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Abstract: In this study, we developed and explored a methodical image augmentation technique for
swimmer localisation in northern German outdoor lake environments. When it comes to enhancing
swimmer safety, a main issue we have to deal with is the lack of real-world training data of such
outdoor environments. Natural lighting changes, dynamic water textures, and barely visible swim-
ming persons are key issues to address. We account for these difficulties by adopting an effective
background removal technique with available training data. This allows us to edit swimmers into
natural environment backgrounds for use in subsequent image augmentation. We created 17 training
datasets with real images, synthetic images, and a mixture of both to investigate different aspects
and characteristics of the proposed approach. The datasets were used to train YOLO architectures
for possible future applications in real-time detection. The trained frameworks were then tested and
evaluated on outdoor environment imagery acquired using a safety drone to investigate and confirm
their usefulness for outdoor swimmer localisation.

Keywords: object detection; swimmer safety; synthetic data; background removal; YOLO architecture;
image augmentation

1. Introduction

Swimmer safety in outdoor environments, which includes swimming pools [1], lakes [2],
and seas [3], is a critical concern. One may refer to the report [4] ranking drowning as the
third most significant cause of accidental injury worldwide [5], leading to approximately
320,000 individuals to lose their lives due to drowning, which accounts for 7% of all injury-
related fatalities [6]. The engineering of a drowning alarm system based on computer vision
incorporates several complex tasks that require, e.g., robust algorithms, suitable sensor
equipment and reliable training data. Recently, drones equipped with a variety of sensors,
namely visual, thermal, sonar, and also GPS systems have displayed the potential to greatly
enhance swimming safety in open water environments and already act as valuable tools
for lifeguards [7].

The problem we approached in this study concerns the limited availability of training
data and probable complexities that a northern German outdoor lake environment may
exhibit. A possible candidate for developing a robust localisation method is to make
the swimmers independent from their background, which might be achieved using a
background removal algorithm [8,9]. In this way, we can make use of, e.g., swimming
poses not included in the available training images and therefore additionally augment
our dataset.

In the domain of interest concerning our current work, a notable part of the literature
focuses on feature engineering approaches. For instance, the work in [10] pursued the
detection goal solely relying on colour gradient and low-level techniques, with roots in the
subtraction of consecutive frames aiming to remove the swimmer background. Though
this enables a fast inference, it resulted in an indoor-specific threshold-based approach with
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limited generalisation ability. Let us note that the authors did not provide a model or metric
for result comparisons. In [11], a video-based assistant system was developed to assist
coaches to acquire swimmer positions to estimate their lap times. This was once again
achieved through the utilisation of a straightforward background modelling technique
followed by an engineered blob detection technique, both based on modelling the colour
regime of the background water.

On the level of object detection, region-based convolutional neural networks (R-
CNNs) [12–14] compute features on previously extracted region proposals to perform the
object classification task. However, these so-called two-stage detectors (first step: region
proposal, second step: classification) have a slow computation time. Improvements have
been achieved by introducing versions of faster R-CNNs [14] and Mask R-CNNs [13]. In
contrast to the R-CNN methods, YOLO (You Only Look Once) [15–20] is much faster since
the underlying detection problem is approached as a regression task. A single CNN-based
framework takes the entire image as an input and computes bounding boxes (localisation)
and predicts class probabilities (classification) simultaneously in one stage—such methods
are also referred to as one-stage detectors. Therefore, YOLO models achieve state-of-the-art
computation time efficiency.

An essential component of AI-based object detection is the dataset for training and the
need for a balanced representation of the to-be-learned features [21,22]. However, limited
availability due to, e.g., data privacy, can undermine certain objectives. To overcome this
issue, one can consider manipulating characteristics of duplicates of available images to
augment a dataset [23]. In addition, to extend the number of images, augmenting a dataset
may also introduce new perspectives for the detection framework, like, e.g., simulating
different lighting conditions by adjusting brightness, contrast and noise, or geometric
manipulations to provide the framework with additional positional information [24,25].
Another benefit of augmentation is the possible reduction in overfitting.

The overall objective of our research was the development of a supervised swimmer
safety pipeline for northern German outdoor lakes as our environment of operation [26].
A major step in this process was establishing swimmer localisation [27] using AI-based
object detection (YOLO), which requires training data in order to learn the features of
swimming humans. However, the lack of available training data is a crucial point due
to data privacy, among other things. This motivated us to utilise the existing data along
with different augmentation techniques to extend the dataset for the training of the YOLO
framework. Nonetheless, the unaugmented images show a limited amount of, e.g., poses
and swimming styles.

For a better generalisation, we propose, in this paper, an investigation of using a
background removal technique for combining two datasets in order to further extend our
existing dataset. In other words, we investigated the merging of components of two datasets
involving humans as an additional augmentation technique. In the realm of background
removal, an emerging trend is to incorporate deep learning-based approaches [28–30]
to accomplish the background removal task. A comparison study in [29] revealed the
practicability of YOLO models [20] in comparison to other feature engineering-based
approaches [31,32] in removing distinct moving particles from their liquid background
contexts. The proposed method in [28] incorporates an autoencoder along with a U-Net [33]
to accomplish static and dynamic background generation tasks, respectively. Here, a set
of static backgrounds were used to train an autoencoder. Later, the trained autoencoder
was evaluated using a movement-free foreground, and the generated result was subtracted
from the input image. This lead to a binary image that was used to train the U-Net, which
requires pixel-level, labelled training images.

Our Contribution

Our main goal was to tackle the lack of available training images (“real images”) by
employing and investigating a method of merging meaningful components of two datasets
as an additional augmentation technique (“synthetic images”). Our investigations involved
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coupling a deep learning-based background removal scheme called U2-Net [30] with YOLO
models to comprise a robust vision-based system that can effectively operate in real-world
environments. In general, we localised swimmers across a lake mainly using a YOLOv3 [18]
architecture trained on a variety of real and synthetic images. We also provide results for a
comparison with more modern versions like YOLOv5 and YOLOv8 [15]. Several combina-
tions of the real and synthetic images were used to systematically form different datasets for
investigating the accuracy of predicting swimming humans. Our datasets were additionally
augmented to take into account various environmental conditions not covered by the very
limited amount of training images we had. In total, we successfully created 17 training
datasets (exploiting mixtures of real and synthetic imagery) and one completely different
additional dataset for evaluation purposes (containing only real images) to investigate the
impact of synthetically constructed images on prediction accuracy in realistic scenarios. Let
us stress again that the motivation to produce the mentioned set of synthetic images is the
lack of available datasets of outdoor swimmers related to our environment of operation.
Our study represents a step forward in localising swimmers in a northern German outdoor
lake environment under uncontrolled conditions.

2. YOLO Models

In the following, the YOLOv1 [16] model along with its advancements leading to the
YOLOv3 architecture is discussed. Let us mention at this point that we used the YOLO
framework as a tool, and the focus of this manuscript is on the training with various datasets.
We included a brief discussion of YOLOv5 and YOLOv8 for the readers’ convenience.

2.1. YOLOv1

The YOLOv1 architecture is visualised in Figure 1, and it was inspired by the GoogLeNet
model [34] with 24 convolutional layers that downsamples the input training images of
size 448 × 448 × 3 to a 7 × 7 × 1024 tensor (DarkNet Architecture in Figure 1). A grid of
7 × 7 cells was established, accounting for all of the three input image channels. YOLOv1
predicts, within each grid cell, two bounding boxes and their associated class probabilities.
The 7 × 7 × 1024 tensor is flattened into a 1 × 1 × 50, 176 vector for the fully connected
input layer. After being processed through a 1 × 1 × 4096 fully connected hidden layer,
the fully connected output layer returns a vector of dimensions 1 × 1 × 1470. In order to
finally obtain a prediction for each of the 7 × 7 grid cells, the fully connected output vector
is resized into a 7 × 7 × 30 tensor, which is called a predictor tensor.

Figure 1. Illustration of the fundamental architecture behind the YOLOv1 framework.
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Let us extract a 1 × 1 × 30 predictor vector of the last layer, as shown in Figure 1
in yellow, and observe that it comprises 20 conditional class probabilities along with
two vectors, each of size 1 × 1 × 5. This conforms with the 20 labelled classes that appeared
in the PASCAL Visual Object Classes Challenge (VOC) [35], while each of the 1 × 1 × 5
predictors corresponds to two of the found bounding box properties, namely x̂, ŷ, ĥ, and
ŵ as the centroid, height, width, and a confidence score [36]. The Intersection over Union
(IoU) of the ground truth and the predicted bounding box is an important measurement
metric in the YOLO model.

The YOLOv1 architecture merges the object detection and classification components
into a unified framework [16]. This integration is achieved through a compound cost
function (Equation (4)) consisting of three parts : localisation loss (Equation (1)), confidence
loss (Equation (2)), and classification loss (Equation (3)). Together, these loss components
contribute to the overall training objective of YOLOv1, enabling simultaneous object
detection and classification tasks.

Let us start with the localisation loss (Equation (1)), which encourages the model to
accurately predict the position coordinates and the height and width dimensions of the
bounding boxes, namely x̂, ŷ, ĥ, and ŵ. As the localisation loss is minimised, the model
learns to adjust the predicted coordinates to align with the ground truth coordinates, leading
to an improved localisation precision. With this, the localisation loss reads as follows:

Ll(x, x̂, y, ŷ, λcoord) = λcoord
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where 1obj
ij is to be assigned the value 1, in case the j-th bounding box in the i-th cell is

responsible for detecting an object, and 0 otherwise. Here, B = 2 is the number of bounding
boxes predicted for each cell.

The confidence loss (Equation (2)) is applied to the object (ground truth) and the (pre-
dicted) class confidence score, C and Ĉ, respectively, and penalises wrongly predicted
objects enclosed with their bounding boxes across the grid cells of the input image :
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where, in knowing that 1noobj
ij is a binary indicator variable, it takes the value 1 if the j-th

bounding box in the i-th cell does not contain a detected object, and 0 otherwise. In this
context, C and Ĉ are both in the range [0, 1]. The former is a multiplicative connection
of the IoU and the probability of an object centroid being in the grid cell Pr(object). This
information comes from the ground truth and is either 1 or 0. Therefore, C is either equal to
IoU or 0. Ĉ is learned during the training process, as it multiplicatively combines the IoU
and the class probabilities Pr(classi, object) and Pr(object). This results in a class-specific
confidence score for each grid cell, since the class probability is only relevant when the
centroid of an object is in the cell. In total, this score contains information about how good
the class-box predictions in each cell are. The confidence score ground truth is not directly
annotated by a human, but internally computed based on the ground truth bounding box.

The purpose of the coefficient λcoord in localisation loss (Equation (1)) can be better
understood when compared to the usage of λnoobj appearing as part of the confidence
loss in Equation (2). Both coefficients play a crucial role in mitigating model instability
during the training phase. The λnoobj penalises the loss associated with wrongly predicted
objects in grid cells, namely, the background areas wrongly predicted as an object. A
small value of λnoobj reduces the number of false instances as the training proceeds. In
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contrast, λcoord encourages the importance of the accurate localisation of objects and their
bounding boxes. The authors of YOLOv1 assigned a relatively smaller value of 0.5 to
λnoobj in Equation (2), while they considered a larger value of 5 for λcoord in Equation (1).
This choice effectively encourages the YOLOv1 model to focus on identifying bounding
boxes that accurately represent objects while mitigating the impact of a falsely accepted
background bounding boxes.

Finally, YOLOv1 incorporates the classification loss as follows:

La
(

Pi(κs), P̂i(κs)
)
=

S2

∑
i=0

1
obj
i ∑

κ∈classes

(
Pi(κs)− P̂i(κs)

)2 (3)

where P(κs) represents the ground truth class probability, namely, the class label, for class s
in the j-th bounding box of the i-th grid cell. It is one-hot encoded, meaning that it is 1 for
the targeted class and 0 for all other classes. The term 1

obj
i is a binary indicator variable that

takes the value 1 if the i-th cell contains an object, otherwise, 0. Note that P̂(κs) is estimated
by the model during the training phase. To this end, the YOLOv1 total loss was deduced
in [16] as

L = La + Lc + Ll . (4)

2.2. YOLOv3

One notable advantage that sets YOLOv3 [18] apart from YOLOv1 is its ability to
predict across multiple scales. This capability is accomplished through the incorporation
of Darknet-53 [19], initially designed as a 53-layer network trained on ImageNet [37]. To
enhance the detection capability, the number of layers in the network was doubled, lead-
ing to a comprehensive 106-layer fully convolutional architecture for YOLOv3. Within
the stacked Darknet comprising 106 layers, upsampling and concatenation techniques
are employed three times, generating feature maps with dimensions of 13 × 13 × 255,
26 × 26 × 255, and 52 × 52 × 255. As documented in [18], the production of these fea-
ture maps involves upsampling the corresponding feature maps from the two preceding
layers by a factor of 4. Subsequently, these upsampled maps are concatenated with their
corresponding earlier feature maps from the network. According to the authors of [18],
the utilisation of the technique referred to as the Feature Pyramid Network (FPN) [38]
aims to acquire significant semantic information from the upsampled features and more
detailed information from the earlier feature maps. Within YOLOv3, each output tensor
with dimensions 1× 1× 255 encompasses a total of B = 3 bounding boxes. These boxes are
characterised by six attributes: centroid coordinates, dimensions, objectness score, and a set
of 80 [39] conditional class confidences. With YOLOv3 making predictions on three distinct
scales, a total of nine “derived” bounding boxes are anticipated. These derivations are
executed using a set of predefined “anchor boxes”, which are initially supplied to YOLOv3
during the preprocessing stage and are known as “dimension clusters” [17].

The primary purpose of anchor boxes is to establish a constrained set of predefined
shapes derived from the dataset and the available ground truth boxes. This allows for a
comparison during the training phase, where the ground truth boxes are matched against
these anchors, and the model learns the transformations between the predefined anchors
and the actual ground truth boxes. In this context, the model is trained by selecting
the anchor box with the highest IoU with the ground truth box. In utilising a K-means
clustering approach [40], a total of nine anchor boxes are determined, each representing
the mean anchor box within one of nine established clusters across different scales. This
clustering is performed in reference to the COCO dataset [39]. The primary advantage of
these prior boxes lies in their ability to enhance the capacity of YOLOv3 to predict multiple
objects, accommodating various height and width aspect ratios on different scales.
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2.3. YOLOv5

In 2020, Ultralytics LLC introduced YOLOv5 [20,41]. Unlike Darknet-53 [19] in
YOLOv3, a new model was built on PyTorch with a Cross Stage Partial Network (CSP-
Net) [42] as its backbone. This backbone enhances accuracy, reduces inference speed, and
minimises model size by integrating gradient changes into feature maps. Utilising a Path
Aggregation Network (PANet) [43] as a neck, YOLOv5 employs a Feature Pyramid Network
(FPN) [38] to improve the low-level feature propagation, enhancing the object localisation
accuracy. The YOLOv5 head resembles that of YOLOv3, generating three feature map out-
puts for multi-scale prediction. The image undergoes feature extraction in CSPDarknet-53,
fusion in PANet, and final result generation in the YOLO layer. They also changed the
classification loss function from cross-entropy in YOLOv3 to binary cross-entropy and a
logits loss function in YOLOv5.

2.4. YOLOv8

Let us have a brief look at YOLOv8 [44–46]. It introduces several architectural updates,
including a shift in the backbone from C3 to C2f, altering convolution sizes, and reconfig-
uring the bottleneck. Two convolutions in the YOLOv5 were removed. In YOLOv8, the
bottleneck structure stays consistent with that of YOLOv5, except for one modification: the
initial convolution kernel size has been enlarged from 1 × 1 to 3 × 3. This adjustment signi-
fies a transition toward the ResNet [47] block introduced in 2015. YOLOv8 was designed
for anchor-free detection, where the advantage of anchor-free detection is that it is more
flexible and efficient, as it does not require the manual specification of anchor boxes. These
can be difficult to choose, which may sometimes lead to suboptimal results in previous
YOLO models such as in the v1 and v2. In YOLOv8, the loss function is divided into two
main components—the classification branch employs binary cross-entropy (BCE) loss, and
the regression branch, which handles bounding box prediction, incorporates a blend of
two distinct losses: distribution focal loss (DFL) and complete Intersection over Union
(CIoU) loss.

3. Data Preparation and Experimental Setup

In order to investigate the specific impact of real and synthetic training images on
detection accuracy, we propose a systematic testing approach. We relate here the term real
images to images of swimmers captured by a drone flying over a lake and synthetic images to
images merged from two datasets as specified below. Let us stress the difficulty of our task
that has roots in the dissimilarity of distributions from which the datasets are captured,
namely, the lighting conditions, the distance of the camera to the swimmers, varying angles
of view, and the limited availability of such data. At this point, we want to state that all
images were captured with the consent of the visible people. The used images are protected
by data privacy regulations.

3.1. Real Images

We extracted 150 real images from videos of a drone flying over a lake with one or
more swimmers visible. The swimmers were captured in several different positions. Three
example swimming styles are displayed in Figure 2. We used the original drone footage
and cropped the images to a resolution of 416 by 416 for a more detailed representation of
the swimming people.

Let us note at this point again that we target the issue of very limited data availability.
That is, not only is the number of real images very limited, but also the number of swimming
people, swimming styles, and poses. In addition, a major challenge is that the only available
environmental condition in these images is sunshine. This causes light reflections on the
water surface and may introduce issues for detection on, e.g., cloudy days. However, in the
upcoming data augmentation paragraph we will further address this issue.
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(a) Real image example 1 (b) Real image example 2 (c) Real image example 3

Figure 2. Three examples of one person, representing the real images. Different swimming styles may
cause the appearance of foam around the swimmer. The limited number of swimmers and swimming
styles available motivated the creation of synthetic images.

3.2. Synthetic Images

We also created 150 synthetic images based on the Kaggle dataset [48], which has
301 images, each of size 600 × 400 pixels. Those images were captured using a camera
located at a relatively far distance from the objects of interest and its surrounding water.
The Kaggle images were acquired in an indoor environment with predefined lighting
conditions, so that the swimmer can be captured along with its background water.

One major contribution of our work is the proposed pipeline for merging two different
distributions of datasets. Here, we consider some of the lake images that contain no
swimmers as our target background. The motivation for this was to merge the lake water
texture with the swimmers from the indoor environment. Our merging plan was to embed
the indoor swimmers, with their backgrounds removed using U2-Net [30], in random
positions and within the target backgrounds. Figure 3a–d show two swimmers from the
Kaggle dataset and their background removed versions. Directly below, in Figure 3e–g,
we display a subset of our merged images showing the lake background images with the
extracted swimmers.

(a) Kaggle dataset example 1 (b) Background removed (c) Kaggle dataset example 2 (d) Background removed

(e) Synthetic image example 1 (f) Synthetic image example 2 (g) Synthetic image example 3

Figure 3. A pair of indoor pool swimmers (a,c) along with their corresponding background-removed
images (b,d) obtained using U2-Net [30]. Swimmers of different swimming styles (e–g) already
merged with lake backgrounds, representing the synthetic images.
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3.3. Overview of the Image Datasets as Used in Our Work

Having explained above how we obtained real and synthetic images, we now turn
to their usage. For the construction of the underlying training dataset, we will explore
several different compositions of augmented real and synthetic images, as will be explained
subsequently in detail in the experimental section. For training YOLOv3, it is standard to
partition the training dataset, taking (in a random way) 80% for training the network, 10%
for validation, i.e., for tuning hyperparameters and the optimisation, and again 10% for
testing [49]. We also did this in our work, obtaining, in this way, a validation dataset and a
test dataset. These are subsets of the underlying training dataset.

Let us explicitly point out that the test dataset contains, in general, not only real
world imagery, but also synthetic images, since our aim was to explore the effect of the
compositions of real and synthetic images in the training dataset. Therefore, it appears
not to be useful to employ the test dataset for the actual quantitative evaluation of our
approach, as the evaluation should bear a meaningful implication in a real-world setting,
where no synthetic images are provided.

Consequently, for the actual evaluation, we mainly considered a separate dataset
that we will call the evaluation dataset, which was constructed as explained below and that
contains only real-world images.

3.4. Images Used for Quantitative Assessment: Evaluation Dataset

In order to have a meaningful evaluation of the results, we mainly used a completely
separate and different dataset to evaluate the results. To make this point explicit, this
separate dataset was not contained in the training dataset, so there is also no relation to the
test dataset.

The images were also taken by a drone flying over a lake but, on a different day
(which induced somewhat different lighting) and with different people. In contrast to the
real images from the training dataset, up to ten persons are visible in the evaluation set,
an account of which can be seen in Figure 4. We carefully selected these images for the
evaluation dataset by taking into account substantial differences compared to the images
in the training dataset, namely, more people being visible in one image, either standing in
the water or showing additional swimming styles on a different background. In total, the
evaluation dataset consists of 50 images.

(a) Evaluation image example 1 (b) Evaluation image example 2 (c) Evaluation image example 3

Figure 4. Representations of three examples from the evaluation dataset, which are different from the
real images in the training dataset. Differences between these datasets are, e.g., the number of visible
persons showing various swimming styles, the background (colour and texture), and camera settings,
which e.g., translates to different apparent sizes of swimmers.

3.5. Data Augmentation

We augmented the very limited number of training images to create the datasets for
our investigations. That is, editing images to change certain characteristics can simulate
environmental conditions and increase the available number of images for training.

More precisely, we applied image processing techniques to change the following
characteristics: (i) brightness (simulate different lighting conditions), (ii) contrast (enhance
differences between lighter and darker regions), (iii) noise (simulate challenging lighting
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conditions, different distances and weather conditions), (iv) motion blur (simulate camera
movement blur), (v) enhance sharpness (enhance differences between objects and lighting
condition changes), (vi) enhance colour (make objects look different), (vii) smooth (en-
hance the merging of synthetic images), (viii) enhance edge (increase texture visibility).
Figure 5b–i show examples of the augmentations applied to a real image (Figure 5a). Al-
though some augmentation techniques have similar results, the features extracted using
CNN-based frameworks like YOLOv3 are always different and add flexibility to the dataset.
The image augmentation techniques were implemented using the library imgaug [50].

(a) real image (b) brightness (c) contrast

(d) noise (e) motion blur (f) enh. sharpness

(g) enh. colour (h) smooth (i) enh. edge

Figure 5. Visualisation of the utilised augmentation techniques for an example image. Each image
(real and synthetic) was augmented several times with each method and different parameters; “enh.”
is short for “enhance”.

3.6. Experimental Setup

We prepared 17 training datasets in total that were used in two experiments to investi-
gate the following:

1. The impact of replacing real images with synthetic images.
2. The benefits of adding synthetic images to real images.
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In Experiment 1, we trained YOLOv3 eleven times, where each of the corresponding
eleven training datasets had a fixed amount of 150 (raw) images before augmentation. The
images were augmented 40 times each, so that in total, one training dataset consisted of
6150 images. The 150 raw images were entirely covered by real images in the first of these
datasets. Subsequently, the real images were gradually replaced by the synthetic images, as
shown in Table 1.

Table 1. Training dataset composition of real and synthetic images for each setup in Experiment 1
and Experiment 2.

Dataset Experiment 1 Experiment 2

1 150 real + 0 synthetic 150 real + 25 synthetic
2 135 real + 15 synthetic 150 real + 50 synthetic
3 120 real + 30 synthetic 150 real + 75 synthetic
4 105 real + 45 synthetic 150 real + 100 synthetic
5 90 real + 60 synthetic 150 real + 125 synthetic
6 75 real + 75 synthetic 150 real + 150 synthetic
7 60 real + 90 synthetic
8 45 real + 105 synthetic
9 30 real + 120 synthetic
10 15 real + 135 synthetic
11 0 real + 150 synthetic

For Experiment 2, we trained YOLOv3 six times with a continuously increasing
number of raw images, achieved by adding more and more synthetic images to the 150
real images, as displayed in Table 1. Again, each image was augmented 40 times using the
above-mentioned image processing techniques. Let us note explicitly that in this way, we
obtained six different training datasets with different numbers of images.

4. Results and Discussion

Let us highlight again the importance of detection accuracy when it comes to swimmer
safety in order to ensure the correct recognition of people struggling in water environments.
Testing the approach of background removal and merging two datasets as an additional
augmentation technique were conducted to enhance the robustness of swimmer localisation
in northern German lake environments. This approach was combined with YOLO real-time
object detection frameworks.

To quantify the results, we considered the mean average precision (mAP) metric. More
specifically, both mAP@.5 and mAP@.5:.95. The metrics use the average precision measure
that results from the Intersection over Union (IoU) of the ground truth bounding box and
the predicted bounding box. Defining a threshold for the IoU determines if a detection is a
True Positive (TP), when the IoU is above the threshold, or False Positive (FP), otherwise.
The letter means, in other words, that the model has made a prediction that does not
overlap enough with the ground truth. A False Negative (FN) detection occurs when the
model predicts a correct instance as false. The precision is then computed as the number of
TPs over the sum of TPs and FPs. One also needs to consider the recall, which is computed
as the TPs over the sum of TPs and FNs. The precision is then plotted over the recall, and
the area below the graph defines the average precision (AP). An additional averaging of
the APs for all classes (e.g., dog, cat) defines the mAP. Setting the IoU threshold to 0.5 (or
50%) returns the mAP@.5 metric. More meaningful, however, is mAP@.5:.95. Here, we
have several thresholds, iteratively ranging from 0.5 to 0.95 in steps of 0.05. The mAP is
then averaged (again) over all thresholds, resulting in mAP@.5:.95.

For training, we utilised large YOLOv3, YOLOv5, and YOLOv8 architectures in
the first part together with 100 epochs. As indicated already, the training datasets were
separated for training (80%), testing (10%), and validation (10%), as it is required for the
YOLO frameworks. For evaluation, as discussed, we used (if not mentioned otherwise) a
separate evaluation dataset with 50 real images, also taken by a drone, showing different
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persons and conditions (captured on another day); see again Figure 4. For meaningful
comparisons and discussions, we kept all changeable parameters (e.g., batch size, epochs,
augmentation techniques) constant. The only variable is the training dataset composition
(see Table 1). This allowed us to focus on the latter in combination with real-time object
detection without taking other factors into account.

4.1. YOLOv3 vs. YOLOv5 vs. YOLOv8

Prior to the actual experiments ran with YOLOv3, we found results comparing
YOLOv3, YOLOv5, and YOLOv8, as shown in Table 2. The mAP was derived here from an
evaluation with the completely unseen evaluation dataset, containing only real images.

Table 2. Evaluation mAP comparison for three different YOLO versions in the context of our training
datasets. For example, the notation “exp1-6” refers to Experiment 1, dataset 6 (see Table 1). Let us
note again that the mAPs are computed with respect to the evaluation dataset.

Dataset YOLOv3 YOLOv5 YOLOv8
mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95

exp1-1 0.960 0.770 0.935 0.725 0.979 0.780
exp1-6 0.983 0.797 0.963 0.812 0.985 0.825
exp1-11 0.911 0.727 0.904 0.656 0.245 0.183
exp2-1 0.983 0.797 0.666 0.520 0.949 0.751
exp2-3 0.941 0.764 0.719 0.489 0.995 0.794
exp2-6 0.967 0.814 0.625 0.476 0.931 0.720

There are indications that for investigating our datasets, YOLOv3 and YOLOv8 work
best with a remarkable mAP@.5 = 0.995 for exp2-3 and YOLOv8. However, especially
with the increased presence of synthetic images, YOLOv3 outperforms the other versions,
which strengthens our ambitions to work with YOLOv3 in the subsequent sections. We
also want to highlight the consistency of YOLOv3, where each mAP@.5 is above 0.911 and
each mAP@.5:.95 is above 0.727, in contrast to the other versions.

We find, in Table 3, the mAP results for YOLOv3 training five times. Except for
different batch sizes, we kept all other settings and the test dataset, as well as the evaluation
dataset, equal. The training with batch size 16 (emphasised in the table) led to the results in
accordance with the findings in Table 2. This provides insight into the performance (in the
context of our datasets) and supports the use of YOLOv3 in the subsequent investigations
because of the consistently high precision.

Table 3. mAP results based on training YOLOv3 five times in Experiment 1, on dataset 6 (see Table 1,
exp1-6), using different batch sizes. Let us note that the comparison here is with respect to both the
test dataset and the evaluation dataset.

Number Batch Size Test Dataset Evaluation Dataset
mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95

1 128 0.995 0.995 0.907 0.682
2 64 0.995 0.994 0.928 0.713
3 32 0.995 0.994 0.924 0.697
4 16 0.995 0.995 0.983 0.797
5 8 0.995 0.993 0.944 0.731

In both tables we find the exact same results for batch size 16, although YOLOv3
was trained individually. The reason for this behaviour is that we trained our custom
dataset on a pretrained YOLO model, which is the common approach. Therefore, no initial
randomness was introduced (like, e.g., random initial weights would), and training without
changing parameters or settings returns an equal result.
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4.2. Experiment 1: Replacing Real Images with Synthetic Images

Let us turn to Experiment 1, where we investigated the impact of replacing real images
with synthetic images in the training dataset (see Table 1).

In Figure 6 we find the mAP@.5 and mAP@.5:.95 plotted over the datasets. Please see
Table 1 for the specific combinations of real and synthetic images per training dataset.

Figure 6. Results for both mAP@.5 and mAP@.5:.95 metrics for Experiment 1.

At a qualitative level, there is no general trend visible. When it comes to a quantitative
analysis, dataset 2 (90% real, 10% synthetic) provides the best mAP@.5 = 0.986, followed
by dataset 6 (50% real, 50% synthetic) with mAP@.5 = 0.983 and dataset 7 (40% real,
60% synthetic) with mAP@.5 = 0.982. In the ranking for the second metric, dataset 6
has the best mAP@.5:.95 = 0.797, followed by dataset 3 (80% real, 20% synthetic) with
mAP@.5:.95 = 0.792 and dataset 7 with mAP@.5:.95 = 0.791. While the worst results were
always associated with datasets 10 and 11, dataset 1, with 100% real images, was somewhere
in the middle, performance-wise.

These results are clear indications that features extracted from the synthetic images
have similar characteristics to those of the real swimmers. One reason is related to the fact
that the swimming persons stand out from the background, just like the merged swimmers
in the synthetic images. However, since the evaluation dataset is completely different
from the training dataset, especially with more swimming styles and poses, a different
background, and small waves, we find these results to be meaningful on different levels.

In Figure 7, we can see one image from the evaluation dataset, detected using the
trained YOLOv3 framework for dataset 1 (100% real, 0% synthetic), dataset 6 (50% real,
50% synthetic), and dataset 11 (0% real, 100% synthetic). These detections confirm the
results from Figure 6, where dataset 6 shows one of the best results. While in Figure 7a, the
swimmer on the left was detected with a prediction of 0.56, the detection of this person
failed in Figure 7c. On the other hand, this swimmer was predicted with 0.98 for the dataset
using 50% real and 50% synthetic images.
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(a) Detection based on dataset 1 (b) Detection based on dataset 6 (c) Detection based on dataset 11

Figure 7. Detections based on the results from YOLOv3 training in Experiment 1.

Conclusions on Experiment 1

To conclude the first experiment, we saw evidence that mixing real images with con-
structed (merged/synthetic) images can be beneficial for the detection accuracy. However, a
clear statement of which ratio is the best is difficult to make. The best results are associated
with the following splits of images: 90% real + 10% synthetic, 50% real + 50% synthetic and
40% real + 60% synthetic.

4.3. Experiment 2: Adding Synthetic Images to Real Images

In Experiment 2, we investigated the impact of adding synthetic images to the real
images in order to see whether this is beneficial or not.

In order to evaluate the detection accuracy of YOLOv3 based on the training datasets
from Table 1, we again considered the mAP@.5 and mAP@.5:.95, as shown in Figure 8. The
quantitative results for dataset 1 (150 real + 25 synthetic) returned mAP@.5 = 0.983, which
was the highest in this category and still better than that of dataset 1 from the previous
experiment (mAP@.5 = 0.960) with only 150 real images and no synthetic images. We again
found indications that the constructed images have a beneficial effect and datasets can
have a certain amount of synthetic images to improve the accuracy. On the other hand,
the results for mAP@.5:.95 had an interesting behaviour. Dataset 6 (150 real + 150 synthetic)
had the highest mAP@.5:95 = 0.814 of all the datasets, including every single dataset from the
previous experiment. This is, in general, a desirable result, as we find it to indicate a more
careful selection of the detected (less FPs) objects, while perhaps the detection itself is in some
cases a little bit less good.

The predictions for dataset 1 (150 real + 25 synthetic), dataset 3 (150 real + 75 synthetic),
and dataset 6 (150 real + 150 synthetic) are exemplarily shown in Figure 9. In comparison to
Figure 7, the current evaluation image has slight changes and is in fact another frame from
the same sequence. However, even minor changes may have an impact on the detection, as
the water texture (like waves and foam) and swimming styles change. We clearly observe
that the prediction accuracy throughout the three images increases. However, the person at
the top was detected as two different swimmers, as shown in Figure 9a,c.

In the previous paragraph, we stated that an increasing mAP@.5:.95 indicates a more
careful selection of the detected objects. This statement continues to hold, since the double
detection of the same swimmer is still a TP prediction, even with a better accuracy. The
main difference between the detections in Figure 9 is the swimming person on the left,
who was only directly detected with dataset 6, and with high accuracy. We find this to be
a positive effect of the added synthetic images. However, adding more (unaugmented)
images to a dataset, which represent different situations, should, in theory, always have a
beneficial impact. Nonetheless, this behaviour clearly indicates that the synthetic images
serve their intended purpose.
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Figure 8. Results for both mAP@.5 and mAP@.5:.95 metrics for Experiment 2.

(a) Detection based on dataset 1 (b) Detection based on dataset 3 (c) Detection based on dataset 6
Figure 9. Detections based on the results from the YOLOv3 training in Experiment 2.

Conclusions

Concluding this experiment, we found that adding synthetic images to a fixed amount
of real images has a benefit. An equal amount of both real and synthetic images returned
the best predictions. Therefore, we found that the constructed synthetic images are good
representations of real swimming persons.

4.4. Detection on Real Images with Objects

Finally, we wanted to share some results for the detection of swimming humans with
objects in the same image, which can be seen in Figure 10.
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Figure 10. Real images that include ball, grasses, sun reflections, and also waves as barriers to show
the robustness of the YOLO settings explored in Experiment 2, dataset 1 (see Table 1).

Even with the very limited variety of unaugmented images (150 real + 25 synthetic)
in our training dataset, the model can identify swimming persons in these real-world
evaluation images. On top of that, the additional visible objects like, e.g., grass, balls, and
persons outside the water were correctly not detected. Let us note again at this point that the
focus of the presented work was to study whether creating synthetic images for swimmer
detection can be utilised with benefit as an additional augmentation. The overall results
support this assumption. However, common objects in lake and beach environments like,
e.g., balls, grass, and air mattresses, as well as non-swimming humans inside or outside the
water, should also be part of the detection to avoid possible prediction errors and make the
framework more robust.

5. Discussion and Future Work

In the current study, we studied an approach to localising and classifying swimmers
across a lake captured by a drone. Swimmer safety in outdoor lake environments, such as
here in northern Germany, is a topic of great importance and so is the responsibility for a
properly working approach when people rely on the system.

Our approach uses a large YOLOv3 model with focus on different training datasets
consisting of real and synthetic images. The latter were constructed/merged from two
different datasets. The datasets were systematically setup, augmented, and investigated
regarding their impact on the mAP accuracy measure. The trained YOLOv3 networks were
tested on a completely different evaluation dataset.

We saw that replacing real images with synthetic images for a fixed number of unaug-
mented images in a dataset has its benefits. The ratio showing the best results was 50%. We
can also say that adding synthetic images to a fixed number of real images has a positive
effect on the robustness of the detection. There are clear indications that continuing research
on constructing synthetic images for datasets with a very limited number of real images is
necessary since utilising this approach as an additional augmentation technique to enhance
swimmer safety in an outdoor lake environment seems to be beneficial.

Future work will focus on the next steps toward a robust swimmer safety pipeline that
helps in saving people who struggle in lake environments based on, e.g., muscle cramps,
heart attacks, or a lack of swimming skills. Improving the appearance of synthetic images
will be a major component, including different compositions with the testing of additional
background removal techniques. Background images will also be merged with objects like,
e.g., boats, air mattresses, and vegetation. The collection of additional images in the context
of our dataset is planned to be initiated.
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