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Abstract: Psychomotor developmental delay in infants includes failure to acquire abilities such as
sitting, walking, grasping objects and communication at the ages when most infants have acquired
these abilities. Known risk factors include a large number of aspects of family environment, socioeco-
nomic position, problems in pregnancy and birth and maternal health. It is clinically useful to be able
to screen for developmental delay so that healthcare interventions can be considered. The present
research used machine learning (random forest) to create an algorithm predicting psychomotor delay
in 9-month-old infants using information ascertainable at birth and in early infancy. The dataset
was the UK longitudinal Millennium Cohort study. In total, 53 predictors measuring socioeconomic
indicators, paternal, family and social support for the mother, beliefs about good parenting, maternal
health, pregnancy and birth were included in the initial algorithm. Feature reduction showed that of
the 53 variables, birthweight, gestational age at birth, pre-pregnancy BMI, family income and parents’
ages had the highest feature importance scores and could alone correctly predict developmental
delay with over 99% sensitivity and 100% specificity. No features measuring aspects of early infant
care or environment meaningfully added to algorithm performance. The relationships between delay
and some of the predictors, particularly income, were nonlinear and complex. The results suggest
that the risk of psychomotor developmental delay can be identified in early infancy using machine
learning, and that the best predictors are factors present prior to and at birth.
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1. Introduction

Children’s progress in achieving developmental milestones in infancy and childhood
is dependent on a large number of factors. These include growth in utero, size at birth,
maternal health, socioeconomic position, genetically inherited developmental patterns,
and many family and social factors [1–17]. This makes predicting developmental delay in
advance so that steps can be taken to avoid it difficult, as there are so many potentially
important causes, and the relative importance of each is not clear. For an increasing number
of health conditions with complex aetiologies, artificial intelligence (AI) has been successfully
applied to identify when an individual is at high risk for a future adverse health outcome,
e.g., [18,19]. In the discipline of developmental psychology, the machine learning approach
of random forests (RF) has been applied to predict future psychiatric conditions [20] and to
predict infant growth using inflammatory markers [21]. The present study applied RF to
predict psychomotor developmental delay in 9-month-old infants using data on a wide array
of factors in pregnancy, birth and early infancy. The intent was to achieve higher sensitivity
and specificity than has been achieved in prior studies approaching similar problems using
regression methods, which rarely have greater than 80% sensitivity [15].

1.1. Predictors of Developmental Delay

Developmental delay has been found to be statistically associated with an array of
factors both temporally (prior to pregnancy, during the perinatal period and later in infancy)
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and from both maternal and foetal causes. Preterm birth and low birthweight have been
demonstrated to increase the risk of delay by double or greater [11–14]. Maternal factors
including health, gravidity, young motherhood, use of assisted reproductive technologies
and bodyweight have also been found to predict delay [8,12–16]. Other factors with large
statistical effects on the likelihood of developmental delay include maternal education and
socioeconomic position [12,13,15,17]. Some of the reported effects are large; for example,
Ozkan et al. found more than a tenfold increased risk of developmental delay in infants of
mothers with the lowest level of completed education [13]. The neonatal period and early
childcare may also be important determinants of delay, including social support provided,
paternal involvement, breastfeeding and other infant care behaviour [1–7].

1.2. Data Analytic Approach

Several statistical techniques are potentially appropriate for classification problems in-
cluding predicting developmental delay using a large number of predictors. Most commonly,
regression-based approaches have been used. Van Dokkum et al. [15] used logistic regression
to predict developmental delay at age four, producing an algorithm with 73% sensitivity and
80% specificity. Another promising linear modelling approach when there is a large number
of predictor variables is principal component analysis (PCA). However, both statistical tech-
niques assume linear relationships between values of the predictor variable and the outcome:
PCA is based on linear transformation using orthogonal matrices, and logistic regression as-
sumes that the log-odds of the relationship between each predictor and the outcome is linear.
There is no reason to believe that predictors have linear associations with developmental
delay: for example, birthweight has negative associations with developmental delay at both
low and very high levels [15,22], and socioeconomic position may not be important for health
outcomes above a threshold level [23]. For the present research, random forest (RF), which is
an ensemble decision-tree classifier, was chosen. RF can handle large numbers of predictors
(features) simultaneously and does not assume linear or monotonous relationships between
predictors and an outcome [24,25]. While most AI approaches have a barrier to entry in that
they cannot be implemented in statistical programs commonly used by researchers, RF is
straightforward to implement in Stata, as well as in some open-source statistical software
such as BlueSky Statistics. Here, RF was applied to an existing national dataset on the birth
and lives of a sample of infants born in the UK, the UK Millennium cohort.

2. Methods
2.1. Population and Sample

The UK Millennium cohort sample (henceforth MCS) consists of infants born in the
United Kingdom from September 2000 to August 2001, identified using Universal Child
Benefit records and NHS Health Visitors [26]. In the British healthcare system, Health Visitors
are usually registered nurses who provide ante- and post-natal care and advice in the home.
The sample was not a random sample: ethnic minority and low socio-economic groups were
oversampled to compensate for loss to follow-up of these segments of the population that
occurred in Britain’s earlier longitudinal cohort studies. Here, data were analysed using the
first survey of the cohort, which took place when the infants were around 9 months old. The
maximum possible sample size for analysis using this cohort is 18,467. A cohort profile is
available providing far more detail about the sample and sampling methods [27].

2.2. Outcome Variable

Developmental delay is typically identified in clinical settings using parental question-
naires. The 9-month MCS interview with parents or the main care giver included questions
about infant psychomotor development which are very similar in content and format to
the Ages and Stages 12-month questionnaire [28]. The aim in creating the dependent
variable was to capture infant development across a number of cognitive and motor skill
domains. Second, variation in reaching developmental milestones has the most practical or
clinical significance if a statistical model is created to predict substantial delay versus the
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range of normal development. With these aims in mind, a dependent variable was created
using parental or main caregiver reports of achievement of developmental milestones. The
interview contained 12 questions on cognitive and motor skills development. Responses to
the 12 questions were on three-point scales, coded as “1” for the infant frequently demon-
strates the developmental milestone, “2” for sometimes, and “3” for the infant has not yet
demonstrated the milestone. The 12 items were the following: sits up; smiles; stands up
holding on; puts hands together; grabs objects; holds small objects; passes a toy; walks
a few steps; gives toy; waves bye-bye; extends arms; nods for yes. The responses were
summed into a single score, followed by statistical correction for age in days of the infant.
The resulting standardised residuals representing age-corrected developmental delay were
then split into a binary variable using two standard deviations as the cut-point.

2.3. Predictor Variables (Features)

The first MCS survey was broad in scope, covering aspects of pregnancy, labour, birth
and children’s and their parents’ social, work and economic situations. Many of the variables
included in the MCS have been demonstrated to be or could plausibly be associated with
child development. Covariates were selected by reading through the MCS variable list
and selecting all that appeared appropriate for analysis. The variable selection process
is illustrated in Figure 1. Some additive combining of variables was performed where
two or more variables were repeated information about a single concept. For example,
paternal involvement in infant care was represented in the original data as questions about
each individual act of care, such as nappy changing, getting up in the night, etc. These
were additively combined to create a single variable. Of note, a decision was made to
combine medical problems in pregnancy into a single variable. In descending order of
their prevalence in the dataset, the most common were as follows: bleeding in pregnancy,
eclampsia, hyperemesis, urinary tract infections, anaemia, and non-trivial infections. These
were combined because, conceptually, they should all affect foetal nutrition, and because
in initial testing of algorithms they performed very poorly as predictors of developmental
delay when included separately. In total, 53 variables were included. For ease of reading,
variables were classified into groupings based on the concept that each represented: family
and social support; socioeconomic indicators; infant characteristics; beliefs about parenting;
medical circumstances in pregnancy and birth; maternal factors; and paternal and family
factors. Supplementary material Table S1 includes details of variable coding, the MCS names
and any changes made to the original MCS variables.
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2.4. Data Analysis

The MCS data were analysed using random forests (RF), a supervised machine
learning decision tree algorithm easily implemented in statistical software such as Stata.
In building each decision tree, the RF algorithm used half of the data (the training set)
and with bootstrapping created sets of decision trees with the bootstrapped subsets of the
data which comprise a decision rule at each branch node. The remaining half of the data
for each tree (the test set) was used to test how well the algorithm performed classifying
observations correctly. Missing data occurred due to unanswered interview items on
a small number of variables, particularly paternal support. The RF algorithm contained
a proximity algorithm to handle missing observations for features. Observations with
a missing value for the outcome variable were dropped from the analysis, and continuous
predictors were transformed to z-scores.

All analyses were carried out in Stata 16. For the RF model, the plugin Rforest was
used [29]. Algorithm hypertuning of the number of variables included at each split and
number of iterations were performed using Stata code developed by Schonlau and Zou [29].
Forwards elimination was applied to produce a reduced model which maximised the
number correctly classified using the fewest variables.

3. Results
3.1. Descriptive Statistics

Descriptive statistics are displayed for all variables in Table 1, split into groups of
variables as described above.

Table 1. Variable coding and descriptive statistics. All variables are from maternal or main care
provider interviews.

Variable Coding Obs Mean (Std.Dev.) Min–Max

Outcome and its constituent child development measures

Development below 2SD (age-adjusted) 18,432 0.038 (0.191) 0–1

Smiles

1 = often, 2 = sometimes, 3 = not yet

18,432 1.006 (0.082) 1–3

Sits up 18,432 1.066 (0.318) 1–3

Stands up holding on 18,432 1.475 (0.78) 1–3

Puts hands together 18,432 1.209 (0.532) 1–3

Grabs objects 18,432 1.01 (0.117) 1–3

Holds small objects 18,432 1.147 (0.454) 1–3

Passes a toy 18,432 1.065 (0.295) 1–3

Walks a few steps 18,432 2.81 (0.519) 1–3

Gives a toy 18,432 1.52 (0.717) 1–3

Waves bye-bye 18,432 1.912 (0.839) 1–3

Extends arms 18,432 1.205 (0.499) 1–3

Nods for yes 18,432 2.72 (0.617) 1–3
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Table 1. Cont.

Variable Coding Obs Mean (Std.Dev.) Min–Max

Family and social support

Frequency mother sees her mother 0 = lives with mother, 1 = every day,
to 8 = never 18,544 3.277 (2.352) 0–8

Mother has other parents to talk to 1 = most, to 5 = least 17,805 2.096 (1.016) 1–5

Family would help if financial problems Strongly agree = 1 to strongly disagree = 5 17,803 1.747 (0.971) 1–5

Number of types of financial help
from grandparents

Gifts, money for daycare, essentials,
trust funds, household items, other 18,547 1.235 (1.057) 0–6

Frequency mother reports spending time
with friends 1 = every day, to 5 = never or no friends 18,527 2.958 (0.974) 1–5

Number of people who attended birth 18,432 1.12 (0.495) 0–4

Family-based infant care in work hours 1 = no, 2 = yes 18,387 1.17 (0.375) 1–2

Grandparent lives in household 1 = yes, 2 = no 18,432 1.921 (0.269) 1–2

Socioeconomic indicators

Equivalised household income McClement’s equivalised income 18,432 296.833 (217.102) 14.31–1250.78

Age mother left full time education 18,341 17.578 (2.848) 5–36

Partner’s SES from job NS-SEC 7 classes, 1 = highest, 7 = lowest,
8 = not in work 18,432 5.352 (2.641) 1–8

Partner’s employment status

1 = employed, 2 = self-employed,
3 = looking for work, 4 = not seeking

work due to health, 5 = New
Deal/apprenticeship, 6 = student,

7 = no partner/unknown

18,432 3.388 (3.084) 1–8

Mother employed Mother in paid work at 9 month
interview = 1, else = 2 18,399 1.448 (0.497) 1–2

Winter temperature in room where
baby sleeps

5-point scale where 1 = warmest
and 5 = cold 18,310 2.301 (0.745) 1–5

Mother’s report of pollution & grime
in neighbourhood

Reported on a 4-point scale, 1 = most,
to 4 = least pollution 18,218 3.089 (0.892) 1–4

Infant characteristics

Infant’s sex 1 = male, 2 = female 18,432 1.487 (0.5) 1–2

Infant has all immunisations 1 = yes, 2 = no 18,175 1.039 (0.194) 1–2

Infant’s age in days when mother
was interviewed 18,432 295.487 (15.23) 243–382

Infant’s number of reported illness 18,422 1.633 (1.992) 0–50

Infant’s number of accidents 18,430 0.083 (0.296) 0–5

Beliefs about parenting & parenting practices

Beliefs: Baby should be picked up
when cries 1 = strongly agree, to 5 = strongly disagree 17,810 2.966 (1.045) 1–5

Beliefs: Stimulation is important for
infant development 1 = strongly agree, to 5 = strongly disagree 17,806 1.431 (0.626) 1–5

Beliefs: Talking to infants is important 1 = strongly agree, to 5 = strongly disagree 17,814 1.200 (0.448) 1–5

Beliefs: cuddling infants is important 1 = strongly agree, to 5 = strongly disagree 17,815 1.191 (0.452) 1–5

Bed co-sleeping main sleeping
arrangement in first 9 months 1 = no, 2 = yes 18,431 1.089 (0.285) 1–2

Breastfed at least 1 week 1 = no, 2 = yes 18,431 1.536 (0.499) 1–2

Work hours infant care is daycare centre 1 = no, 2 = yes 18,432 1.115 (0.319) 1–2

Main work hours infant care is mother 1 = no, 2 = yes 18,432 1.691 (0.462) 1–2
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Table 1. Cont.

Variable Coding Obs Mean (Std.Dev.) Min–Max

Factors in pregnancy & birth

Birthweight (kg) 18,382 3.344 (0.589) 0.39–7.23

Estimated gestational age at birth (days) 18,201 275.727 (14.056) 168–301

Number of pharmacological pain
interventions in labour 18,293 0.731 (0.667) 0–4

Infant conceived using fertility treatment 1 = no, 2 = yes 18,425 1.974 (0.159) 1–2

Duration of labour In hours, C-section = 0 17,680 9.160 (11.145) 0–100

Type of delivery 1 = normal, C-section & emergency = 2 18,398 1.313 (0.464) 1–2

Singleton birth 1 = singleton, 2 = twin, 3 = triplet 18,432 1.014 (0.123) 1–3

Pregnancy illnesses (e.g., preeclampsia) 1 = yes, 2 = no 18,396 1.623 (0.485) 1–2

Place of birth Hospital = 1, else 2 18,401 1.020 (0.142) 1–2

How long mother and infant stayed in
hospital after birth 1 = weeks, 2 = days, 3 = hours 18,020 2.046 (0.421) 1–3

Received full ante-natal care 1 = yes, 2 = no 18,391 1.038 (0.192) 1–2

Maternal factors

Mother’s pre-pregnancy body mass index 16,813 23.649 (4.451) 11.65–59.18

Mother’s birth year 18,426 1972 (5.95) 1949–1987

Mother reports being tired all the time 1 = yes, 2 = no 17,805 1.509 (0.5) 1–2

Mother reports being depressed 1 = yes, 2 = no 17,802 1.849 (0.358) 1–2

Average number of cigarettes mother
smokes per day 18,420 3.315 (6.271) 0–60

Frequency mother drinks alcohol Every day = 1 to never = 7 18,429 5.134 (1.49) 1–7

Mother has longstanding illness 1 = yes, 2 = no 18,425 1.789 (0.408) 1–2

Number of months pregnant at interview 18,423 0.196 (1.013) 0–10

Paternal & family factors

Ethnicity

1 = white, 2 = mixed, 3 = India,
4 = Pakistani, 5 = Bangladeshi,

6 = Caribbean, 7 = African,
8 = East Asian & others

18,402 1.627 (1.609) 1–8

Father present in household 0 = yes, 1 = no 18,403 0.172 (0.378) 0–1

Father’s age when infant was born 18,395 31.91 (5.713) 15–68

Paternal involvement score: how much
help father is

Summed score of how often father does:
general childcare, feeding, getting up in

night, changing nappies.
1 = least, to 21 = most

16,255 10.205 (5.868) 1–21

Birth interval in months from
older sibling 8997 42.803 (27.86) 9–318

Number of siblings in household 18,432 0.938 (1.081) 0–9

Mother reports partner sensitive and
aware of her needs Strongly agree = 1 to strongly disagree = 5 14,358 1.986 (0.929) 1–5
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3.2. RF Algorithms

After hyper-tuning to 23 variables at each split and 30 iterations, the RF algorithm
for all 53 predictors had an out of bag error rate of 0.001. Only 19 of 18,432 infants were
classified incorrectly, with all incorrect classifications being cases of delay which were not
classified correctly (false negatives). Given that an algorithm with 53 features would take
significant computing time to make a prediction for new cases, the algorithm was reduced
by forwards selection beginning with the most important feature identified in the 53 feature
algorithm, which was birthweight. Figure 2 displays the results of this process, in which
including six features resulted in misclassification of 24 infants. Figure 3 displays feature
importance scores in the 53-feature algorithm. Higher scores indicate higher importance
in the algorithm. When running algorithms between 7 and all 53 features, there was
only a very gradual drop in the number of cases misclassified (not shown in Figure 2),
and thus, 6 features were deemed to successfully combine computational efficiency and
classification accuracy. The top six features in relation with developmental delay are shown
in Figure 4. Decision tree algorithms do not produce a statistic or parameter estimate
showing the direction of association, as they are not linear models. To overcome this,
two-way prediction plots are displayed for the reduced (six-variable) algorithm in Figure 4
and for all features in Supplementary Material Figure S1. The plots shown are two-way
prediction plots with either a Lowess smooth fit line, a quadratic fit line or as a linear plot
for binary predictors (whichever best described the observed relationship). The direction
or shape of relationships between developmental delay and all predictors are described in
writing in Figure 3.
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1 
 

 
 Figure 3. Importance plot using the feature importance scores from the 53-feature RF algorithm. Red

bars = family and social support variables; green = socioeconomic indicators; dark blue = infant
characteristics; light blue = beliefs about parenting; purple = medical factors in pregnancy and birth;
yellow = maternal factors; orange = paternal and family factors.
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4. Discussion
4.1. Summary

The RF machine learning approach allowed simultaneous analysis of a large number
of maternal, paternal, social and health-related factors. The algorithm performed very
well when applied to the test data, with sensitivity at the level of a very good diagnostic
medical test. The results were consistent with developmental delay having a complex
aetiology: 47 variables had importance scores above 0.2. However, prediction did not
improve substantially beyond the top six features, which were birthweight, the infant’s
gestational age at birth, maternal BMI, household income and maternal and paternal ages.
None of the six most important features had linear relationships with developmental delay.
Maternal pre-pregnancy BMI was a risk factor for developmental delay below a BMI of
18 and above 45. Household income had an important but complex nonlinear relationship
with developmental delay.
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4.2. Comparisons to Prior Studies

Preterm birth and low birth weight often occur together and are associated with at
least a doubling of the odds of developmental delay [11–14] The results reported here
showed that these two variables were not only the most important in the RF algorithms
but were the most important variables by a substantial margin (see Figures 2–4). Figure 4
displays the proportion of infants with developmental delay at 9 months of age for the top
six most important predictors. It shows that infants born below 1 kg had around a 50%
probability of delay, while birth weights above 3 kg were associated with less than a 5%
probability of delay. Preterm birth had a similarly large effect on the probability of delay
(see Figure 4, top right).

While effect of low birth weight and preterm birth in the Millennium Cohort were
consistent with patterns observed in prior research, the effects of socioeconomic indicators
on developmental delay were not as clear. For example, Ozkan et al. [13] found that across
the range of maternal education there was a tenfold increase in risk of delay. In the RF
model, parental income was an important but non-linear predictor of delay which was
associated with around a 3% risk of developmental delay at its lowest (middle income)
and a 4% risk at low income (see Figure 4, centre right). This indicates that while income
was a useful variable for classifying cases of delay in the Millennium Cohort despite
having a non-linear association, the size of the effect was small. It should be noted that
the increased risk of delay at high incomes visible in Figure 4 may be confounded if older
mothers are more likely to have high household income.

Maternal age has previously been found to have the opposite relationship to develop-
mental delay to what was found here: there was a monotonic trend towards lower risk of
delay beginning with the youngest mothers (see Figure 4, bottom left). In prior research,
infants of teenage mothers had an increased risk of delay [13]. Prior research additionally
highlighted the importance of maternal education [16,17]. Here, income had a higher
importance score than maternal education.

Pre-existing maternal obesity has been found to predict developmental delay in lin-
ear statistical models [15]. Maternal pre-pregnancy BMI was an important predictor of
developmental delay using RF, but a nonlinear association was present in the Millennium
Cohort, where increased risk is evident below a BMI of 18 and above 45. Risk was relatively
constant between a BMI of 18 and 45, and the majority of women in the sample fell within
this range: a BMI of 18 represents the third percentile, and a BMI of 45 represents the
99.8th percentile.

4.3. Study Limitations

A prospective longitudinal study design would be necessary to confirm algorithm
performance in a clinical setting. Psychomotor delay in the MCS 9-month interview was
measured using fewer items than are typically found in established scales such as Age and
Stages. The same data quality issue applies more generally to most of the concepts in this
analysis: national cohort study data allows for large analysis sample sizes and the potential
for high statistical power, but this comes at a cost to the level of detail gathered about each
concept: for example, family support variables were from interview rather than methods
which directly measure social support. Methods that directly measure or change social
support would be preferable.

5. Conclusions

RF can be easily implemented in statistical software such as Stata, as well as in open
source software such as BlueSky Statistics and JASP. It is preferable to regression when
there is a large number of potentially important predictors of an outcome and substantial
nonlinearity in relationships between predictors and an outcome. A disadvantage is
that other than producing classification accuracy, sensitivity and specificity values, the
underlying concepts and results interpretation are not familiar to the majority of medical
and social science researchers. The results of the RF modelling here showed remarkably
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high sensitivity and specificity of almost 100%, which is far in excess of existing regression-
based algorithms predicting developmental delay [15]. The features with the highest
importance scores can all be discerned at birth: no features measuring aspects of early
infant care or environment meaningfully added to algorithm performance. This implies
that screening for developmental delay can be successfully implemented in the neonatal
period. Maternal health problems during pregnancy, including eclampsia, bleeding and
non-trivial infections also had lower importance scores than expected. This may be because
eclampsia and other problems during pregnancy are associated with preterm birth and low
birthweight rather than directly predicting developmental delay [30].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/reprodmed4020012/s1, Figure S1: Two-way prediction plots for all
features; Table S1: Variable coding and data decsions.
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DataTypeFacet=Cohort%20and%20longitudinal%20studies&Page=1&DateFrom=440&DateTo=2022
(accessed on 15 January 2021).
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