Attention leads to huge storage requirements.

To address this problem, this paper proposes an Efficient Self-Attention mechanism,
which reduces the dimensions of K and V by incorporating a linear projection matrix with
learnable parameters in the process of calculating the Self-Attention, and thus realizes
the purpose of reducing the computation of the model. Equation (6) shows the specific
calculation method:

Hi = Attention
(

QWQ
i , EiKWK

i , FiWV
i

)
(6)

where Ei ∈ Rn×k and Fi ∈ Rn×k are the projection matrices of two learnable parameters. k
is a custom parameter that can be set as a constant number smaller than n. In this way, the
original dimensionality of Hi is maintained and the storage consumption is reduced.

Figure 2 shows the structure diagram of the Efficient Self-Attention mechanism.

Vehicles 2024, 6, FOR PEER REVIEW 7

Figure 2. Structure of the Efficient Self-A ention mechanism.

3.2. Masked Efficient Self-A ention Mechanism
In the real world, the future is unknown, so a Masked Efficient Self-A ention mech-

anism is needed in the decoder structure. The mechanism is computed in essentially the
same way as the Efficient Self-A ention mechanism, except that the future A ention score
is set to 0 during the computation process. This means that the model can only learn
knowledge in historical data and cannot learn any information from future data. In the
formulaic expression, it is sufficient to perform the following operation on the correlation
score Corr in Equation (1):

,

,

,

,

i j

i j

Corr if i j
Corr

if i j
 (7)

3.3. Generative Decoding Mechanism
During the inference process, the Transformer still follows the Dynamic Decoding in

the RNN structure. Specifically, the output value ty of the model at moment t depends
not only on the inputs of the model, but is also influenced by the output value

0 1 t-1[y ,y ,L ,y] of the previous t -1 moments. This reasoning process can be visualized
by the schematic diagram as Figure 3 shows.

Figure 3. Schematic diagram of the inference process of the Transformer model decoder.

MatMul

Scale

Mask(opt.)

Softmax

MatMul

Qi Ki ViQ K V

Scaled dot product attention layer

Concat Layer

Linear layer

Linear layerLinear layer

Projection layer

Linear layer

Projection layer

(a). the Efficient Self-attention Mechanism (b). Scaled dot product attention layer

… … DecoderDecoderDecoderDecoder

1y

0y 1y

2y

iy

1iy

1ny

ny

Figure 2. Structure of the Efficient Self-Attention mechanism.

3.2. Masked Efficient Self-Attention Mechanism

In the real world, the future is unknown, so a Masked Efficient Self-Attention mech-
anism is needed in the decoder structure. The mechanism is computed in essentially the
same way as the Efficient Self-Attention mechanism, except that the future Attention score
is set to 0 during the computation process. This means that the model can only learn
knowledge in historical data and cannot learn any information from future data. In the
formulaic expression, it is sufficient to perform the following operation on the correlation
score Corr in Equation (1):

Corri,j =

{
Corri,j, i f i ≥ j
−∞ , i f i < j

(7)

3.3. Generative Decoding Mechanism

During the inference process, the Transformer still follows the Dynamic Decoding in
the RNN structure. Specifically, the output value yt of the model at moment t depends not
only on the inputs of the model, but is also influenced by the output value [y0, y1, L, yt−1]

Vehicles 2024, 6 126

of the previous t − 1 moments. This reasoning process can be visualized by the schematic
diagram as Figure 3 shows.

Vehicles 2024, 6, FOR PEER REVIEW 7

Figure 2. Structure of the Efficient Self-A ention mechanism.

3.2. Masked Efficient Self-A ention Mechanism
In the real world, the future is unknown, so a Masked Efficient Self-A ention mech-

anism is needed in the decoder structure. The mechanism is computed in essentially the
same way as the Efficient Self-A ention mechanism, except that the future A ention score
is set to 0 during the computation process. This means that the model can only learn
knowledge in historical data and cannot learn any information from future data. In the
formulaic expression, it is sufficient to perform the following operation on the correlation
score Corr in Equation (1):

,

,

,

,

i j

i j

Corr if i j
Corr

if i j
 (7)

3.3. Generative Decoding Mechanism
During the inference process, the Transformer still follows the Dynamic Decoding in

the RNN structure. Specifically, the output value ty of the model at moment t depends
not only on the inputs of the model, but is also influenced by the output value

0 1 t-1[y ,y ,L ,y] of the previous t -1 moments. This reasoning process can be visualized
by the schematic diagram as Figure 3 shows.

Figure 3. Schematic diagram of the inference process of the Transformer model decoder.

MatMul

Scale

Mask(opt.)

Softmax

MatMul

Qi Ki ViQ K V

Scaled dot product attention layer

Concat Layer

Linear layer

Linear layerLinear layer

Projection layer

Linear layer

Projection layer

(a). the Efficient Self-attention Mechanism (b). Scaled dot product attention layer

… … DecoderDecoderDecoderDecoder

1y

0y 1y

2y

iy

1iy

1ny

ny

Figure 3. Schematic diagram of the inference process of the Transformer model decoder.

Usually, there is some error between the output values of the model and the actual
values. Therefore, in the process of Transformer inference, with the increase of inference
depth, the prediction error will gradually propagate forward, causing the problem of error
accumulation. And the longer the prediction length of the task, the more serious this
problem becomes. This is one of the major reasons why the Transformer does not work
well in long- term traffic flow forecasting tasks.

For this aforementioned reason, this paper abandons the original Dynamic Decoding
process and adopts a Generative Decoding mechanism. This mechanism outputs the
predicted values of all time nodes at once during the model inference. Since the output
results no longer depend on the previous output of the model, the problem of error
accumulation can be effectively avoided, and the stability and accuracy of the model
prediction is improved.

3.4. Data Embedding

The Attention mechanism overlooks the temporal order of data in the sequence,
necessitating the embedding of additional positional information about the tokens in the
model input. Concurrently, incorporating additional information beyond traffic flow
data into the input can enhance the model’s learning capacity, thereby improving its
predictive ability.

Therefore, the temporal information of the sequence was also embedded in the input
sequence during the experiment. Consequently, the input data in the final model encoder
and decoder consist of three components: traffic flow data, positional encoding information
within the sequence, and temporal information, detailed as follows:

For data embedding, a one-dimensional convolution with a kernel size of 3 and a
stride of 1 is employed.

For position embedding, this study adopts an absolute position embedding method
alternating between sine and cosine as Equations (8) and (9) show:

P2i = sin
(

pos/10, 0002i/dmodel
)

(8)

P2i+1 = cos
(

pos/10, 0002i/dmodel
)

(9)

where Pi denotes the position embedding value of i-th position; pos denotes the
current location.

As for time embedding, the authors employed convolutional operations to process data
at five scales: year, month, day, hour, and minute, in order to extract relevant information
from the time series.

Vehicles 2024, 6 127

Finally, the results of the three embeddings are added together to obtain the final input
sequence as Equation (10) shows:

Xi = Pi + Di + Ti (10)

where Xi denotes the embedding result at the moment i. Pi, Di, and Ti are the position
embedding value, data embedding value, and time embedding value at the moment i.

In the Generative Decoding mechanism, Equation (11) is used to describe the input at
the decoder end:

Xt
de = Concat

(
Xt

token, Xt
pre

)
(11)

where Xt
token ∈ R

Ltoken
2 ×dmodel is the start sequence, which is the second half of the encoder

input, and Xt
pre ∈ RLpre×dmodel is the part to be predicted, which retains only its time-encoded

information at the time of input, and other information values are complemented by zeros.
Ltoken is the length of the history sequence and Lpre is the length of the predicted sequence.

Figure 4 illustrates the structure of the input data used in the model in this paper.
This approach not only captures the changing trends among the traffic flow data but also
effectively utilizes the dependencies between time and traffic flow data.

Vehicles 2024, 6, FOR PEER REVIEW 9

information at the time of input, and other information values are complemented by zeros.

tokenL is the length of the history sequence and preL is the length of the predicted se-
quence.

Figure 4 illustrates the structure of the input data used in the model in this paper.
This approach not only captures the changing trends among the traffic flow data but also
effectively utilizes the dependencies between time and traffic flow data.

Figure 4. Schematic diagram of model input composition.

4. Experimental Se ing
To validate the superiority of the EGFormer proposed in this paper, a large number

of experiments were conducted. Before analyzing the results of these experiments, it is
necessary to introduce the details involved in the experiments. In the following subsec-
tions, the authors will provide detailed information on aspects such as the experimental
datasets, comparison models, evaluation metrics, experimental environment, and hyper-
parameter se ings.

4.1. Introduction to the Datasets
The experimental datasets used in this paper are derived from the public highway

datasets Pems04 and Pems08, collected by the California Department of Transportation’s
Performance Measurement System. The time interval for these two datasets is 5 min,
meaning each sensor collects 288 data points per day. The Pems04 dataset includes data
from 307 nodes in the San Francisco Bay Area network, collected from 1 January to 28
February 2018. The Pems08 dataset contains traffic data from 170 sensors in Los Angeles
County, collected from 1 June to 31 July 2016. As this paper mainly focuses on the problem
of single-node traffic flow forecasting, only the data from node 0 of each dataset were used
in the experiments.

In the experiments, the datasets were divided in a ratio of 6:2:2. Table 1 presents the
specifics of this division.

Table 1. Dataset segmentation information.

Dataset Pems04 Pems08
Training dataset 1 January–2 February 2018 1 June–7 July 2016

Validation dataset 3 February–15 February 2018 8 July–19 July 2016
Test dataset 16 February–28 February 2018 20 July–31 July 2016

Figure 4. Schematic diagram of model input composition.

4. Experimental Setting

To validate the superiority of the EGFormer proposed in this paper, a large num-
ber of experiments were conducted. Before analyzing the results of these experiments,
it is necessary to introduce the details involved in the experiments. In the following
subsections, the authors will provide detailed information on aspects such as the exper-
imental datasets, comparison models, evaluation metrics, experimental environment,
and hyper-parameter settings.

4.1. Introduction to the Datasets

The experimental datasets used in this paper are derived from the public highway
datasets Pems04 and Pems08, collected by the California Department of Transportation’s
Performance Measurement System. The time interval for these two datasets is 5 min,
meaning each sensor collects 288 data points per day. The Pems04 dataset includes
data from 307 nodes in the San Francisco Bay Area network, collected from 1 January
to 28 February 2018. The Pems08 dataset contains traffic data from 170 sensors in Los
Angeles County, collected from 1 June to 31 July 2016. As this paper mainly focuses on the

Vehicles 2024, 6 128

problem of single-node traffic flow forecasting, only the data from node 0 of each dataset
were used in the experiments.

In the experiments, the datasets were divided in a ratio of 6:2:2. Table 1 presents the
specifics of this division.

Table 1. Dataset segmentation information.

Dataset Pems04 Pems08

Training dataset 1 January–2 February 2018 1 June–7 July 2016
Validation dataset 3 February–15 February 2018 8 July–19 July 2016

Test dataset 16 February–28 February 2018 20 July–31 July 2016

To further enhance the stability of the trained model and the accuracy of the output
results, it is necessary to normalize the traffic flow data prior to the experiments. This
paper chose the min–max normalization method using the specific calculation method in
Equation (12):

d′ = (d − dmin)/(dmax − dmin) (12)

where d′ denotes the normalized data while d is the original data. dmax and dmin are the
maximum and minimum values of the original data.

4.2. Compared Methods

To verify the predictive performance of EGFormer, we have selected several models
that are widely used in the fields of NLP and time series prediction. These models include
the RNN [24] and its variants, GRU [37] and LSTM [38]. Moreover, given the improve-
ments made to the Transformer [9] in this study, the Transformer and its enhanced model,
Informer [10], were also chosen as comparison models. Brief introductions to each of these
models are as follows:

RNN [24]: The RNN models the correlation of data in a sequence along the time
dimension, using hidden nodes within the model to retain the historical information of
the sequence. With its simple mathematical principles, ease of understanding, and short
training time, this model has been widely applied in NLP and short-term time series
prediction tasks.

GRU [37]: The GRU is an improvement on the RNN. It effectively addresses the issue
of gradient decay during the training process by introducing the concept of gates into the
model. Furthermore, it is capable of capturing changing relationships within time series.

LSTM [38]: Similar to the GRU, the LSTM filters information in the time series through
memory cells and gates in the model, thereby achieving effective information learning.

Transformer [9]: The Transformer is a deep learning model based on the Attention
mechanism proposed by the Google team. It initially achieved remarkable results in NLP
tasks and has since been widely applied in multiple fields of Artificial Intelligence. This
model is one of the important modeling frameworks in the field of time series prediction in
recent years.

Informer [10]: The Informer is an improved model proposed to address the short-
comings of the Transformer. It utilizes the ProbSparse Self-Attention mechanism, re-
ducing the time and space complexity of the algorithm from O

(
L2) to O(L · log L),

without compromising the algorithm’s ability to extract information. Currently, the
Informer is seeing increasing application in both short-term and long-term sequence
prediction tasks.

4.3. Model Evaluation Metrics

In prediction tasks, it is common to use three metrics to verify the predictive perfor-
mance of the model: Mean Absolute Error (MAE), Root Mean Square Error (RMSE),

Vehicles 2024, 6 129

and Mean Absolute Percentage Error (MAPE). Equations (13)–(15) show the specific
calculation formulas:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (13)

RMSE =

√√√√ 1
N

2

∑
i=1

(yi − ŷi)
2 (14)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

where yi is the expected traffic flow data for the i-th sample, i.e., the real data. ŷi denotes
the predicted value of the model. N is the number of samples.

4.4. Experimental Environment

All experiments conducted in this study were executed on a Windows 10 platform,
utilizing the widely popular PyTorch framework (version 1.13.1), Python version 3.9, and
CUDA version 11.6.

4.5. Experimental Hyper-Parameters Setting

In neural networks, the configuration of model hyper-parameters plays a significant
role in determining model performance. For instance, the number of hidden nodes in
the model, if set excessively high, can slow down the training speed and increase the
risk of overfitting. Conversely, if the number of hidden nodes is too low, the model
may fail to sufficiently capture the internal information of the data, resulting in poor
model performance. Thus, selecting appropriate model hyper-parameters is one of the key
prerequisites for successful experimentation.

In the initial stage of the experiment, to identify reasonable hyper-parameters in the
EGFormer and comparison models for optimal model prediction performance, a large
number of experiments were conducted using a controlled variable method. Ultimately,
the authors summarized the hyper-parameters for each model as follows.

(1) General hyper-parameters
General hyper-parameters refer to the model parameters that are included in all

models during the experimental process.
In this study, the batch size was uniformly set to 32, and the Adam optimizer with

a learning rate of 0.001 was used to train the models. The training process was halted
after 50 iterations. The experimental task was to predict the traffic flow data of the next
12 time points through a historical sequence of 24 lengths. Given that the time interval of
the dataset selected in this study is 5 min, this task can also be described as predicting the
traffic flow data for the next hour based on the data from the past two hours.

(2) Other hyper-parameters
Due to the different structures and frameworks of each model, in addition to the

aforementioned general hyper-parameters, each model also has some personalized hyper-
parameters. The settings of these hyper-parameters in the experiments are briefly intro-
duced below.

In the RNN, GRU, and LSTM, the number of internal hidden nodes was set to 64.
For the Transformer, Informer, and EGFormer, each model primarily consists of four

encoder layers and two decoder layers. In the Multi-Head Attention mechanism, the model
learns and aggregates feature information from different spaces through 8 heads. The
vector dimensions were set to 64, and the number of nodes in the fully connected layer
at the end of the decoder was 128. Moreover, to prevent model overfitting, dropout was
employed in the experiments, with the dropout rate set to 0.05. To provide a more intuitive
elucidation of the above content, Appendix A presents a detailed analysis of the impact of
the EGFormer’s hyper-parameters on prediction performance.

Vehicles 2024, 6 130

5. Results and Visualization

Based on the model structure introduced in Section 3 and the parameters set in
Section 4, the authors conducted experimental validation of the performance of the
EGFormer using data from node 0 of the Pems04 and Pems08 datasets. Simultaneously,
models based on RNN (RNN, GRU, LSTM) and Transformer-based models (Transformer
and Informer) were selected as comparison models. The experimental results and
detailed analysis will be presented in the following sections.

5.1. Statistic of Model Prediction Performance

Table 2 presents the evaluation metrics of the prediction results and the average time
consumed over 50 epochs during the training process for the six models. The authors
specifically highlighted the best evaluation metrics (presented in bold) for the prediction
task across the six models. The prediction horizons are 1, 6, and 12, respectively. The
‘Counter’ row shows the number of times each model achieved the best results.

Table 2. Prediction performance of the models.

Dataset Evaluation
Metrics

RNN-Based Models Transformer-Based Models

RNN GRU LSTM Transformer Informer EGFormer

1 6 12 1 6 12 1 6 12 1 6 12 1 6 12 1 6 12

Pems04

MAE 27.28 34.15 40.55 26.50 31.77 37.20 26.00 32.06 37.24 27.34 29.33 33.91 26.74 28.75 30.62 25.62 28.53 29.79
RMSE 38.05 45.47 53.53 36.87 43.51 50.45 36.60 43.28 50.10 38.58 40.86 43.94 37.43 39.96 41.94 36.17 39.56 40.82

MAPE (%) 13.00 19.91 23.65 13.59 16.96 21.15 13.09 18.03 19.24 14.11 15.52 17.91 14.03 15.82 16.83 12.03 13.52 14.79
Time(s) 6.28 6.77 7.96 27.61 25.73 18.94

Pems08

MAE 24.01 29.85 37.91 20.95 26.46 33.92 21.61 25.28 32.56 24.75 27.59 31.92 23.17 25.85 31.63 21.05 25.48 31.52
RMSE 32.32 40.41 52.50 28.41 36.55 46.60 29.39 35.31 46.25 30.25 34.51 46.31 29.36 35.82 46.00 28.88 35.78 44.10

MAPE (%) 8.46 10.87 13.83 7.75 9.67 13.25 7.99 9.35 11.73 8.87 10.27 14.52 8.56 11.27 13.57 7.66 9.35 11.38
Time(s) 5.99 6.00 7.47 23.41 20.88 19.50

Counter 2 2 1 1 0 14

The statistical results in Table 2 indicate that in the prediction task for the Pems04
dataset, the EGFormer exhibits superior performance in all aspects except running time.
Moreover, in the prediction task for the Pems08, the EGFormer also demonstrates its
superiority in multiple tasks. The final statistical results show that the EGFormer model
achieved the best values a total of 14 times in the two tasks, leading the count among the
six models.

5.2. Comparison of Model Time Consummation

Training time is one of the crucial metrics for evaluating model performance. The
authors calculated the average time spent on a single epoch during the training process for
each model in the two prediction tasks; Figure 5 depicts the results.

From Figure 5, it can be observed that the training times of models based on RNN
are relatively short, with RNN being the shortest, taking approximately 6 s. The GRU
and LSTM, which introduce gate signals and memory cells into the RNN architecture,
have increased computational steps compared to RNN. Experimental results show that
compared to RNN, the training times of these two models increased by approximately 4%
and 25.7%, respectively.

Meanwhile, Transformer-based models generally take more time, with the Trans-
former consuming the most time, being 4.4 and 3.9 times that of RNN on the two datasets,
respectively. Although the Informer and EGFormer take less time than the Transformer,
they still exceed 3 times the duration of the RNN. The reason for this phenomenon is the
substantial time consumed by the Attention mechanism computation in these models.

To address the bottleneck of the squared time and memory complexity of the Scaled
Dot Product Attention mechanism during the training process of the Transformer, the
Informer and EGFormer models adopt the ProbSparse Self-Attention mechanism and
Efficient Self-Attention mechanism, respectively, to reduce computational load. As a result,
the training times of these two models are less than that of the Transformer. Qualitative
calculations show that compared to the Transformer, the training times of Informer and

Vehicles 2024, 6 131

EGFormer on the Pems04 dataset decreased by 6.81% and 27.78%, respectively, and on the
Pems08 dataset, they decreased by 10.81% and 16.7%, respectively.

Vehicles 2024, 6, FOR PEER REVIEW 12

were selected as comparison models. The experimental results and detailed analysis will
be presented in the following sections.

5.1. Statistic of Model Prediction Performance
Table 2 presents the evaluation metrics of the prediction results and the average time

consumed over 50 epochs during the training process for the six models. The authors spe-
cifically highlighted the best evaluation metrics (presented in bold) for the prediction task
across the six models. The prediction horizons are 1, 6, and 12, respectively. The ‘Counter’
row shows the number of times each model achieved the best results.

Table 2. Prediction performance of the models.

Dataset
Evaluation

Metrics

RNN-Based Models Transformer-Based Models
RNN GRU LSTM Transformer Informer EGFormer

1 6 12 1 6 12 1 6 12 1 6 12 1 6 12 1 6 12

Pems04

MAE 27.28 34.15 40.55 26.50 31.77 37.20 26.00 32.06 37.24 27.34 29.33 33.91 26.74 28.75 30.62 25.62 28.53 29.79
RMSE 38.05 45.47 53.53 36.87 43.51 50.45 36.60 43.28 50.10 38.58 40.86 43.94 37.43 39.96 41.94 36.17 39.56 40.82

MAPE (%) 13.00 19.91 23.65 13.59 16.96 21.15 13.09 18.03 19.24 14.11 15.52 17.91 14.03 15.82 16.83 12.03 13.52 14.79
Time(s) 6.28 6.77 7.96 27.61 25.73 18.94

Pems08

MAE 24.01 29.85 37.91 20.95 26.46 33.92 21.61 25.28 32.56 24.75 27.59 31.92 23.17 25.85 31.63 21.05 25.48 31.52
RMSE 32.32 40.41 52.50 28.41 36.55 46.60 29.39 35.31 46.25 30.25 34.51 46.31 29.36 35.82 46.00 28.88 35.78 44.10

MAPE (%) 8.46 10.87 13.83 7.75 9.67 13.25 7.99 9.35 11.73 8.87 10.27 14.52 8.56 11.27 13.57 7.66 9.35 11.38
Time(s) 5.99 6.00 7.47 23.41 20.88 19.50

Counter 2 2 1 1 0 14

The statistical results in Table 2 indicate that in the prediction task for the Pems04
dataset, the EGFormer exhibits superior performance in all aspects except running time.
Moreover, in the prediction task for the Pems08, the EGFormer also demonstrates its su-
periority in multiple tasks. The final statistical results show that the EGFormer model
achieved the best values a total of 14 times in the two tasks, leading the count among the
six models.

5.2. Comparison of Model Time Consummation
Training time is one of the crucial metrics for evaluating model performance. The

authors calculated the average time spent on a single epoch during the training process
for each model in the two prediction tasks; Figure 5 depicts the results.

Figure 5. Comparison of average time spent during model training process.

From Figure 5, it can be observed that the training times of models based on RNN
are relatively short, with RNN being the shortest, taking approximately 6 s. The GRU and

Figure 5. Comparison of average time spent during model training process.

5.3. Loss of Validation Set

The predictive results of each model on the validation set will be discussed in detail
in this section, focusing on the convergence ability of the models. Figure 6 shows the
convergence trends of the models.

Vehicles 2024, 6, FOR PEER REVIEW 13

LSTM, which introduce gate signals and memory cells into the RNN architecture, have
increased computational steps compared to RNN. Experimental results show that com-
pared to RNN, the training times of these two models increased by approximately 4% and
25.7%, respectively.

Meanwhile, Transformer-based models generally take more time, with the Trans-
former consuming the most time, being 4.4 and 3.9 times that of RNN on the two datasets,
respectively. Although the Informer and EGFormer take less time than the Transformer,
they still exceed 3 times the duration of the RNN. The reason for this phenomenon is the
substantial time consumed by the A ention mechanism computation in these models.

To address the bo leneck of the squared time and memory complexity of the Scaled
Dot Product A ention mechanism during the training process of the Transformer, the In-
former and EGFormer models adopt the ProbSparse Self-A ention mechanism and Effi-
cient Self-A ention mechanism, respectively, to reduce computational load. As a result,
the training times of these two models are less than that of the Transformer. Qualitative
calculations show that compared to the Transformer, the training times of Informer and
EGFormer on the Pems04 dataset decreased by 6.81% and 27.78%, respectively, and on the
Pems08 dataset, they decreased by 10.81% and 16.7%, respectively.

5.3. Loss of Validation Set
The predictive results of each model on the validation set will be discussed in detail

in this section, focusing on the convergence ability of the models. Figure 6 shows the con-
vergence trends of the models.

Figure 6. Trend of loss values in the validation set.

The convergence curves intuitively reflect the convergence capabilities of each model.
Experimental results indicate that the RNN has relatively poor convergence ability. As
Figure 6a shows with the red circles, after many iterations, there are still significant fluc-
tuations. The reason for this phenomenon might be that the RNN is too simple to capture
the complex functional relationships in long-term traffic flow sequences.

In contrast, the A ention mechanism in Transformer-based models breaks through
the temporal distance of sequences and can be er capture the changing relationships in
the sequences. Therefore, their convergence ability is generally superior to that of RNN-
based models.

Interestingly, the authors found that the EGFormer has the best convergence perfor-
mance. As Figure 6b shows, it tends to stabilize after about 10 epochs of training, without
any significant rebound. The primary reason might be that the Efficient Self-A ention
mechanism in the EGFormer successfully captures the functional relationships in the se-
quence.

5.4. Relationship between Prediction Step and Evaluation Metric
This section investigates the robustness of the models by observing the trends of var-

ious evaluation metrics of the model’s prediction results on the test set as the prediction

(a). Loss function curves for the Pems04 dataset (b). Loss function curves for the Pems08 dataset

Figure 6. Trend of loss values in the validation set.

The convergence curves intuitively reflect the convergence capabilities of each model.
Experimental results indicate that the RNN has relatively poor convergence ability. As
Figure 6a shows with the red circles, after many iterations, there are still significant fluctua-
tions. The reason for this phenomenon might be that the RNN is too simple to capture the
complex functional relationships in long-term traffic flow sequences.

In contrast, the Attention mechanism in Transformer-based models breaks through
the temporal distance of sequences and can better capture the changing relationships
in the sequences. Therefore, their convergence ability is generally superior to that of
RNN-based models.

Interestingly, the authors found that the EGFormer has the best convergence per-
formance. As Figure 6b shows, it tends to stabilize after about 10 epochs of training,
without any significant rebound. The primary reason might be that the Efficient Self-
Attention mechanism in the EGFormer successfully captures the functional relationships
in the sequence.

Vehicles 2024, 6 132

5.4. Relationship between Prediction Step and Evaluation Metric

This section investigates the robustness of the models by observing the trends of
various evaluation metrics of the model’s prediction results on the test set as the prediction
step length changes. Figure 7 intuitively shows the change in MAE, RMSE, and MAPE of
each model as the prediction step length increases from 1 to 12. In Figure 7, the horizontal
axis ‘Horizon’ represents the prediction step length of the model, and the vertical axis
represents the values of each evaluation metric.

Vehicles 2024, 6, FOR PEER REVIEW 14

step length changes. Figure 7 intuitively shows the change in MAE, RMSE, and MAPE of
each model as the prediction step length increases from 1 to 12. In Figure 7, the horizontal
axis ‘Horizon’ represents the prediction step length of the model, and the vertical axis
represents the values of each evaluation metric.

Figure 7. Evaluation metrics values for different prediction steps for each model on the dataset.

It can be seen from Figure 7 that as the prediction step length increases, the values of
the three evaluation metrics also rise correspondingly. This phenomenon is consistent
with the experimental results in Table 2. The main reason is the uncertainty and unpre-
dictability of the future. As the prediction step length increases, the model learns less in-
formation, and its predictive power for the future also weakens.

Among all models, the EGFormer exhibits good stability and superior performance.
Specifically, its superiority is reflected in two aspects. First, compared to other models, the
EGFormer model has lower evaluation metrics in all tasks. In fact, in the Pems04 traffic
flow forecasting task, this model achieved the lowest score. Second, the growth rate of the
EGFormer model’s metrics as the prediction step length increases is relatively slow, indi-
cating that the model has strong stability.

5.5. Visualization of Prediction Results
This section will provide a visual representation of prediction results of the EG-

Former, mainly including the model’s traffic flow forecasting within a day and a week.
The following are the specific experimental results and their detailed analysis.

5.5.1. Visualization of Single-Day Prediction Results
Figure 8a displays the actual and predicted traffic flow data of the EGFormer on the

Pems04 dataset for 17 February 2018, while Figure 8b shows the model’s results on the
Pems08 dataset for 20 June 2016. Here, ‘Ground’ represents the actual traffic flow data,
and ‘Horizon 1’, ‘Horizon 6’, and ‘Horizon 12’, respectively, represent the results when
the prediction steps are 1, 6, and 12.

Figure 7. Evaluation metrics values for different prediction steps for each model on the dataset.

It can be seen from Figure 7 that as the prediction step length increases, the values of
the three evaluation metrics also rise correspondingly. This phenomenon is consistent with
the experimental results in Table 2. The main reason is the uncertainty and unpredictability
of the future. As the prediction step length increases, the model learns less information,
and its predictive power for the future also weakens.

Among all models, the EGFormer exhibits good stability and superior performance.
Specifically, its superiority is reflected in two aspects. First, compared to other models, the
EGFormer model has lower evaluation metrics in all tasks. In fact, in the Pems04 traffic
flow forecasting task, this model achieved the lowest score. Second, the growth rate of
the EGFormer model’s metrics as the prediction step length increases is relatively slow,
indicating that the model has strong stability.

5.5. Visualization of Prediction Results

This section will provide a visual representation of prediction results of the EGFormer,
mainly including the model’s traffic flow forecasting within a day and a week. The
following are the specific experimental results and their detailed analysis.

5.5.1. Visualization of Single-Day Prediction Results

Figure 8a displays the actual and predicted traffic flow data of the EGFormer on the
Pems04 dataset for 17 February 2018, while Figure 8b shows the model’s results on the
Pems08 dataset for 20 June 2016. Here, ‘Ground’ represents the actual traffic flow data,
and ‘Horizon 1’, ‘Horizon 6’, and ‘Horizon 12’, respectively, represent the results when the
prediction steps are 1, 6, and 12.

Vehicles 2024, 6 133
Vehicles 2024, 6, FOR PEER REVIEW 15

Figure 8. Visualization of EGFormer’s one-day traffic flow forecasting results.

It can be observed that the EGFormer can accurately perform prediction tasks under
different prediction step lengths and scenarios, indicating that the model can capture the
inherent information between data, demonstrating strong data tracking and mining capa-
bilities.

5.5.2. Visualization of Weekly Prediction Results
Figure 9 intuitively presents the significant periodicity of traffic flow data and the

EGFormer’s prediction results within a week. Specifically, Figure 9a shows the prediction
results for the Pems04 dataset from 17 February to 23 February 2018, and Figure 9b dis-
plays the prediction results for the Pems08 dataset from 21 July to 27 July 2016.

It can be observed that the EGFormer can effectively extract the periodic information
within the data, and the prediction results are able to follow the periodic changes of the
actual traffic flow data well.

Figure 9. Visualization of EGFormer’s one-week traffic flow forecasting results.

(a). One-day prediction results for the Pems04 dataset (b). One-day prediction results for the Pems08 dataset

(b). Predicted result on the Pems08 dataset from July 21 to July 27, 2016

(a). Predicted result on the Pems04 dataset from Feb. 17 to Feb. 23, 2018

Figure 8. Visualization of EGFormer’s one-day traffic flow forecasting results.

It can be observed that the EGFormer can accurately perform prediction tasks
under different prediction step lengths and scenarios, indicating that the model can
capture the inherent information between data, demonstrating strong data tracking and
mining capabilities.

5.5.2. Visualization of Weekly Prediction Results

Figure 9 intuitively presents the significant periodicity of traffic flow data and the
EGFormer’s prediction results within a week. Specifically, Figure 9a shows the prediction
results for the Pems04 dataset from 17 February to 23 February 2018, and Figure 9b displays
the prediction results for the Pems08 dataset from 21 July to 27 July 2016.

Vehicles 2024, 6, FOR PEER REVIEW 15

Figure 8. Visualization of EGFormer’s one-day traffic flow forecasting results.

It can be observed that the EGFormer can accurately perform prediction tasks under
different prediction step lengths and scenarios, indicating that the model can capture the
inherent information between data, demonstrating strong data tracking and mining capa-
bilities.

5.5.2. Visualization of Weekly Prediction Results
Figure 9 intuitively presents the significant periodicity of traffic flow data and the

EGFormer’s prediction results within a week. Specifically, Figure 9a shows the prediction
results for the Pems04 dataset from 17 February to 23 February 2018, and Figure 9b dis-
plays the prediction results for the Pems08 dataset from 21 July to 27 July 2016.

It can be observed that the EGFormer can effectively extract the periodic information
within the data, and the prediction results are able to follow the periodic changes of the
actual traffic flow data well.

Figure 9. Visualization of EGFormer’s one-week traffic flow forecasting results.

(a). One-day prediction results for the Pems04 dataset (b). One-day prediction results for the Pems08 dataset

(b). Predicted result on the Pems08 dataset from July 21 to July 27, 2016

(a). Predicted result on the Pems04 dataset from Feb. 17 to Feb. 23, 2018

Figure 9. Visualization of EGFormer’s one-week traffic flow forecasting results.

It can be observed that the EGFormer can effectively extract the periodic information
within the data, and the prediction results are able to follow the periodic changes of the
actual traffic flow data well.

Vehicles 2024, 6 134

5.6. Extension and Migration of Models

This paper addresses the inadequacies of the Transformer in traffic flow forecasting
tasks by proposing two improvement schemes. Verified by experiments, the improved
algorithm demonstrates superiority in prediction tasks. In fact, the model proposed in this
paper is not only applicable to traffic flow forecasting tasks but can also be widely used in
other time series forecasting tasks, such as electricity load forecasting, stock forecasting, and
disease spread forecasting, among others. During the model transfer process, it is necessary
to adjust the hyper-parameters of the model appropriately according to the complexity and
scale of the prediction task.

To verify the performance of the model in other domain time series prediction tasks,
the authors chose the ETT dataset for validation experiments. This dataset includes the oil
temperature data of power Transformers in two independent counties in China over two
years, with a time granularity of 15 min. Each time point is composed of the oil temperature
and six other Transformer features.

The specific hyperparameter settings in the experiment are as follows: the length of
the historical sequence is 24, both the length of the label sequence and the prediction time
sequence are set to 12, the encoding dimension of the input is 128, and 8 Efficient Attention
heads are selected to learn information from different spaces. Since the time granularity of
this dataset is larger than that of the Pems dataset, and the sequence changes are relatively
simple, only two encoder layers and two decoder layers are set in the experiment to capture
information in the time series.

Ultimately, the RMSE of the model’s prediction results on the ETT test dataset is 2.71,
and the MAE is 2.18. These experimental results once again demonstrate the powerful
capability of the proposed model in time series prediction tasks, and also show that the
model has good scalability.

In Appendix B of this paper, the authors visualized the model’s prediction results
under this prediction task in order to more intuitively display the prediction results.

6. Conclusions

Accurate traffic flow forecasting is one of the key technologies in building ITS, pro-
viding a strong guarantee for the system to make correct decisions. However, due to the
influence of various factors on traffic flow data, capturing the internal changes is quite
challenging. Therefore, accurate prediction of traffic flow data remains a major challenge in
the field of transportation.

The Transformer, with its powerful data learning ability due to the Attention mech-
anism, has performed exceptionally well in NLP and time series modeling tasks, far sur-
passing models such as RNN. However, in the task of traffic flow forecasting, researchers
have identified two problems with the Transformer. On the one hand, the spatiotemporal
quadratic complexity of the Attention mechanism leads to a significant amount of time
and memory required during the model training process. On the other hand, the model’s
inference process adopts a Dynamic Decoding approach, where the output of the previous
moment is used as the input for the inference process of the next moment, leading to error
propagation and accumulation.

This paper proposed two aspects to address these issues. Firstly, an Efficient Self-
Attention mechanism is introduced, which adds linear mapping to the key and value
matrices to reduce dimensions, thereby decreasing the computational overhead. Secondly,
a Generative Decoding mechanism is used to replace the Dynamic Decoding process. This
not only significantly accelerates the model training process but also effectively avoids the
issues of error propagation and accumulation. Finally, through extensive experiments on
two large public datasets, the superiority of the new model is demonstrated, indicating
that the improvement strategies proposed in this paper are effective and feasible.

The main contribution of this paper is that it proposed a new improvement method
for the Transformer, effectively solving some of the problems that the original model had
in traffic flow forecasting tasks. The authors also point out in the research that traffic flow

Vehicles 2024, 6 135

forecasting tasks based on Transformer-like algorithms (such as Transformer, Informer,
Autoformer, etc.) have no significant differences in data processing and modeling
frameworks from other time series prediction tasks in scenarios such as electricity,
finance, and temperature. Therefore, this model can also be further extended to other
time series prediction tasks.

Despite the achievements of this study, future research still needs to delve deeper. The
authors’ subsequent research will focus on traffic flow forecasting tasks for road networks,
while exploring further methods to sparsify the Attention mechanism. In addition, the
introduction of Graph Convolutional Neural Network algorithms is considered, which
allows for simultaneous modeling of the spatio-temporal correlation of traffic flow data
based on the traffic network, further improving the prediction accuracy of the model.

Author Contributions: Conceptualization, W.C. and Z.Y.; methodology, Z.Y. and Q.Z.; software, Z.Y.
and W.C.; validation, W.C. and P.X.; formal analysis, Z.Y., W.C. and M.L.; investigation, Z.Y. and
W.C.; resources, Q.Z. and P.X.; data curation, Z.Y. and W.C.; writing—original draft preparation, Z.Y.;
writing—review and editing, Z.Y. and W.C.; visualization, W.C. and Z.Y.; supervision, Q.Z. and P.X.;
project administration, Q.Z. and P.X.; funding acquisition, Q.Z. and P.X.. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: http://pems.dot.ca.gov/, accessed on 9 April 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A The Influence of Hyper-Parameters on Model Performance

In deep learning, hyper-parameters have a significant impact on the performance
of the model and are one of the key factors for successful experiments. In Section 4.5
of this paper, the authors describe the importance of hyper-parameters and provide a
detailed introduction to the selection strategies and optimal combinations of models in
the experiments. To provide a more intuitive illustration of this content, the authors
have conducted a detailed analysis of how the EGFormer hyper-parameters impact
prediction performance.

The authors discuss the impact of the input information encoding dimension (d_model),
the number of heads in the Efficient Attention mechanism (n_heads), the number of encoder
layers (encoder_layer), the number of decoder layers (decoder_layer), and the number
of hidden nodes in the Feed-Forward Neural Network (d_ff) on the model’s prediction
performance through a large number of experiments. In the experiments, each parameter
value increases at equal intervals within a certain range, with RMSE and runtime being
used as evaluation metrics.

For more intuitive analysis, the authors have plotted the trends of the EGFormer
evaluation metrics with changes in the five hyper-parameters. Figures A1–A5 show the
visualization results.

Vehicles 2024, 6, FOR PEER REVIEW 17

in traffic flow forecasting tasks. The authors also point out in the research that traffic flow
forecasting tasks based on Transformer-like algorithms (such as Transformer, Informer,
Autoformer, etc.) have no significant differences in data processing and modeling frame-
works from other time series prediction tasks in scenarios such as electricity, finance, and
temperature. Therefore, this model can also be further extended to other time series pre-
diction tasks.

Despite the achievements of this study, future research still needs to delve deeper.
The authors’ subsequent research will focus on traffic flow forecasting tasks for road net-
works, while exploring further methods to sparsify the A ention mechanism. In addition,
the introduction of Graph Convolutional Neural Network algorithms is considered,
which allows for simultaneous modeling of the spatio-temporal correlation of traffic flow
data based on the traffic network, further improving the prediction accuracy of the model.

Author Contributions: Conceptualization, W.C. and Z.Y.; methodology, Z.Y. and Q.Z.; software,
Z.Y. and W.C.; validation, W.C. and P.X.; formal analysis, Z.Y., W.C., and M.L.; investigation, Z.Y.
and W.C.; resources, Q.Z. and P.X.; data curation, Z.Y. and W.C.; writing—original draft prepara-
tion, Z.Y.; writing—review and editing, Z.Y. and W.C.; visualization, W.C. and Z.Y.; supervision,
Q.Z. and P.X.; project administration, Q.Z. and P.X.; funding acquisition, Q.Z. and P.X.. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: h p://pems.dot.ca.gov/, accessed on 9 April 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. The Influence of Hyper-Parameters on Model Performance
In deep learning, hyper-parameters have a significant impact on the performance of

the model and are one of the key factors for successful experiments. In Section 4.5 of this
paper, the authors describe the importance of hyper-parameters and provide a detailed
introduction to the selection strategies and optimal combinations of models in the exper-
iments. To provide a more intuitive illustration of this content, the authors have conducted
a detailed analysis of how the EGFormer hyper-parameters impact prediction perfor-
mance.

The authors discuss the impact of the input information encoding dimension
(d_model), the number of heads in the Efficient A ention mechanism (n_heads), the num-
ber of encoder layers (encoder_layer), the number of decoder layers (decoder_layer), and
the number of hidden nodes in the Feed-Forward Neural Network (d_ff) on the model’s
prediction performance through a large number of experiments. In the experiments, each
parameter value increases at equal intervals within a certain range, with RMSE and
runtime being used as evaluation metrics.

For more intuitive analysis, the authors have plo ed the trends of the EGFormer eval-
uation metrics with changes in the five hyper-parameters. Figures A1–A5 show the visu-
alization results.

Figure A1. Trend analysis of prediction performance with variations in the d_model.

d_model

tim
e/

(s
/e

po
ch

)

R
M

SE
/(v

eh
ic

le
)

Figure A1. Trend analysis of prediction performance with variations in the d_model.

http://pems.dot.ca.gov/

Vehicles 2024, 6 136Vehicles 2024, 6, FOR PEER REVIEW 18

Figure A2. Trend analysis of prediction performance with variations in the n_heads.

Figure A3. Trend analysis of prediction performance with variations in the encoder_layer.

Figure A4. Trend analysis of prediction performance with variations in the decoder_layer.

n_heads

tim
e/

(s
/e

po
ch

)

R
M

SE
/(v

eh
ic

le
)

encoder_layer

tim
e/

(s
/e

po
ch

)

RM
SE

/(v
eh

icl
e)

Figure A2. Trend analysis of prediction performance with variations in the n_heads.

Vehicles 2024, 6, FOR PEER REVIEW 18

Figure A2. Trend analysis of prediction performance with variations in the n_heads.

Figure A3. Trend analysis of prediction performance with variations in the encoder_layer.

Figure A4. Trend analysis of prediction performance with variations in the decoder_layer.

n_heads

tim
e/

(s
/e

po
ch

)

R
M

SE
/(v

eh
ic

le
)

encoder_layer

tim
e/

(s
/e

po
ch

)

RM
SE

/(v
eh

icl
e)

Figure A3. Trend analysis of prediction performance with variations in the encoder_layer.

Vehicles 2024, 6, FOR PEER REVIEW 18

Figure A2. Trend analysis of prediction performance with variations in the n_heads.

Figure A3. Trend analysis of prediction performance with variations in the encoder_layer.

Figure A4. Trend analysis of prediction performance with variations in the decoder_layer.

n_heads

tim
e/

(s
/e

po
ch

)

R
M

SE
/(v

eh
ic

le
)

encoder_layer

tim
e/

(s
/e

po
ch

)

RM
SE

/(v
eh

icl
e)

Figure A4. Trend analysis of prediction performance with variations in the decoder_layer.

Experimental results demonstrate that the hyper-parameters of the model have a
significant impact on the predictive performance of the model.

From the perspective of prediction error, the predictive performance of the model
presents similar trends with the changes of the hyper-parameters. As the model parameters
increase, the predictive performance of the model first gradually decreases, which is due to
the model gradually learning more information as the hyper-parameters increase. However,
when exceeding a certain threshold, the performance of the model begins to deteriorate.
This is primarily due to an overabundance of modules or hidden nodes causing the model
to learn information that does not exist in the dataset during the training process, resulting
in overfitting.

Vehicles 2024, 6 137
Vehicles 2024, 6, FOR PEER REVIEW 19

Figure A5. Trend analysis of prediction performance with variations in the d_ff.

Experimental results demonstrate that the hyper-parameters of the model have a sig-
nificant impact on the predictive performance of the model.

From the perspective of prediction error, the predictive performance of the model
presents similar trends with the changes of the hyper-parameters. As the model parame-
ters increase, the predictive performance of the model first gradually decreases, which is
due to the model gradually learning more information as the hyper-parameters increase.
However, when exceeding a certain threshold, the performance of the model begins to
deteriorate. This is primarily due to an overabundance of modules or hidden nodes caus-
ing the model to learn information that does not exist in the dataset during the training
process, resulting in overfi ing.

Additionally, from a temporal perspective, the time spent on each model training
increases with the enlargement of the hyper-parameters. This is because when the hy-
perparameters increase, both the computational load and the storage requirements during
the model training process increase, leading to a longer model training time.

Appendix B. Visualization of the EGFormer’s Prediction Results on the ETT Dataset
Figure A6 presents the results of the EGFormer on the ETT dataset when the predic-

tion step is 12. As can be seen from the figure, the model can follow the changing trend of
oil temperature well. These results not only reiterate the superior predictive performance
of the model but also demonstrate its excellent scalability, indicating that it can perform
well in other prediction tasks.

Figure A6. Prediction results of the model on the ETT dataset with a prediction step of 12.

References

Figure A5. Trend analysis of prediction performance with variations in the d_ff.

Additionally, from a temporal perspective, the time spent on each model training
increases with the enlargement of the hyper-parameters. This is because when the hyperpa-
rameters increase, both the computational load and the storage requirements during the
model training process increase, leading to a longer model training time.

Appendix B Visualization of the EGFormer’s Prediction Results on the ETT Dataset

Figure A6 presents the results of the EGFormer on the ETT dataset when the prediction
step is 12. As can be seen from the figure, the model can follow the changing trend of oil
temperature well. These results not only reiterate the superior predictive performance of
the model but also demonstrate its excellent scalability, indicating that it can perform well
in other prediction tasks.

Vehicles 2024, 6, FOR PEER REVIEW 19

Figure A5. Trend analysis of prediction performance with variations in the d_ff.

Experimental results demonstrate that the hyper-parameters of the model have a sig-
nificant impact on the predictive performance of the model.

From the perspective of prediction error, the predictive performance of the model
presents similar trends with the changes of the hyper-parameters. As the model parame-
ters increase, the predictive performance of the model first gradually decreases, which is
due to the model gradually learning more information as the hyper-parameters increase.
However, when exceeding a certain threshold, the performance of the model begins to
deteriorate. This is primarily due to an overabundance of modules or hidden nodes caus-
ing the model to learn information that does not exist in the dataset during the training
process, resulting in overfi ing.

Additionally, from a temporal perspective, the time spent on each model training
increases with the enlargement of the hyper-parameters. This is because when the hy-
perparameters increase, both the computational load and the storage requirements during
the model training process increase, leading to a longer model training time.

Appendix B. Visualization of the EGFormer’s Prediction Results on the ETT Dataset
Figure A6 presents the results of the EGFormer on the ETT dataset when the predic-

tion step is 12. As can be seen from the figure, the model can follow the changing trend of
oil temperature well. These results not only reiterate the superior predictive performance
of the model but also demonstrate its excellent scalability, indicating that it can perform
well in other prediction tasks.

Figure A6. Prediction results of the model on the ETT dataset with a prediction step of 12.

References

Figure A6. Prediction results of the model on the ETT dataset with a prediction step of 12.

References
1. Alshehri, A.; Owais, M.; Gyani, J.; Aljarbou, M.; Alsulamy, S. Residual Neural Networks for Origin–Destination Trip Matrix

Estimation from Traffic Sensor Information. Sustainability 2023, 15, 9881. [CrossRef]
2. Owais, M. Traffic Sensor Location Problem: Three Decades of Research. Expert Syst. Appl. 2022, 208, 118134. [CrossRef]
3. Zhao, W. Analysis of the Development of Intelligent Transportation Systems in China. Coast. Enterp. Sci. Technol. 2010, 4, 32–34.
4. Ren, Y. Traffic Flow Forecasting Based on an Improved LSTM Network. Master’s Thesis, Dalian University of Technology,

Shenyang, China, 2019.
5. Lu, H.; Li, R. Developing Trend of ITS and Strategy Suggestions. J. Eng. Stud. 2014, 6, 6–19. [CrossRef]

https://doi.org/10.3390/su15139881
https://doi.org/10.1016/j.eswa.2022.118134
https://doi.org/10.3724/SP.J.1224.2014.00006

Vehicles 2024, 6 138

6. Hu, H.; Shen, J.; Huang, A. Research on the Sustainable Transportation Development and Intelligent Transport System. J. Transp.
Syst. Eng. Inf. Technol. 2002, 2, 32–35.

7. Li, Z.; Ge, H.; Chen, R. Traffic flow forecasting Based on BILSTM Model and Data Denoising Schemes. Chin. Phys. B 2022, 31,
040502-1–040502-10. [CrossRef]

8. Jiang, W.; Luo, J. Graph Neural Network for Traffic Forecasting: A Survey. Expert Syst. Appl. 2022, 207, 117921.1–117921.28.
[CrossRef]

9. Ashish, V.; Noam, S.; Niki, P.; Jakob, U.; Llion, J.; Aidan, N.G.; Lukasz, K.; Illia, P. Attention Is All You Need. arXiv 2017,
arXiv:1706.03762.

10. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. arXiv 2020, arXiv:2012.07436. [CrossRef]

11. Kitaev, N.; Kaiser, U.; Levskaya, A. Reformer: The Efficient Transformer. arXiv 2020, arXiv:2001.04451.
12. Gao, Z.; Shi, X.; Wang, H.; Zhu, Y.; Wang, Y.; Li, M.; Yeung, D. Earthformer: Exploring Space-Time Transformers for Earth System

Forecasting. arXiv 2022, arXiv:2207.05833.
13. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series

Forecasting. arXiv 2021, arXiv:2106.13008.
14. Ahmed, M.; Cook, A. Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques. Transp. Res. Board

1979, 722, 1–9.
15. Lippi, M.; Bertini, M.; Frasconi, P. Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis

and Supervised Learning. IEEE Trans. Intell. Transp. Syst. 2013, 14, 871–882. [CrossRef]
16. Tan, M.; Wong, S.; Xu, J.; Guan, Z.; Zhang, P. An Aggregation Approach to Short-Term Traffic flow forecasting. IEEE Trans. Intell.

Transp. Syst. 2009, 10, 60–69.
17. Ahmed, M.; Cook, A.; Borowski, R.; Cilliers, M.; May, A. Urban Systems Operations; Transportation Research Board: Washington,

DC, USA, 1979.
18. Okutani, I.; Stephanedes, Y. Dynamic Prediction of Traffic Volume through Kalman Filtering Theory. Transp. Res. Part B Methodol.

1984, 18, 1–11. [CrossRef]
19. Xie, Y.; Zhang, Y.; Ye, Z. Short-Term Traffic Volume Forecasting using Kalman Filter with Discrete Wavelet Decomposition.

Comput. -Aided Civ. Infrastruct. Eng. 2007, 22, 326–334. [CrossRef]
20. Li, C.; Xu, P. Application on Traffic flow forecasting of Machine Learning in Intelligent Transportation. Neural Comput. Appl. 2021,

33, 613–624. [CrossRef]
21. Li, C.; Zhang, H.; Zhang, H.; Liu, Y. Short-Term Traffic flow forecasting Algorithm by Support Vector Regression based on

Artificial Bee Colony Optimization. ICIC Express Lett. 2019, 13, 475–482.
22. Lin, G.; Lin, A.; Gu, D. Using Support Vector Regression and K-Nearest Neighbors for Short-Term Traffic flow forecasting based

on Maximal Information Coefficient. Inf. Sci. 2022, 608, 517–531. [CrossRef]
23. Liu, Z.; Du, W.; Yan, D.; Chai, G.; Guo, J. Short-Term Traffic Flow Forecasting Based on Combination of K -Nearest Neighbor and

Support Vector Regression. J. Highw. Transp. Res. Dev. 2017, 34, 122–128. [CrossRef]
24. Yu, D.; Qiu, S.; Zhou, H.; Wang, Z. Research on Short-Term Traffic flow forecasting of Intersections based on GRU-RNN Model.

Highw. Eng. 2020, 45, 109–114.
25. Feng, S.; Feng, C.; Shen, H. Research on Traffic flow forecasting based on K-Means and GRU. Comput. Technol. Dev. 2020, 30,

125–129.
26. Lv, T. A Multi-Features Short-Term Traffic flow forecasting Method based on SDZ-GRU. Comput. Mod. 2019, 10, 60–65.
27. Wang, S.; Shao, C.; Zhang, J.; Zheng, Y.; Meng, M. Traffic flow forecasting using Bi-Directional Gated Recurrent Unit Method.

Urban Inform. 2022, 1. [CrossRef] [PubMed]
28. Zhang, X.; Li, J. Traffic flow forecasting based on GRU-BP Combined Neural Network. J. Phys. Conf. Ser. 2021, 1873.
29. Lin, F. Research on Short-Term Traffic Flow Forecasting Based on LSTM. Master’s Thesis, Chang’an University, Xi’an, China, 2020.
30. Muthukumaran, V.; Natarajan, R.; Kaladevi, A.; Magesh, G.; Babu, S. Traffic flow forecasting in Inland Waterways of Assam

Region Using Uncertain Spatiotemporal Correlative Features. Acta Geophys. 2022, 70, 2979–2990. [CrossRef]
31. Yang, G. Research on Traffic Flow Forecasting Model Based on Recurrent Convolutional Neural Network. Master’s Thesis,

Donghua University, Shanghai, China, 2022.
32. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecast-

ing. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 3634–3640.

33. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based Spatial-Temporal Graph Convolutional Networks for Traf-
fic Flow Forecasting. In Proceedings of the Thirty-Third AAAI Conference on Artifical Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; pp. 922–929.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

35. Sutskever, I.; Vinyals, O.; Le, Q. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
36. Ba, J.; Kiros, J.; Hinton, G. Layer Normalization. arXiv 2016, arXiv:1607.06450v1.

https://doi.org/10.1088/1674-1056/ac3647
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.1109/TITS.2013.2247040
https://doi.org/10.1016/0191-2615(84)90002-X
https://doi.org/10.1111/j.1467-8667.2007.00489.x
https://doi.org/10.1007/s00521-020-05002-6
https://doi.org/10.1016/j.ins.2022.06.090
https://doi.org/10.1061/JHTRCQ.0000615
https://doi.org/10.1007/s44212-022-00015-z
https://www.ncbi.nlm.nih.gov/pubmed/36471871
https://doi.org/10.1007/s11600-022-00875-8

Vehicles 2024, 6 139

37. Cho, K.; Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. Comput. Sci. 2014. [CrossRef]

38. Gers, F.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.1162/089976600300015015
https://www.ncbi.nlm.nih.gov/pubmed/11032042

	Introduction
	Preliminary
	Multi-Head Self-Attention Mechanism
	Related Work
	Prediction Methods Based on Statistical Theory
	Prediction Methods Based on Machine Learning
	Prediction Methods Based on Deep Learning

	Methodology
	Efficient Self-Attention Mechanism
	Masked Efficient Self-Attention Mechanism
	Generative Decoding Mechanism
	Data Embedding

	Experimental Setting
	Introduction to the Datasets
	Compared Methods
	Model Evaluation Metrics
	Experimental Environment
	Experimental Hyper-Parameters Setting

	Results and Visualization
	Statistic of Model Prediction Performance
	Comparison of Model Time Consummation
	Loss of Validation Set
	Relationship between Prediction Step and Evaluation Metric
	Visualization of Prediction Results
	Visualization of Single-Day Prediction Results
	Visualization of Weekly Prediction Results

	Extension and Migration of Models

	Conclusions
	Appendix A
	Appendix B
	References

