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Abstract: Accidents due to defective railway lines and derailments are common disasters that are
observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over
the detection of such faults to prevent such accidents. However, manual detection of such faults
periodically can be both time-consuming and costly. In this paper, we have proposed a Deep Learning
(DL)-based algorithm for automatic fault detection in railway tracks, which we termed an Ensembled
Convolutional Autoencoder ResNet-based Recurrent Neural Network (ECARRNet). We compared its
output with existing DL techniques in the form of several pre-trained DL models to investigate railway
tracks and determine whether they are defective or not while considering commonly prevalent faults
such as—defects in rails and fasteners. Moreover, we manually collected the images from different
railway tracks situated in Bangladesh and made our dataset. After comparing our proposed model
with the existing models, we found that our proposed architecture has produced the highest accuracy
among all the previously existing state-of-the-art (SOTA) architecture, with an accuracy of 93.28%
on the full dataset. Additionally, we split our dataset into two parts having two different types of
faults, which are fasteners and rails. We ran the models on those two separate datasets, obtaining
accuracies of 98.59% and 92.06% on rail and fastener, respectively. Model explainability techniques
like Grad-CAM and LIME were used to validate the result of the models, where our proposed
model ECARRNet was seen to correctly classify and detect the regions of faulty railways effectively
compared to the previously existing transfer learning models.

Keywords: deep convolutional neural networks; RNN; ensemble learning; inceptionV3; xception;
inceptionResNetV2; explainable AI; railway; fastener; rail

1. Introduction

Since 1862, the railway has been an integral element of Southeast Asia as a cost-effective,
safe, and convenient mode of transportation for all classes of people. Railway tracks have
played a crucial part in carrying masses over them in the form of passenger trains and good
transportation trains. But train accidents can inflict huge damage to a nation as their aftermath
brings a much more horrifying scenario compared to any other transportation accident.

The majority of the accidents occur due to derailments that have gruesomely stacked
up many deaths. According to [1] 43% of all subsequent train accidents and 67 percent of
the death toll in India are caused by railroad level crossings. The fatality rate from different
countries might show different numbers but one thing that remains constant is its high
percentage. In [2], a comparative analysis of accidents was performed in Bangladesh during
2008–2014, where among 18,771 accidents, (12%) took place on railways. A lot of effort was
put into accident prevention and recovery but less work is being conducted on railway
accident prevention in Bangladesh [3]. Identifying the faults present on railway tracks and
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attending to their repairs can prevent accidents. However, the fault detection method is
done manually in Bangladesh railways. Manual detection and analysis of faults are hectic,
which can also cause a lack of accuracy if people are assigned to cover the huge distances
of railway tracks for inspection. This is because they can easily miss some damaged spots
which may cause accidents. Additionally, people with good technical knowledge of railway
tracks and their subsequent components like fasteners, sleepers, and railway switchers
need to inspect the tracks. Here, DL techniques can come in handy as they can replace any
manual detection techniques which are laborious, time-consuming, and inefficient. As a
result, this will lead to faster and more rapid crisis response thus leading to less number of
accidents and death.

DL has effectively proved its capability for image processing for quite a while. One of
its huge triumphs was accomplished when transfer learning architectures like-Alexnet [4]
exhibited their adequacy for the massive scale of image processing tasks. After that, we
witnessed the development of a few remarkable Neural Network (NN) models, such as
VGG16 [5] as well as exceptional results for image recognition in everyday applications,
including medical image analysis [6–8] for the detection of lung diseases and the investigation
of ransom calls, face recognition [9,10], object detection with imagery from unmanned
aerial vehicles [11,12] and much more.

Automatic detection of such faults using DL can cause the process to be much
more convenient and produce more accurate results. To elaborate, different models like
InceptionV3, InceptionResnetV2, Xception, etc have been applied to different datasets,
we have observed these existing algorithms and their corresponding research papers
along with their produced results and have introduced our version of the model that
has produced better accuracy. We have tried to look into the possible limitations in
their papers and analyzed what blunders we can avoid to strengthen our model. For
our research work, we have collected our data, which is primary data, from different
cities of Bangladesh like-Satkhira and Feni and trained the images with our customized
algorithm-ECARRNet and we also have added model explainability. The following are the
significant contributions of this work:

• The dataset which we have collected consists of a total of 428 images from both faulty
and non-faulty railway tracks from two different parts of the track, i.e., from rails and
fasteners. Since it is hard to find faulty images, we have augmented our dataset to
increase in size before training, and class imbalance problems were also fixed using
oversampling techniques like SMOTE.

• Three SOTA CNN-based transfer learning models (InceptionV3, InceptionResnetV2,
and Xception) have been used to classify and detect the faults on railway tracks, and
their respective performances are presented using several metrics such as accuracy
curves, confusion matrices, and classification reports

• An ensembled DL architecture, ECARRNet has been proposed, to predict defective
(faulty) and non-defective (non-faulty) railway tracks with greater predictive performance
than existing SOTA.

• Explainable AI tools in the form of Grad-CAM and LIME are used to explore the
black-box nature of the models and further validate our results to prove the efficacy of
our proposed model.

The remaining component of the paper is assembled as follows: Section 2 presents
background data on the algorithm used by earlier researchers working on railway identification
of defects as well as a selection of well-written research publications on our topic of study.
The details of data acquiring, pre-processing, breakdown of dataset construction, and the
architecture of proposed and compared models are all described in Section 3. Section 4
conveys the results section, which features visualizations of the observations in terms of
the accuracies and losses of each model, while the conclusion is discussed in Section 5.
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2. Related Works

We have found various ML, DL, and computer vision-based approaches to detect
railway track faults autonomously while doing our background study. Authors of [13]
proposed a model where they used multiple models and got different results from them.
They have proposed DL models in the form of Inception V3, ResNet50, and Faster R-CNN
to detect faults in Loose Ballast, SunKink, Track Switch, and Signals. They ran these
models on more than 100 GB of video data and got 96% accuracy for Loose Ballast, 100%
accuracy SunKink, 95.6% accuracy for Track Switch, and 99.4% for Signal Color models.
Also, they prepared a track health index using those data. Lin, Y. et al. [14] have suggested
a GPS-based method that determines the fault’s location and uses a GO pro camera to take
photographs. YOLO v3 has been used as an updated model of YOLO in their proposed
architecture, which has a base network with darknet-53. Moreover, they have used Feature
Prediction Network (FPN) to upgrade the ability of prediction for small objects. They have
captured the images of fasteners and emphasized on detection of fasteners. Thus, they
have shown the precision to be 89% and the recall being 95%.

In paper [15], the authors have proposed a multiphase DL technique to perform the
segmentation of images. First, they detected the track surface defect using visual-based
track inspection systems (VTIS) and located the Regions of Interest (ROI). The segmentation
usually works by cropping the segmented image on the ROI. They have demanded their
accuracy increase from 71% to 90% as shown in Table 1. In this study [16], the U-net graph
segmentation network and the saliency cues approach of damage location were used to
identify high-speed rail damage. Their detection accuracy rate is 99.76%.

Researchers at paper [17], have discovered that combining image processing and
feeding that data into a neural network (NN) is more effective and efficient than alternative
approaches. They have used the backpropagation method and talked about a hidden
layer that will be trained using a dataset created and absolute output, with 1 denoting
railway track cracks and 0 denoting no cracks. On the other hand, paper [18] has proposed
conventional image processing to detect defects in fasteners and to remove noise from the
image which includes techniques like a median filter, binary image conversion, Gaussian
noise removal, etc. along with a projection algorithm. The use of Dense-SIFT features was
suggested as a strategy for fault detection and identification. Finally, VGG16 was trained to
recognize and diagnose fastener defects. Furthermore, Faster RCNN was also applied to
increase the detection rate and efficiency. They have shown an accuracy of 97.14% using
the Faster VGG16 network.

Min, Y. et al. [19] used scar and crackle in real-time using machine vision techniques
to detect defects. This paper proposed a damage detection model where the image is
collected at first using a plane array camera along with LED light to increase the brightness
of the picture. Then the target area is localized to extract value from H in Hue, Saturation,
and Lightness (HSL). After that, the authors used several image enhancement techniques
to get more features from the image such as—image denoising, threshold value, and
morphological processing. They also extracted the contour information of the faulty
location using directional chain code tracking methods. M. Karakose and colleagues in [20]
have devised a technique for detecting railway faults using two separate units. They created
IAS to fulfill three tasks: expanding train tracks, enhancing contrast, and automating the
defect detection procedure. They transformed the image to grayscale first, then utilized
three separate Canny Edge Detection techniques.

In this work [21], the authors have offered an automated video analysis-based rail
track inspection approach. They kept track of how many edge pixels each window has.
The density of edges in each window is determined by this. The peak value was calculated
by charting edge density in each window vs. window numbers. The clip’s location is
represented by this peak. When the peak value is less than a certain threshold, the window
is regarded to contain noise rather than a clip. The frame will be tagged as containing
two clips if two peak values are both greater than a defined threshold. As a result, they
achieve an average accuracy of 95.3%. In research [22], they have proposed an entirely
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CNN-based system, trained on ten different classes of materials, then feature-mapped
using ten different channels. Their purpose was to concurrently identify the most likely
fastener position inside each preset ROI and then categorize those detections into one of
three fundamental conditions: background (or absent fastener), broken fastener, or good
fastener. They tested our fastener detector on 85 kilometers of continuous trackbed photos
to see how accurate it is. Using the Deep CNN MLT 3 Method, they were able to attain
95.02% accuracy.

Alawad, H. et al. [23] present a monitoring technique that makes use of computer
vision to automatically and quickly detect hazards in stations by recognizing risky acts,
giving real-time support for decision-makers, and minimizing the possible effects of
undesirable events. Then they build a sequential model at each layer, which is the simplest
form of a layer in the Keras library. With their CNN-0 model, they were able to attain
an accuracy of 81.90%. Kamilaris, A. et al. [24] compared strategies for the same data
in the same research paper, using the same measure. The prominent CNN architectures
including AlexNet, VGG, and Inception-ResNet were used. They also experimented with
their designs, some of which combined CNN with other approaches.

Yang, C. et al. [25] have proposed an ML-based railway inspection approaches, which
include a feature-based technique and a deep neural network-based technique based
on acceleration data. As a result, ResNet and FCN are examined in this work. Three
convolution blocks are used to construct FCN, which is then succeeded by a soft-max layer
and a global average pooling layer. By establishing a shortcut link between consecutive
convolutional layers, ResNet expands neural networks to a very deep structure. The results
of the experiments showed that ResNet and fully convolutional networks (FCN) both
performed well in joint detection. Yao, H. et al. [26] have suggested a model in which the
RNN is seen as having a similar ability to Convolutional Neural Network to derive features
from pictures. CNN and RNN are of equal importance. To better balance the two types of
characteristics recovered by the CNN and RNN during the training phase, the model uses
the perceptron attention mechanism to weigh the features received by the CNN and RNN,
respectively. They used stackable LSTM as the RNN module to extract the time sequence
properties from the pixels. The CNN (Inception-ResNet V2) technique was also utilized,
and the greatest accuracy was 83%.

Evaluation Metrics used in DL tasks have a critical role in generating the best classifier,
according to Alzubaidi, L. et al. [27], they are used in two steps of a typical data categorization
procedure: training and testing. They discussed FPGA, which can be used to create CNN
overlay engines with over 80% efficiency, eight-bit precision, and over 15 TOPs peak
performance. Voxnet’s accuracy was 79%, whereas ResNet’s was 80%. In the framework of
the European Common Agricultural Policy, CamposTaberner, M. et al. [28] want to learn
more about an RNN for land use categorization based on Sentinel-2 time series (CAP). The
results of the investigation show that the red and near-infrared Sentinel-2 bands provide the
most helpful data. The traits acquired from summer acquisitions were the most important
in terms of temporal information. The performance precision of the 2-BiLSTM network in
every class is over 91.4%.

Shafique, R. et al. [29] provide an acoustic analysis-based autonomous railway track
defect detection system. The data collected on Pakistani railway lines using acoustic signals
and the application of various classification systems to the gathered data are two major
contributions of this work. They achieve the greatest outcomes with RF and DT, which
have a 97% accuracy rate. A DL-based fault diagnosis network for RVSFD was built by
Ye, Y. et al. [30]. There are three phases to the diagnostic network: The GWN strategy is
used to the acceleration signal in the first phase (data preprocessing) to make the diagnostic
network resistant to relatively high-frequency influences induced by track imperfections.
An EST strategy is presented in the second step (training dataset creation) to increase the
diagnostic network’s robustness against wheel wear. Finally, a GONEST-1D CNN-based
fault diagnosis network of high-speed train suspension systems is created in the third phase
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(training and recognition). All the states can be completely recognized using the confusion
matrix given for the testing samples (100%).

Table 1. Overview of the Reviewed Sources.

Ref. Task Datasets Classifiers Accuracy

[13] Proposed models to detect faults in Loose
Ballast, SunKink, Track Switch, and Signals.

Datasets are made from the 100 GB
of video data

Inception V3, ResNet50,
and Faster R-CNN

100%

[14] GPS determines the fault’s location and use a
GO pro camera to take photographs.

Datasets are made from the images
extracted from video data

Yolo v3 95%

[15] Proposed a multiphase DL technique to
perform segmentation of images.

Datasets are made from the actual
rail tracks that are collected by a
COTS VTIS.

Visual-based track
inspection systems(VTIS),
TrackNet

90%

[16] To detect high-speed railway rail damage, a
combination of the U-net graph segmentation
network and the saliency cues approach of
damage localization was presented.

Type-I RSDDs dataset SCueU-Net 99.76%

[18] They proposed defect detection and
identification methods using Dense-SIFT
features.

Dataset is made up of images that
are taken from Beijing Metro Line 6.

RCNN, VGG16 97.14%

[19] Proposes a damage detection model where the
Image is collected at first using a plane array
camera along with LED light to increase the
brightness of the picture.

Datasets are made from the images
of plane array camera

Directional chain code
tracking

....

[20] A computer-based visual rail condition
monitoring is proposed.

Data acquired from a camera placed
on top of the train

Image processing ....

[21] An automated video analysis based rail-track
inspection approach.

Data acquired from a video camera
placed in front of the train

Image processing 95.3%

[22] Automated track inspection using computer
vision and pattern recognition methods.

Data acquired from a camera placed
in front of the moving train

Deep CNN 95.02%

[23] Using computer vision and pattern
recognition, perform risk management
in railway systems.

Manually collected images from
different rail tracks

Keras, ReLU, CNN 81.90%

[24] Eexamines the research questions related to
agriculture, the models used, the data sources
used, and the overall precision attained based
on the authors’ performance indicators.

PlantVillage, LifeCLEF, MalayaKew
and UC Merced

AlexNet, VGG, and
Inception-ResNet

....

[25] Proposed machine learning-based railway
inspection approaches, including a
feature-based method and a deep neural
network-based method based on acceleration
data.

The acceleration dataset was
obtained from the sensors mounted
to the rail inspection car.

ResNet, FCN 100%

[27] Provide a more comprehensive survey of the
most important aspects of DL and, including
those enhancements recently added to the
feld.

ImageNet, CIFAR-10, CIFAR-100,
MNIST

Xillinx, Voxnet, ResNet 80%

[28] Shows the use of DL approaches for the
analysis of remote sensing (RS) data is rapidly
increasing.

Datasets are built from remote
sensing (RS) data and satellite data

Sentinel-2, 2-BiLSTM,
CamposTaberner

91.4%

[29] Provide an acoustic analysis-based
autonomous railway track defect detection
system.

Datasets are built from the data
collected on Pakistani railway lines
using acoustic signals

Vector machines, LR, RF,
and DT

97%

[30] A DL-based fault diagnosis network for
RVSFD was built.

Datasets are built from the data
collected from accelerometer
sensors.

GONEST-1D CNN 100%

3. Methodology
3.1. Overview of the Proposed Architecture

We are proposing a new Ensembled Convolutional Autoencoder Resnet-based Recurrent
neural Network-based deep architecture (ECARRNet) for railway fault detection and
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compared our results with conventional models to show the prospect of RNN-based models
in image classification as shown in Figure 1. Moreover, there are some major advantages of
using a CNN-RNN ensembled model which also outperforms conventional CNN models.
Firstly, we are using convolutional autoencoders to reduce the dimensionality of images
and to extract important features from the data. In the next stage, our proposed model
contains a resnet-based transfer learning architecture trained on the imagenet dataset so
that we can use the useful network weights in our model to solve the problem of lack of
enough data, which can reduce our performance. Thirdly, we are also using an LSTM layer
which has memory cells instead of just recurrent units, to store and output information with
the help of gating mechanisms and thus extend the capability of RNN. Lastly, we are using
a few layers of fully connected neural network layers before our final binary classification
layer. We are also giving special attention to reducing vanishing or exploding gradient
problems, as our proposed architecture is quite deep. We are making use of initialization
parameters such as He kernel initializer to initialize weights, which would play a key role
in reducing vanishing or exploding gradients. In addition, batch normalization layers are
also contributing to reducing vanishing gradient problems and also act as a regularization
parameter. The proposed model is described in detail below in Table 2 that gives an
overview of the model in terms of its layers and their types.

Table 2. Model architecture summary.

Layer Type Number of Units/Neurons

Input -

Conv2D 128

MaxPooling2D -

Conv2D 64

MaxPooling2D -

Conv2D 64

MaxPooling2D -

Conv2D 64

UpSampling2D -

Conv2D 128

UpSampling2D -

Conv2D 1

InceptionResNetV2 -

GlobalAveragePooling2D -

Reshape -

Bidirectional LSTM 2900

GaussianNoise -

Dense 100

Dense 100

Dense 1
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Figure 1. Architecture of the Proposed Model.

3.1.1. Convolutional Autoencoder

Auto-encoder is an unsupervised neural network model which produces output data
with less noise and distortion. It is commonly used in data compression tasks and also
reduces the storage space of data, improves the training time, and discards variables
that are redundant. On the other hand, the convolutional neural network is also great
for extracting useful features from images. So, we are using convolutional layers to
improve the performance of a simple auto-encoder. We have also experimented with
only a convolutional neural network in the first stage of our model and found that the
convolutional auto-encoder gives better performance. Simple Autoencoders mainly have
3 parts—an encoder, code, and decoder. At first, the input passes the encoder to produce the
code, where the encoder is a fully connected neural network. Then, the decoder produces
an output only using the code, where the decoder is also a fully connected artificial neural
network. The objective of this step is to get an output that is identical to the input. The
decoder architecture often gives a mirror image of the encoder. In an auto-encoder, the
dimensionality of the input and output should always be the same.

Convolutional auto-encoder adds specialty to the basic structure of a simple auto-encoder
by replacing the fully connected layers in the encoder and decoder portion with convolutional
layers. The size of the input layers will also be equal to the size of the output layers,
similar to a simple auto-encoder. The decoder network in the convolutional auto-encoder
also transforms itself into transposed convolutional layers. Along with convolutional
layers, max-pooling layers are also included as well in the encoder and decoder network.
Convolutional auto-encoders have many use cases, such as—image compression, image
denoising, etc. [31,32]. In our proposed architecture, we have experimented with different
encoder and decoder architectures to find the optimal architecture. Our encoder architecture
has 3 convolutional layers and 3 max-pooling layers, and the layers are further strengthened
with the use of batch normalization and dropout layers. The first convolutional layer has
128 neurons with a 6 × 6 filter size and ReLU as the activation function. We are also using
a special kernel initializer called normalization to reduce the vanishing gradient. All the
max-pooling layers consist of a pooling size of 2. In the next two convolutional layers, we
are using 2D convolutional layers with 64 neurons, each with a 4 × 4 filter size. In the
decoder portion, the first 2D convolutional layer has 64 neurons, and also it has several 2D
up-sampling layers with a filter size of 2 × 2 to reconstruct the same output dimension as
input. The next convolutional layer has 128 neurons, and the last one has only one neuron
with a sigmoid activation function. All the convolutional layers in the decoder have a filter
size of 6 × 6.

In the convolutional auto-encoder part and our overall proposed model, we have used
batch normalization layers frequently and almost in between every layer. This is because,
in the beginning, our training was really slow as the data set and the model was relatively
big and was prone to overfitting. After using batch normalization extensively, our training
time improved significantly and due to the regularization effect of the batch normalization,
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it played a key role in producing state-of-the-art accuracy. According to [33], while training
a deep neural network, the distribution of each layer’s input changes during training as the
parameters of the previous layers change. As a result, training slows down and needs lower
learning rates and much more careful parameter initialization. Thus, it becomes difficult to
train models with saturating nonlinearities which are known as internal covariate shifts.
To solve this problem, we can normalize layer inputs for each training mini-batch, as it
allows the usage of higher learning rates by getting less careful about initialization. Batch
normalization is capable of achieving the same accuracy with 14 times fewer training steps
and significantly beats the model which did not use batch normalization at all.

3.1.2. Resnet Based Transfer Learning

In this stage, we are using a resnet-based transfer learning architecture which is trained
on the imagenet dataset. In transfer learning, we apply the expertise acquired by a model
from a task with abundant training data to improve performance on a new task with limited
data availability. In our problem, since we did not have so much initial data, so we had to
take the help of transfer learning to leverage what they have already learned in one task to
enhance the ability to generalize in another context. Therefore, we are using a pre-trained
model known as inception-ResNet-v2 which performed better than other pre-trained
networks such as—inceptionv3, Xception, etc. in our dataset. Inception architecture has
already been proven through many research works to give good performance at a low
cost comparatively. Moreover, it was found that training with residual inception networks
speeds up the training of inception networks largely. Residual connections in resnet
consist of convolutional layers along with relu activation functions. In Inception-ResNet,
batch normalization is used only on top of the traditional layers, but not on top of the
summarizations [34].

3.1.3. Recurrent Neural Network

This stage explains the unique portion of our proposed model. In this part, we use
recurrent neural networks, which is an artificial neural networks in which connections
between individual units form a directed cycle. RNN can model the dynamical behavior of
sequences with arbitrary lengths. In our proposed architecture, along with the convolutional
layers in the Inception-ResNet-v2 described above, it thus creates a combined CNN-RNN
framework as the data reaches the RNN layer after passing the CNN layers. The CNN-RNN
framework for image classification has many benefits [35]. In general, the recurrent neural
network is more suitable for modeling sequential data. In the CNN-RNN model, RNN
generates sequential predictions for various timesteps using the output of CNN as input.
Image data is often considered two-dimensional wave data in which convolution layers
act as a filtering process. Convolutional layers are able to filter simple band information
in an image but often leave behind important features of image information. Therefore,
using an RNN layer is important because the CNN-RNN framework can make use of RNN
to calculate the dependency and continuity features of the intermediate layer output of
the CNN model. It also allows the connection of the characteristics of these middle tiers
to the full connection network for classification prediction, which thus leads to a better
classification accuracy [36].

However, because the gradient must pass through numerous layers of the RNN, it
creates long-term dependency and thus frequently experiences vanishing and exploding
gradient issues, making it challenging to model. To solve this problem, we are using
Long-Short Term Memory (LSTM) in our proposed model. LSTM consists of memory cells
to encrypt knowledge at each instant of time. Three gates—an input gate, a forget gate,
and an output gate—control how the memory cell behaves. To be more precise, memory
cells of LSTM form a cell state which passes relevant information from earlier time steps
to later time steps, thereby, reducing the effect of short-term memory. As the cell state
carries information throughout the sequence, information is added or removed by the gates.
Gates are independent neural networks for deciding which information should be allowed
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or discarded from the cell state. On the other hand, gates consist of sigmoid activation
functions. They give output values between 0 and 1 when passed through them. This
principle is used by different gates. Forget gate makes decisions about which information
should be kept or discarded. As the information from the previous hidden state crosses the
current input, it passes through the sigmoid function. The sigmoid function produces a
value between 0 and 1, if the value is closer to 0, it is forgotten and if it is close to 1 then
it has to be remembered by the cell state. Input gates are used to update the cell state.
Finally, output gates are used which decide which hidden state to use. Therefore, these
gates assist the input signal to pass through the recurrent hidden states by retaining useful
information in the long run and removing unnecessary redundant information. In this way,
LSTM is well capable of solving the vanishing and exploding gradient problem and can
model long-term term temporal dynamics pretty well, which RNN cannot. In our paper,
we are using a bidirectional LSTM layer with 2900 neurons which helps in forming the
CNN-RNN architecture which has several advantages as mentioned above. We have also
experimented with another gated version of RNN called GRU, but bidirectional LSTM with
2900 neurons performed better in our dataset.

3.1.4. Fully Connected Layers

Lastly, our ensemble deep network consists of some fully connected layers as well. After
the LSTM layer, we add 2 more dense or fully connected layers consisting of 100 neurons each.
Finally, We have some dropout regularizers, along with batch normalization layers before our
last layer. The last layer is a dense layer with a sigmoid function for binary classification.

Lastly, we want to briefly discuss some essential parts to demonstrate the unique
feature of our proposed model, which allows us to produce such good performance. We are
using a batch size relatively low due to a lack of computational resources, typically less than
10. Dimensions of images used are typically 300 by 300, but our experimentation shows
500 by 500 and often 600 by 600 images produce the best result. We are using Adamax
optimizer as it is able to better optimize than Adam. We used binary cross entropy as our
loss function.

3.2. Comparison Models Overview

We have used 3 different state-of-the-art models for image classification in our research
to evaluate our dataset and compare the obtained results with our proposed model. The
briefings of the comparison models in terms of their architectures are discussed below.

3.2.1. InceptionV3

A model made by researchers at Google, which is a modified version of the inception
architecture [37]. Despite the model consisting of 42 layers, the computational cost is only
2.5 times greater than GoogleNet. In image classification in ILSVRC, it has become the 1st
runners-up which proves its efficacy. The Inception V3 model was trained with the dataset
used in this research and we determined its accuracy in both training and validation.

3.2.2. Xception

Depthwise Separable Convolutions are used in the deep CNN architecture known
as “Xception”. In Inception, the original input is compressed using 1 × 1 convolutions,
and each depth space is then given a new set of filters based on the input spaces. Just the
opposite occurs with Xception. Before compressing the input space using 1× 1 convolution
by applying it across the depth, it first applies the filters to each of the depth maps. We
used Xception as it does not introduce any non-linearity.

3.2.3. InceptionResNetV2

It is a deep convolutional neural network having 164 layers. Input images having
dimensions of [229× 229] are fed into the model that is passed through a convolutional block
with output dimensions of 3 × 3 having a stride of 32 followed by another convolutional
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layer having the same dimensions and stride. The next layer has a stride of 64 that is
fed into a convolutional layer and a maxpool layer. The resulting layer is passed through
2 consecutive layers of convolutional neural networks layers having dimensions of 1 × 1
with a depth of 64 and 3 × 3 with a depth of 96 respectively and through 4 layers of the
convolutional layer having dimensions of 1 × 1 with a depth of 64, 7 × 1 with a depth of 64
1 × 7 with a depth of 64 and 3 × 3 with a depth of 96. Both the emerging layers are passed
through a filter concat and eventually, the resulting output layers are passed through a
3 × 3 convolutional layer and a maxpool layer having strides of 2. Final output layers are
passed through a filter concat.

4. Performance Evaluation Parameters

We are using accuracy as our performance metrics, and we are also testing the
performance of our model using metrics like—classification reports and confusion matrices.
Our classification report has four metrics to measure the effectiveness of each of the models.
The metrics include Support, Precision, F1 score, and recall. Support can be calculated by
summing the last rows in the confusion matrix. Support is the number of occurrences of
each particular class in the true responses which means that it shows the number of actual
occurrences of the class in the dataset.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(3)

In the above set of equations,

• TP = True Positive
• FP = False Positive
• FN = False Negative
• TN = True Negative

AI models are usually considered black-box models, and they lack transparency.
Transparent models can explain why they predict and what they predict. It thus builds
trust in the model and makes sure that they are predicting only the desired object in a way
that is explainable to researchers. The objective of transparency is to find out cases in which
the model has failed substantially. There are several approaches and frameworks available
to implement explainable AI, which can produce visual demonstrations to provide a better
understanding of what a model predicts on new samples of data and how they do it. In
the case of images, patches are produced to indicate the location on which the model is
focusing. One of the most popular approaches to providing LIME (Local Interpretable
Model-Agnostic Explanations) is a revolutionary explanation method to faithfully and
comprehensibly explain the predictions of any classifier. We are using LIME in our paper
to explain the performance of our proposed model as we could not find any other available
solution to explain our custom model. Additionally, we are using Grad-CAM which
produces heat-maps on the location of the image where the model is focusing [38]. We
are using Grad-CAM to obtain the model explainability of the models, which are used to
compare with our proposed architecture. LIME is an algorithm that can faithfully explain
the predictions of any classifier and regressor by localizing it with an understandable
model [39].

The results produced by both Grad-CAM and LIME are shown in the experimental
results section.

LcGradcam = ReLU(∑
k

αc
k Ak) (4)
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Equation (4) shows the equation of Grad-CAM which is a weighted linear combination
of feature maps followed by a ReLU function. Where,

• Ak = feature map activation
• αc

k = neuron significance weight

5. Experimental Results
5.1. Data Collection

We have collected our dataset by visiting railway tracks in different locations across
Bangladesh [40]. Since the railway tracks were constructed many years earlier, only faults
for meter gauge and broad gauge lines were found. We went to the railway tracks at Jessore
and Feni and took photographs from different places in the city for several days. We went to
stations and junctions collecting data from old, new, and abandoned rail tracks. We have also
considered abandoned tracks because we can not find all kinds of faults in regular tracks. We
have mainly found faults in rails and fasteners, which are one of the major components of
railway tracks and are usually responsible for causing drastic accidents. To make a statistically
significant dataset, we could only use faults of sleepers and fasteners images for training our
model. We have collected 428 images in total, containing 156 defective and 272 non-defective
images. We tried to take images from different angles for each type of error. Some of the
sample images of our initial dataset are shown in Figure 2

Figure 2. Samples of faults on railway tracks.

5.2. Data Pre-Processing

At first, we prepared 3 different versions of the dataset to train and experiment to find
which way of arranging data would work best. In the 1st version, we used only images of
rails that contained defective and non-defective classes of images from faults in rails. In the
2nd version, we have defective and non-defective images from fasteners [41] only and in
the last and final version, we have defective and non-defective images from both rails and
fasteners combined. This makes our experiment and proposed model more reliable, as it is
repeated multiple times in multiple scenarios to produce similar results. We also cropped
each image according to the region of interest and prepared our dataset by dividing them
into test, train, and validation, each containing different types of fault.

We have done four types of augmentation and thus the number of images increased to
four times from the initial number, i.e., up to 1712 images. Moreover, we have also used the
ImageDataGenerator class from Keras for in-code augmentation to mutliply the number of
images in our dataset. In-code augmentation using TensorFlow and Keras increases the
size of the dataset during the training process without occupying any physical memory.
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We used rotation, vertical flip, horizontal flip, brightness, etc. as parameters. Altogether,
we have used around 8000 images for training.

On the other hand, we have also faced a class imbalance problem, as we could not find
faulty images in adequate numbers on railway tracks. As a result, we found more images
of railway tracks that are non-defective or with no faults. Therefore, we had to apply
an oversampling technique called SMOTE (Synthetic Minority Oversampling Technique),
which is a very successful technique for class imbalance problems. SMOTE creates copies
of the images for the class that is a minority or has less number of images. SMOTE does
this by producing data points on the same lines, which connects a point and one of its
KNNs [42].

Finally, we would also like to mention that we have used shuffling methods such
as—stratified K-fold shuffle splits to ensure that both of our classes are in equal quantity in
train and test splits. This ensures that our data is not randomly sampled in train, validation,
and test splits. As a result, this makes our experiments more valid by reducing sampling
bias and increasing the validity of our experiments.

5.3. Results Generated on Rail Dataset

Figure 3 displays the set of accuracy curves for the implemented algorithms. The
curves indicate that our proposed model ECARRNet outperforms the other models in
terms of peak accuracy and average accuracy.

InceptionResNetV2

InceptionV3 Xception

ECARRNet

Figure 3. Accuracy curves for each of the models on the rail dataset.

Figure 4 exhibits the confusion matrices for the models on the rail dataset. The results
show that ECARRNet produces less false positives compared to InceptionV3 and produces
similar and comparative results when compared to InceptionResnetV2 and Xception
respectively.
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Figure 4. Confusion matrices for each of the models on the rail dataset.

Figure 5 portrays the Grad-CAM visualizations for the same image selected randomly
from the rail dataset for the compared models. The region of the heatmap generated using
the InceptionResnetV2 model classifies the incorrect region in the image where there is
no fault, as the red region which represents the highest contribution of the model for
classification is not in the defective portion of the track. InceptionV3 and Xception, on the
other hand, produce heatmaps that comparatively fall much closer to the region of faulty
rail tracks.

InceptionResNetV2 InceptionV3 Xception

Figure 5. Grad-CAM visualizations for transfer learning models on rail dataset.
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From Table 3, we can see Xception performs better than the other models when
compared on the RAIL dataset. It has the best F1 score (0.96) for both defective and
non-defective classes, as well as the maximum precision and recall (0.96). With equal F1
scores of 0.95, InceptionResnetV2 and ECARRNet exhibit very competitive performance,
lagging Xception by a small margin. Even though it is still a powerful model, InceptionV3
performs somewhat worse than the others, with the lowest F1 score of 0.91. All things
considered, Xception is the top model for this particular dataset, exhibiting the best balance
in accurately classifying defective and non-defective cases.

Table 3. Classification Report for Rail Dataset.

Models Metrics Defective Non
Defective Accuracy Macro

Average
Weighted
Average

InceptionV3

Precision 0.89 0.94 - 0.92 0.92
Recall 0.94 0.89 - 0.92 0.91

F1 Score 0.91 0.92 0.91 0.91 0.91
Support 67 74 141 141 141

Inception-
ResnetV2

Precision 0.94 0.96 - 0.95 0.95
Recall 0.96 0.94 - 0.95 0.95

F1 Score 0.95 0.95 0.95 0.95 0.95
Support 70 71 141 141 141

Xception

Precision 0.96 0.96 - 0.96 0.96
Recall 0.96 0.96 - 0.96 0.96

F1 Score 0.96 0.96 0.96 0.96 0.96
Support 71 70 141 141 141

ECARRNet

Precision 0.94 0.96 - 0.95 0.95
Recall 0.96 0.94 - 0.95 0.95

F1 Score 0.95 0.95 0.95 0.95 0.95
Support 70 71 141 141 141

5.4. Results Generated on Fastener Dataset

In Figure 6 the accuracy curves of the models based on the fastener dataset are
displayed. Once again we see our ECARRNet model outperforming the other transfer
learning models. InceptionV3 and Xception produce results that are comparable to
ECARRNet while InceptionResNetV2 performs very poorly on the fastener dataset.

Figure 7 exhibits the confusion matrices for the models on the fastener dataset. The
results show that ECARRNet produces fewer false positives compared to InceptionV3
and produces similar and comparative results when compared to InceptionResnetV2 and
Xception respectively.

Figure 8 portrays the Grad-CAM visualizations for the same image selected randomly
from the fastener dataset for the compared models. The region of the heatmap generated
using the InceptionResnetV2, InceptionV3, and Xception models produces heatmaps that
classify a region that is somewhat close to the faulty fasteners on all images, but the red
region which shows high contribution for classification is not exactly focusing on the
fastener portion which is defective or faulty.

Table 4 with the highest F1 ratings of 0.89 for both the defective and non-defective
categories, Xception shines out once more and suggests a balanced precision and recall.
With an F1 score of 0.87, InceptionV3 comes in second with a good recall and slightly less
precision. With an F1 score of 0.87, InceptionResnetV2 and ECARRNet perform identically
across all criteria. Overall, on this dataset, Xception performs similarly and consistently to
the other models, with the exception of a minor edge in correctly categorizing defective
and non-defective items.
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ECARRNet InceptionResNetV2

XceptionInceptionV3

Figure 6. Accuracy curves for each of the models on fastener dataset.

Figure 7. Confusion matrices for each of the models on fastener dataset.
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Table 4. Classification Report for Fastener Dataset.

Models Metrics Defective Non
Defective Accuracy Macro

Average
Weighted
Average

InceptionV3

Precision 0.84 0.91 - 0.88 0.88
Recall 0.91 0.85 - 0.88 0.88

F1 Score 0.87 0.88 0.88 0.88 0.88
Support 117 135 252 252 252

Inception-
ResnetV2

Precision 0.88 0.87 - 0.87 0.87
Recall 0.87 0.88 - 0.87 0.87

F1 Score 0.87 0.87 0.87 0.87 0.87
Support 128 124 252 252 252

Xception

Precision 0.87 0.92 - 0.89 0.89
Recall 0.92 0.87 - 0.89 0.89

F1 Score 0.89 0.90 0.89 0.89 0.89
Support 119 133 252 252 252

ECARRNet

Precision 0.87 0.87 - 0.87 0.87
Recall 0.87 0.87 - 0.87 0.87

F1 Score 0.87 0.87 0.87 0.87 0.87
Support 126 126 252 252 252

InceptionResNetV2 InceptionV3 Xception

Figure 8. Grad-CAM visualizations for transfer learning models on fastener dataset.

5.5. Results Generated on Full Dataset

In Figure 9, the accuracy curves of the models based on the full dataset are displayed
which includes defective and non-defective images from both fastener and rail. Once
again, we see our ECARRNet model outperforming the other transfer learning models.
InceptionV3 and Xception produce results that are comparable to ECARRNet while
InceptionResNetV2 performs very poorly on the full dataset.

Figure 10 shows the confusion matrices for the models on the full dataset containing
defective and non-defective images from both fastener and rail. The results show that
ECARRNet produces fewer false positives compared to InceptionV3 and produces similar
and comparative results when compared to InceptionResnetV2 and Xception respectively.

Figure 11 shows the Grad-CAM visualizations for the same image selected randomly
from the full dataset which contains images of faults from both fastener and rail for the
compared models. The region of the heatmap generated using the InceptionResnetV2,
InceptionV3, and Xception models produces heatmaps that classify a region that is somewhat
close to the faulty fasteners on all images, but the red region which shows high contribution
for classification is not exactly focusing on the fault/gap portion in the rail which is defective
or faulty.
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ECARRNet InceptionResNetV2

InceptionV3 Xception

Figure 9. Accuracy curves for each of the models on full dataset.

Figure 10. Confusion matrices for each of the models on full dataset.
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In Table 5 with the best recall for non-defective items and the highest precision for
defective items throughout the whole dataset, ECARRNet performs exceptionally well,
earning an astounding F1 score of 0.92 for both categories. Xception comes in second with
an F1 score of 0.91, exhibiting balanced recall and precision in both areas. With an F1 score
of 0.90, which is competitive but marginally lower than InceptionV3, the findings are strong.
At 0.86 for F1, InceptionResnetV2’s score is marginally lower than the others’. The macro
and weighted averages agree with the F1 scores, indicating that ECARRNet is the best
performing model in this assessment, followed closely by Xception and InceptionV3, and
InceptionResnetV2 being the least successful of the four.

Table 5. Classification Report for Full Dataset.

Models Metrics Defective Non
Defective Accuracy Macro

Average
Weighted
Average

InceptionV3

Precision 0.89 0.91 - 0.90 0.90
Recall 0.90 0.89 - 0.90 0.90

F1 Score 0.90 0.90 0.90 0.90 0.90
Support 176 182 358 358 358

Inception-
ResnetV2

Precision 0.88 0.84 - 0.86 0.86
Recall 0.84 0.88 - 0.86 0.86

F1 Score 0.86 0.86 0.86 0.86 0.86
Support 187 171 358 358 358

Xception

Precision 0.93 0.90 - 0.91 0.91
Recall 0.90 0.93 - 0.91 0.91

F1 Score 0.91 0.91 0.91 0.91 0.91
Support 184 174 358 358 358

ECARRNet

Precision 0.95 0.89 - 0.92 0.92
Recall 0.89 0.95 - 0.92 0.92

F1 Score 0.92 0.92 0.92 0.92 0.92
Support 189 168 357 357 357

InceptionResNetV2 InceptionV3 Xception

Figure 11. Grad-CAM visualizations for transfer learning models on full dataset.

5.6. LIME Visualizations to Explain the Output Predictions of ECARRNet

Empirical analysis using GRADCAM shows that it works exceptionally well with
transfer learning models like—InceptionResNetV2, InceptionV3, Xception, etc, but does
not work for our proposed ensembled model which also consists of Bi-directional LSTM
along with CNN models. GRADCAM was unable to handle our model and thus we
could not obtain our desired visualization using GRADCAM. On the other hand, LIME
is model-agnostic meaning, it can be used with any type of model. For this reason, we
are using LIME to explain ECARRNet predictions. Figure 12 shows the visualizations
for random images selected from the three different versions we have used for our
experimentation purpose, i.e., the rail dataset, the combined dataset containing images of
faults from both the rail and fastener and the fastener dataset using LIME visualizations.
The generated visualizations which are wrapped in yellow boundaries are produced using
only our proposed model, ECARRNeT. This region produced using LIME explains and
shows the usefulness and robustness of our proposed model for detecting faults in railway
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tracks. It shows how accurately ECARRNet pinpoints the location of faults in railway
tracks in all 3 versions of our dataset. It accurately wraps the faulty regions in rails and even
pinpoints the faulty fasteners with utmost accuracy and very few false results. Therefore,
these visualizations prove the supremacy of our ECARRNet model in predicting faults in
railway tracks.

Figure 13 demonstrates the accuracy values in percentage for three different versions
of the datasets. For each dataset, it compares the performance of our proposed model,
ECARRNet with Xception, InceptionV3, and InceptionResNetV2, these models have also
shown great results in image classification use cases. It also shows accuracy values
for training and validation or test sets which clearly distinguishes the performances of
ECARRNet from other models. We are considering the test or validation accuracy here
for comparison because we have ensured that the test/validation set does not have any
labels for each image. We have just provided the images to the models to predict the
classes. Therefore we can see that validation accuracy is the highest for all 3 versions
of the dataset for our proposed model ECARRNet, compared to other SOTA models for
predicting faults in railway tracks. Also, by comparing results from Tables 2–4 we can also
say that ECARRNet has shown expected results in other metrics like—precision, recall, F1
score, and in support as well. This means our proposed model is performing really well
in predicting and distinguishing defective and non-defective railway tracks which once
again proves its superiority against other popular CNN-based architectures for railway
fault detection.

Combined dataset Fastener datasetRail dataset

Figure 12. LIME visualizations for ECARRNet model on each of the datasets.
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Figure 13. Accuracy for each of the models on different datasets.

6. Conclusions

The main aim of this research paper is to distinguish between defective and fully
functional railway tracks and to propose an automated solution to track faults to reduce
accidents on railway track that leads to hundreds of deaths. We have carried out the
classification and detection of railway faults by taking the aid of cutting-edge algorithms
and our ensemble-based algorithm, ECARRNet. Our proposed model outperformed
the other established algorithms and produced better results that was evident in the
results obtained. In the future, we would like to collect more data from different parts of
Bangladesh and other parts of the world to classify more categories of faults and improve
on our proposed model.
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