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Abstract: Artificial intelligence (AI) is a promising tool for diagnosing rib fractures. To date, only a
few studies have quantified its performance. The objective of this systematic review was to assess the
accuracy of AI as an independent tool for rib fracture detection on CT scans or radiographs. This was
defined as the combination of sensitivity and specificity. PubMed (including MEDLINE and PubMed
Central) was systematically reviewed according to the PRISMA statement followed by citation
searching among studies up to December 2022. Methods of the analysis and inclusion criteria were
prespecified in a protocol and published on PROSPERO (CRD42023479590). Only diagnostic studies
of independent AI tools for rib fracture detection on CT scans and X-rays reporting on sensitivity
and/or specificity and written in English were included. Twelve studies met these criteria, which
included 11,510 rib fractures in total. A quality assessment was performed using an altered version
of QUADAS-2. Random-effects meta-analyses were performed on the included data. If specificity
was not reported, it was calculated on a set of assumptions. Pooled sensitivity and specificity were
0.85 (95% CI, 0.78–0.92) and 0.96 (95% CI, 0.94–0.97), respectively. None of the included studies used
X-rays. Thus, it can be concluded that AI is accurate in detecting rib fractures on CT scans. Overall,
these findings seemed quite robust, as can be concluded from the study quality assessment, therefore
AI could potentially play a substantial role in the future of radiological diagnostics.
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1. Introduction
1.1. Rationale

Thoracic trauma is a common type of injury, as it accounts for 10–15% of all trauma-
related hospital admissions [1]. In patients with thoracic trauma, a traumatic rib fracture is
the most common type of injury. These fractures are clinically relevant because they are
associated with significant pulmonary morbidity, mortality and decreased long-term quality
of life [2,3], and early detection can improve their mortality and pulmonary morbidity [4,5].

Imaging modalities that are commonly used in the evaluation of trauma patients are
radiography and CT. Radiography, on the one hand, is quick and is therefore useful in
initial critical management and triage [6]. CT on the other hand, gives a better insight
into the injury severity and is more likely to detect additional findings that may change
management [6], but its interpretation can be very time-consuming and its error rate can
increase with time pressure and a noisy environment, which are common during the
examination of trauma patients [7,8].

Artificial intelligence (AI) is a technology that could potentially solve these issues, as
AI can provide interpretations almost instantaneously and its error rate is not affected by
factors such as time pressure and a noisy environment. In addition to that, AI has already
been proven to be effective in other visual recognition tasks in the medical field: previous
studies have found that AI was equally capable as physicians in identifying pulmonary
embolism [9], stroke [10], skin cancer [11] and diabetic retinopathy [12].
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To date, only one review has been published on the performance of AI in the detection
of rib fractures. It concluded that the use of AI in rib fracture detection is a very promising
application of the technology and that AI can aid radiologists in interpreting images. In
addition to lacking a systematic approach, this article only included three articles and
lacked any quantitative analysis [13].

To increase the level of evidence and to enable future comparisons, the current system-
atic review aimed to gather and compare related clinical studies systematically, quantifying
the accuracy of AI in detecting rib fractures and assessing the quality of the evidence available.

1.2. Objectives

Diagnostic case–control studies, diagnostic cohort studies and diagnostic randomized
controlled trials (RCTs) were reviewed to examine the sensitivity and specificity of AI in the
detection of rib fractures. These studies were included if they evaluated the performance
of AI tools in detecting rib fractures that were previously diagnosed in a thoracic X-ray
or CT scan by at least two radiologists. The results of these studies needed to be based
on AI-only achievements. This decision was made to investigate the potential of AI in
replacing radiologists and to reduce heterogeneity that results from human influences.

2. Materials and Methods
2.1. Protocol and Registration

Methods of the analysis and inclusion criteria were prespecified in a protocol and
published on PROSPERO (CRD42023479590). The PRISMA statement was used to validate
the research process [14].

2.2. Eligibility Criteria

Eligibility criteria were based on PICOS (Table 1): studies reporting on patients with
rib fractures of all types (fresh, healing and old fractures, partial and complete fractures, etc.)
that were diagnosed by at least two radiologists via evaluation of a CT scan or thoracic X-ray
were included. All types of AI which have been trained in the identification of rib fractures
were examined. Furthermore, studies from which the sensitivity and/or specificity of the
AI on its own could be extracted were included, and studies where that was not the case
were excluded. Accuracy was used as the primary outcome, which was defined as the
combination of sensitivity and specificity. Finally, only diagnostic case–control studies,
diagnostic cohort studies and diagnostic RCTs were included.

Table 1. PICOS specified per criterion.

Criteria Description

P: Population of interest
CT scans or thoracic X-rays of patients that were analyzed for the
presence of rib fractures by at least 2 radiologists, which was
stated as the reference standard.

I: Intervention Diagnostic detection by an artificial intelligence tool on its own
C: Comparison All comparisons

O: Outcome Number of true positives, true negatives, false positives and false
negatives and/or the sensitivity and specificity

S: Study type Diagnostic case–control studies, diagnostic cohort studies and
diagnostic RCTs

2.3. Information Sources

A multi-database search on PubMed (including MEDLINE and PubMed Central) was
performed to identify all relevant studies up to December 2022. In addition to that, a
citation search was performed among the studies that resulted from the PubMed search, by
screening all the titles presented by the “Cited by” tool. The citation search was used to
assess the completeness of the initial search in identifying relevant articles.
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2.4. Search

Relevant search terms were selected from the MeSH tree of the National Library
of Medicine and from relevant studies that were manually identified on PubMed. This
resulted in the following search:

“(Artificial intelligence [MeSH Terms] OR Artificial intelligence OR AI OR Machine
learning OR Deep Learning OR Convolutional Neural Network OR Transfer Learning
OR Computer-Aided Detection) AND (Rib fractures [MeSH Terms] OR rib fracture OR
Broken rib)”.

The initial PubMed search was performed on 9 December 2022, and the citation
search was conducted on 11 December 2022. Articles published after these dates were not
reviewed. Limitations or filters, such as language, were not used.

To ensure reproducibility, the methods section was reviewed by another group of
researchers from the Erasmus University of Rotterdam. The same search was conducted by
the other group to confirm whether they obtained the same number of results. Furthermore,
their feedback was utilized to improve the methods.

2.5. Study Selection

Three researchers independently selected studies for evaluation of eligibility by screen-
ing the title and abstract of all the retrieved studies. If a researcher deemed a study eligible,
the same or another researcher evaluated the full text of the study for correspondence
with the earlier defined PICOS in a structured manner using a spreadsheet. If the full text
met all the PICOS criteria, it was included in the systematic review and meta-analysis.
If a researcher was not sure if the PICOS criteria were met for a certain article, all three
researchers discussed the study until they reached a consensus.

2.6. Data Collection Process

All of the data were extracted by two members of the research team (MB, JB or LS).
Disagreement was solved by discussion between these two members. If the two researchers
could not reach an agreement, the third researcher decided on the issue. If not all the data
that was needed for the meta-analysis were available, the authors were sent an email with
a request for additional data. Additional data would have been extracted in the same way
as the data found initially.

2.7. Data Items

The following data were extracted from the included studies: (1) characteristics of
participants (method of diagnosis, characteristics of fracture type); (2) type of intervention
(AI or AI in combination with specialists); (3) outcome measures (including sensitivity and
specificity); (4) study type (diagnostic case–control studies, diagnostic cohort studies or
diagnostic RCT).

2.8. Risk of Bias in Individual Studies

To perform a quality assessment, a modified version of the Quality Assessment of
Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used [15] (Table S2, Text S1). Each
included study was randomly assigned to two researchers for quality assessment. The two
researchers scored the studies independently on 7 different domains (1A, 1B, 2A, 2B, 3A,
3B, 4), and if they agreed, the scores were accepted immediately. Discrepancies in the two
assessments per study were solved by discussion. If the two researchers could not reach a
consensus, a third researcher decided on the number of points that would be attributed to
the domain of discrepancy. The final sum of the points given to a study placed the study
into a quality score group: a total score of ≤2 was rated as low quality, scores of 3 and 4 as
intermediate quality, and a score of ≥5 as high quality. This quality control was performed
to test the hypothesis that the quality of the included studies influenced the performance of
the AI.
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2.9. Summary Measures

Accuracy was selected as the primary outcome and consisted of sensitivity and speci-
ficity. Secondary outcomes were F1-score, precision, positive predictive value (PPV), nega-
tive predictive value (NPV) and time, which are included in the supplementary material,
but are not further discussed in this systematic review.

2.10. Synthesis of Results

For the synthesis of results, the meta-analysis tool of IBM SPSS statistics version
29.0.0.0 was used.

Many studies did not present the outcomes to the reader immediately. Therefore,
some of the missing outcomes were derived from other data. To calculate the specificity of
the AI, the numbers of true negatives were needed, which were quite often not mentioned
in the studies. To estimate the number of true negatives, the assumption was made that
every included patient had 24 ribs. From there, the total number of ribs in the study was
calculated. Furthermore, it was assumed that every rib could only be broken once. By
subtracting the number of fractures from the total number of ribs, the number of ribs that
were not broken could be calculated: the true negatives.

Separate meta-analyses were performed on the different outcomes present in the
gathered data. Random-effects models were used for these meta-analyses, independently
of a calculated statistic of heterogeneity, as there was a good chance of between-study
variability because of the lack of standardization in the diagnostic study type and because
of the novelty of AI.

The amount of heterogeneity from the different studies in both outcomes was assessed
through an I² analysis. The I² statistic was chosen because its power does not increase
excessively for large amounts of included studies, unlike the power of the conventional
chi-squared test.

2.11. Risk of Bias across Studies

A visual assessment of the risk of publication bias for the outcomes was performed by
looking for asymmetry in their funnel plots. Additionally, an Egger’s test was performed if
the meta-analysis included more than 10 studies and the meta-analysis was deemed prone
to publication bias after assessment of the funnel plots. A threshold of ten studies was used,
as the power of the Eggers test is otherwise usually too low to distinguish chance from real
asymmetry [16].

Furthermore, the risk of within-study selective reporting was assessed by giving each
study a score based on the number of outcomes stated in the methods section, but not
reported on in the results section. Every such discrepancy was awarded 1 point. The total
number of points a study received indicated the risk of within-study selective reporting. A
total score of 0 was rated as low risk, a score of 1 as intermediate risk, and scores greater
than 1 as high risk.

2.12. Additional Analyses

Sensitivity analyses, through which the different outcomes were examined according
to the different domains of the quality assessment (risk of bias and concerns regarding
applicability in patient selection, index test(s), reference standard and flow and timing)
were prespecified.

3. Results
3.1. Study Selection

A total of 57 studies were identified through the multi-database search and another 355
through citation searching (Figure 1). After duplicates were removed manually, 394 studies
were left, which were then screened for relevance to this review. In total, 362 studies were
excluded based on this screening (the title or abstract was unrelated to rib fractures and/or
AI or the study was not in English). On the remaining 32 studies, a full-text assessment
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was performed, through which 20 more studies were excluded. In the end, 12 studies were
included in the systematic review [17–28], all of which were identified in the initial search.
Unpublished relevant studies were not obtained.
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Figure 1. PRISMA flow chart showing study selection from databases and citation searching.

3.2. Study Characteristics

There were quite large differences in the sizes of the datasets, ranging from 30 to 1613
included patients or scans (Table 2). Furthermore, all included studies had CT scans as
their input feature and all studies presented sensitivity as one of their outcomes that were
relevant to this systematic review. The reference standard was quite similar for all the
included studies, and all of them were retrospective. The quality of the studies ranged from
intermediate to high quality: 2 studies with intermediate quality [18,19] and 10 studies
with high quality [17,20–28].

Table 2. Characteristics of the included studies.

Author, Year

Number of
Patients or CT

Scans in
Dataset 1

Imaging
Modality Reference Standard Comparisons Relevant

Outcomes Type of Study Quality

Gipson et al.,
2022 [28] 1400 CT Contemporaneous CT

reports

Comparison with
reference standard
and performance of

radiologists using the
AI tool

Sensitivity,
specificity, TP,

FN, FP and TN

Retrospective
diagnostic cohort

study
High

Jin et al.,
2020 [27] 120 CT Five radiologists with 3 to

20 years of experience
Comparison with
different AI tools Sensitivity

Retrospective
diagnostic cohort

study
High

Kaiume et al.,
2021 [26] 39 CT

Two radiologists with 26
and 6 years of image

interpretation experience

Diagnostic
performance rib

fractures of two intern
doctors

Sensitivity
Retrospective

diagnostic cohort
study

High

Niiya et al.,
2022 [25] 56 CT Two radiologists with 6

and 9 years of experience
Comparison with a
reference standard Sensitivity

Retrospective
diagnostic

case–control
study

High



Surgeries 2024, 5 29

Table 2. Cont.

Author, Year

Number of
Patients or CT

Scans in
Dataset 1

Imaging
Modality Reference Standard Comparisons Relevant

Outcomes Type of Study Quality

Wang et al.,
2022 [24] 1613 CT

Two radiologists with at
least 9 years of experience,
and in case of inconclusion
they made consensus with
a senior radiologist with at
least 20 years of experience

Comparison with six
attending radiologists

Sensitivity and
specificity

Retrospective
diagnostic

case–control
study

High

Wu et al.,
2021 [23] 105 CT

Three radiologists with 6,
10 and 14 years of

experience and one senior
radiologist with 18 years of

experience

Comparison
radiologists who used

AI to diagnose
Sensitivity

Retrospective
diagnostic

case–control
study

High

Yang et al.,
2022 [21] 120 CT

Two experienced
musculoskeletal

radiologists with at least
10 years of experience and

a third radiologist was
invited to participate if
there was a discussion

Comparison with the
diagnosis of three

radiologists, with 5, 7
and 21 years of

experience; those
radiologists were not

the same as the
radiologists who
determined the

reference standard

Sensitivity, TP, FP,
TN and FN

Retrospective
diagnostic cohort

study
High

Yao et al.,
2021 [22] 100 CT

Three experienced
radiologists (over 10 years
experience) and checking
by two senior radiologists
(over 15 years experience)

Comparison of the
performance between

AI, radiologist and
radiologic–AI
collaboration

Sensitivity
Retrospective

diagnostic cohort
study

High

Zhou et al.,
2020 [20] 30 CT

Two experienced
musculoskeletal

radiologists with 8 and 9
years of experience and
two senior radiologists
with 20 and 14 years of

experience; if the
conclusion was

inconsistent, one thoracic
surgeon was invited to

participate in the
discussion

Comparison with the
performance of five

attending radiologists
with 6–8 years of

experience; there was
no overlap between

those radiologists and
the radiologists who

determined the
reference standard

Sensitivity and
FP

Multicenter
retrospective

diagnostic
case–control

study

High

Zhou et al.,
2021 [17] 260 CT

Two experienced
musculoskeletal

radiologists with 8 and 9
years of experience, two

senior radiologists with 20
and 14 years of experience
and one thoracic surgeon

in case of inconclusion

Five radiologists with
6 to 8 years of

experience with no
overlap with the
radiologists who
determined the

reference standard

Sensitivity and
specificity

Multicenter
retrospective

diagnostic cohort
study

High

Zhou et al.,
2022 [18] 164 CT

Two musculoskeletal
radiologists withfive years

of experience and one
senior musculoskeletal

radiologist with more than
ten years of experience

Comparison with
different AI tools Sensitivity

Retrospective
diagnostic cohort

study
Intermediate

Zhou et al.,
2022. [19]

Internal
dataset:

90External
dataset: 38

CT

Two experienced
musculoskeletal

radiologists (9 and 10
years of experience), two

senior radiologists (21 and
15 years of experience)

and, in case of doubt, one
thoracic surgeon

Comparison with the
diagnosis of five

radiologists with 7–9
years of CT diagnosis

experience which
were different from
the radiologists who

determined the
reference standard

Sensitivity, TP,
FN and FP

Multicenter
retrospective

diagnostic cohort
study

Intermediate

1 The number of included patients and included CT scans was deemed as being the same, as it is likely that the
large majority of included patients underwent a single CT scan.

3.3. Risk of Bias within Studies: Quality Assessment

In total, 6 of the 12 studies were awarded full points on patient selection, and 2 studies
scored 0 points (Table S4). As for the domain of the index test, 9 studies were given the
full points and none scored 0 points. Furthermore, in the assessment of the reference
test, 8 studies were given full points, and none received 0 points. Flow and timing were
also assessed, and all studies were deemed worth the full number of points. In the end,
2 studies received the label “intermediate quality” [18,19], and 10 received the label “high
quality” [17,20–28]. No studies were given the label “poor quality”.
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3.4. Results of Individual Studies

Results were collected from all the included studies (Table S5.1). Most of the articles
presented sensitivity in text or tables. The other metrics were only rarely presented to the
reader, so they needed to be calculated.

3.5. Synthesis of Results

Data on sensitivity were available for all 12 studies as 15 sensitivities from 15 datasets.
This included 11,510 rib fractures. In the meta-analysis, the overall sensitivity was 0.85
(95% CI, 0.78–0.92) and there was strong evidence of heterogeneity (I² = 0.99) (Figure 2).
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The specificity was calculated in three ways: The first calculation only included
specificities that could be taken from the studies directly or could be calculated using other
values present. For the second calculation, only values that were partially based on the
previously defined set of assumptions were included. The third calculation included all the
values.

Data on specificity were directly available for two studies: one study [28] presented
the specificity in the text and the other study [22] presented numbers on true negatives
and false positives from which the specificity could be calculated directly. A meta-analysis
was conducted on the two datasets of these two studies, which included 2300 undamaged
ribs. In this first meta-analysis on the specificity, the overall specificity was 0.94 (95% CI,
0.92–0.96) (Figure S2.6).

For five other studies [19,21,24–26], the specificity could be calculated by combining
the false positives with an estimation of the number of true negatives. A meta-analysis was
conducted on the eight datasets of these five studies, which included 79,891 undamaged
ribs. In this second meta-analysis of the specificity, the overall specificity was 0.96 (95% CI,
0.94–0.98) (Figure S2.6).

A third meta-analysis was conducted on the combined ten datasets of a total of seven
studies [19,21,22,24–26,28], which included 82,191 undamaged ribs. In this meta-analysis,
the overall specificity was 0.96 (95% CI, 0.94–0.97), and there was strong evidence of
heterogeneity (I² = 0.99) (Figure 3).
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A heterogeneity of around an I² of 0.99 was found for both tested metrics. This high
I² statistic can probably be explained by differences in datasets used for training and
testing, and by differences in the type of AI used. Often, these study characteristics were
unclear, and therefore it was not possible to further narrow down an explanation of the
identified heterogeneity.

3.6. Risk of Bias across Studies
3.6.1. Assessment of the Risk of Publication Bias

The possibility of publication bias was assessed visually by evaluating a funnel plot of
each outcome for asymmetry. Multiple factors can be responsible for an asymmetric funnel
plot, including poor study quality, true study heterogeneity, reporting biases, artifactual
causes, and asymmetry by chance. The funnel plot of the sensitivity shows asymmetry,
which may indicate publication bias (Figure S3.1). However, some of the smaller stud-
ies [26,28] show smaller values for the different detection measurements. This would argue
against publication bias because smaller studies have a bigger risk of finding significantly
large false positive effect estimates when performing multiple analyses. After all, smaller
studies have more sampling errors in their effect estimates [16]. Larger effects may seem
worthy of publishing, but in this case, the study findings are relatively small and were
still published. This reduces the chance of it being publication bias, since small values
are less interesting to publish, and are thus likely not published selectively. This also
applies to the asymmetry of the specificity funnel plot, where there are small studies with
small effect estimates and large studies with big effect estimates (Figure S3.2). Selective
outcome reporting and selective analysis reporting are unlikely since they were assessed
and deemed low risk. As there is quite a substantial amount of asymmetry in the funnel
plot of the sensitivity (Figure S3.1), the odds of it being caused by chance are also quite
small. Poor methodological design and true heterogeneity of differences between studies,
on the other hand, are more probable causes. Thus, the asymmetry of the plot may have
been caused by the use of multiple types of AI with different trainings in each study.

In the funnel plot of the specificity, asymmetry is also visible (Figure S3.2). As men-
tioned before, there is a substantial difference in study size and use of various AIs, causing
the effect estimates to be different as well. Selective outcome reporting and selective
analysis reporting are, again, probably not the cause of the asymmetry since they were
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assessed and deemed low risk. There is most likely no publication bias in the funnel plot
of the specificity as the same logic applies to the asymmetry here as for the asymmetry
in the sensitivity plot (Figures S3.1 and S3.2). The chances of it being artefactual, based
on chance or fraud are also quite slim because the studies seem consistent. Thus, in this
case, the asymmetry is also likely to be of methodological origin and thus caused by actual
heterogeneity between studies.

3.6.2. Assessment of the Risk of Within-Study Selective Reporting

All outcomes that were relevant to this systematic review and that were stated in
the methods sections of the included studies were reported in the results sections of the
included studies. Thus, all studies were rated as having a low risk of within-study selective
reporting (Figure S3.6).

3.7. Additional Analysis

All subgroup analyses were prespecified and were conducted according to the quality
score group of the studies and according to the score, studies received for a certain quality
domain (1A, 1B, 2A, 2B, 3A, 3B, 4).

The sensitivity was smaller in studies with an unclear risk of bias regarding the
reference standard (3A) (0.41, 95% CI: 0.36–0.46) compared with studies with a low concern
in the same domain (0.88, 95% CI: 0.84–0.92) (Figure S4.5).

No other differences in diagnostic performance were found through subgroup analyses
according to the quality score group of the studies and according to the remaining quality
domains for both outcomes (Figures S4.1–4.4 and S4.6–4.15).

4. Discussion
4.1. Summary of Evidence

The objective of this systematic review was to assess the performance of AI as an
independent tool for rib fracture detection on CT scans or X-rays of patients with possible
rib fractures, using the metrics of sensitivity and specificity. The meta-analysis resulted in an
overall sensitivity of 0.85 (95% CI, 0.78–0.92) with strong evidence of heterogeneity (I² = 0.99)
and overall specificity of 0.96 (95% CI, 0.94–0.97) with strong evidence of heterogeneity
(I² = 0.99). In total, 15 sensitivities from 15 databases from all 12 studies [17–28] and
10 specificities from 10 databases from 7 studies [19,21–26,28] were used to complete this
meta-analysis. All sensitivities were extracted directly from the articles or calculated
without making any assumptions. For the specificities, it was not possible to avoid making
assumptions since only two specificities were directly available. Therefore, the other five
specificities were based on assumptions. This demonstrates that the presence of rib fractures
can be detected and ruled out accurately, but that caution must be taken about relying on
the AI’s specificity.

4.2. Limitations
4.2.1. Outcome Level

For this meta-analysis, data from different studies were combined to estimate diagnos-
tic performance with more precision than is possible in a single study. This creates the main
limitation of this meta-analysis: patient population, type of index test, type of reference
standard and outcome definitions are (likely) not the same across studies.

4.2.2. Study and Review Level

No extra articles were identified from the citation search in addition to the articles that
were identified through the initial search. Therefore, there is no reason to believe that the
initial search was incomplete.

An important limitation is that not all the data from the identified research were
available to us. In the search for data, the articles and the available corresponding sup-
plementary materials were checked, emails were sent to all the authors for additional
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information, and data were calculated where possible. Still, a considerable amount of data
was not available, especially for the numbers of true negatives and the metrics relating to
that value. Because of this, two assumptions were made which are likely to have influenced
the calculations of the specificity. No significant difference was found, however, between
the directly calculated specificity and the one calculated using assumptions, which would
suggest that the assumptions made were quite accurate (Figure S2.6).

A quality assessment of the different studies was performed, which resulted in two
studies [18,19] receiving the label “intermediate quality” and the other ten studies [17,20–28]
receiving the label “high quality”. This could either be because most of the included studies
are at a high level or because the quality assessment was not discriminatory enough.

An assessment of heterogeneity for the different outcomes that were calculated was
conducted, and a lot of the outcomes were found to be heterogeneous. Further specification
of the cause of this heterogeneity was not possible, as a couple of important factors were
not available, which made it more difficult to generalize conclusions.

Furthermore, it was not possible to retrieve all the research identified as relevant. An
assessment of within-study selective reporting was performed for which all studies were
found to be of low risk. This assessment was made on the consistency of the methods
and results in sections of the included articles. For this analysis, protocols of the included
studies were not searched/made use of, which would have been a more robust way of
checking the risk of within-study selective reporting.

In addition to that, an assessment of the risk of publication bias was conducted,
through which asymmetries in the funnel plots of both outcomes were found. The asym-
metries were likely caused by poor methodological design and true heterogeneity between
studies, as different studies used multiple types of AI with training sets of variable quality
and variable populations. The chance of the asymmetries being caused by publication
bias was deemed low, but this could still be the cause, as the interpretation of such data is
common.

Finally, the initial PubMed search was repeated on 3 January 2023, and now 58 articles
were identified in comparison to the previously found 57 articles. The newly identified
article stated that it was published on 3 December 2022 and should therefore have ended
up in the initial search. It is unclear how this could have happened, but as the article in
question was a review and dealt with a subject that was irrelevant to this systematic review,
it would not have had any influence on the results if it had been identified earlier.

5. Conclusions
5.1. Implications for Practice

This review demonstrates that AI is accurate at diagnosing rib fractures on CT scans.
This is in line with the current literature, as other systematic reviews have found similar
sensitivities and specificities for the application of AI in fracture detection.

Yang et al., for example reported a pooled sensitivity of 0.96 and specificity of 0.94
for the application of AI in detecting long-bone fractures [29]. Additionally, Yang et al.
reported a pooled sensitivity of 0.91 and specificity of 0.95 for the application of AI in
detecting all types of fractures. They concluded that deep learning is the most promising
method to assist in the diagnosis of orthopedic fractures, but that it cannot be used yet as
an independent diagnostic tool.

In addition to that, Kuo et al. reported a pooled sensitivity of 0.91 and specificity of
0.91 and cautiously concluded that AI is non-inferior to clinicians in terms of diagnostic
performance in fracture detection, showing promise as a useful diagnostic tool [30].

As AI seems to have a similar accuracy for identifying rib fractures, it is reasonable
that it can be used in similar ways as Yang et al. and Kuo et al. have proposed. It
could, for example, aid radiologists in detecting rib fractures by serving as a screening
tool or functioning as a second opinion. Alternatively, it could act as a tool in teaching
(resident) radiologists.
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It should be noted that as with any other screening tool, rib fractures labeled by the AI
tool might not always be clinically relevant: depending on the dataset, the AI is trained
upon, it might also label old, healed or very small fractures, which might not always have
to be treated. Furthermore, in the application as a second opinion, users should be wary of
too much reliance on AI, as it is still unknown how it compares to a human counterpart
in this role. Finally, during the training of AI, bias can be introduced into the system. To
minimize this risk, it is important to check and monitor the tool. This is especially the case
when using the tool for teaching the new generation of radiologists.

As diagnosing rib fractures is only a small aspect of the diverse set of diagnostic skills
that radiologists possess, the AIs investigated in this systematic review cannot replace
the completeness of the radiologists’ interpretation. Combining the AIs in this systematic
review with AIs trained in detecting other relevant findings (pneumothorax, hemothorax,
vascular injury, etc.), however, could result in a tool that might come closer to replac-
ing a radiologist. This was not further investigated, as it was beyond the scope of this
systematic review.

5.2. Implications for Research

Further research should be conducted to find out how AI compares to medical spe-
cialists in rib fracture detection, as this would make conclusions regarding the technology
more clinically relevant. Additionally, future studies should compare different forms of AI
to optimize the technology’s performance.

Both of these goals could be achieved in a trial in which a dataset of CT scans or X-rays
is analyzed by different types of AI and by radiologists for the presence of rib fractures.
This would shed light on how AI compares to radiologists, but on into which type of AI is
most suited for this particular task.

Although there is still a lot of research needed to put AI into practice, this systematic
review confirms the bright foresight of AI in radiology, as it can accurately detect and rule
out the presence of rib fractures.
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