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Abstract: Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the
specific heat profile of various materials. In order to connect the measured profile to the properties of
a particular protein, a model is required to fit. We discuss here the application of an exact two-state
formula with its approximation and process the DSC experimental data on protein folding in water.
The approximate formula relies on the smallness of the transition interval, which is different for
each protein. With an example of the set of 33 different proteins, we show the practical validity of
the approximation and the equivalence of exact and approximate two-state formulas for processing
DSC data.
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1. Introduction

Differential Scanning Calorimetry (DSC) is a powerful technique used to measure the
temperature dependence of specific heat for various solid [1] and soft materials, including
biopolymer solutions [2]. Structural transformations taking place in the material of study
show up as peaks in the heat capacity. Strictly speaking, only the transition temperature
(Tm) can be determined from the position of the peak maximum if no model assumptions
are invoked. For anything beyond this point, one needs additional assumptions to be made
in order to process the DSC data.

If the baselines before and after the transition are parallel, their difference is temperature-
independent (constant), and the baseline subtraction can be performed. The area under
the specific heat peak can be thus numerically estimated, giving us the enthalpic cost (∆H)
of transformation.

Quite often, it happens that a typical protein undergoing unfolding in solution does
not have constant baselines. Sometimes, baselines are linear [3–5], and the (unjustified)
subtraction gives a closed contour with the area enclosed equal to ∆H. Not only is it unjus-
tified but such a procedure is also not unique: each particular choice of the baseline points
fits to a different line, which closes a different contour with a different ∆H. Sometimes,
the baselines are not linear at all [6–10], and no analysis is possible beyond the transition
temperature determination.

Let us assume it is possible to perform the baseline subtraction. Then, the time comes
to decide about the model which is going to be fit to the specific heat profile. The most
common approach to analyze the DSC unfolding data is the two-state model [11]. It
assumes that a protein exists in either a fully folded or fully unfolded state, and that the
unfolding transition is reversible and cooperative [12]. The approach essentially relies
on the temperature-independent (constant) difference of specific heats ∆CP = CU

P − CN
P

between the unfolded (U) and native (N) states and allows to derive a formula for the
Gibbs free energy cost of protein (un)folding (∆G). The obtained formula allows to process
the experimental data in terms of fitting.
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While powerful and general, the two-state model is limited in its ability to accurately
describe the complex thermodynamics of protein folding, especially for proteins with more
than one domain or subunit [12].

Yet, another well-known approach, suggested by Hawley [13,14], is applicable to
describe protein folding. It reproduces the elliptic phase diagram of protein (un)folding
and allows for cold denaturation to happen. Hawley assumes the free energy difference
between the native and denatured states in a protein is a quadratic function of pressure
and temperature [13]. The resulting bell-shaped three-dimensional curve ∆G(P, T) is
sliced at the zero surface to obtain an elliptical phase diagram. The approach was quite
successful not only for protein folding but was later applied to describe the re-entrant
melting transition in DNA [15] as well.

If we disregard the pressure-dependent terms in Hawley’s approach [13], it be-
comes very similar to the expressions suggested by Privalov for the two-state model [11].
As shown by Smeller [14], under the assumption of a small transition interval, the logarith-
mic term in the free energy expression can be resolved into a Taylor series and truncated at
the second order, resulting in a quadratic expression. The assumption of the smallness of the
transition interval depends on the particular protein: some have slightly wider, and some
slightly narrower, temperature intervals. To which extent the approximate formula will
be equivalent to the exact one can only become clear after the same two-state approach is
applied to a set of data and the fitted parameters are compared.

In this publication, we compare the use of logarithmic and square formulas for the
free energy of protein folding within the two-state model. We first discuss the theoretical
foundations, review the derivations and later apply both formulas to process the set of
33 experimental DSC curves. Despite the obvious differences in transition intervals for
each of proteins, the obtained values of fitted quantities for both methods are very similar.
We thus conclude that the assumption of a small transition interval is often valid, at least
for the random set of 33 proteins of our choice. It means that the proposed two formulas
can be identically used to fit DSC data.

2. Materials and Methods

The extensively adopted two-state model for analyzing heat capacity profiles [2,11,12]
is fundamentally based on the premise that folding constitutes a phase transition between
the native and denatured states. While protein folding could be theoretically conceptualized
as a coil–globule transition, the presence of limited system sizes and the heterogeneous
composition of polypeptides results in a finite temperature range that deviates significantly
from the idealized notion of a phase transition, which the two-state model is specifically
designed to accommodate.

The process of determining the free energy difference between the native (N) and
unfolded (U) states begins with formulating expressions for the enthalpies and entropies of
each of the phases. The specific heat at constant pressure can be equivalently expressed for
both the α = U, N phases as follows:

Cα
P =

(
dHα(T)

dT

)
P

Cα
P = T

(
dSα(T)

dT

)
P

,
(1)

and the estimations for enthalpy and entropy can be expressed as

Hα(T) = Hα(T0) +
∫ T

T0

dTCα
P(T),

Sα(T) = Sα(T0) +
∫ T

T0

dTCα
P(T)/T,

(2)
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where the subscript 0 denotes the values of quantities at the transition point (chosen
for convenience, although any reference temperature would work). This facilitates the
formulation of expressions for the differences in enthalpy and entropy between the native
and denatured phases as

∆U
N H(T) = HU(T)− HN(T) = ∆H0 +

∫ T

T0

dT∆U
NCP(T), (3a)

∆U
NS(T) = SU(T)− SN(T) = ∆S0 +

∫ T

T0

dT∆U
NCP(T)/T. (3b)

Up to this point, no assumptions have been made apart from the existence of two phases.
To proceed, following Privalov [11], we adopt the assumption that the difference in specific
heat between the two phases remains constant and can be substituted by its value at
transition point, e.g., ∆U

NCP = ∆C0
P = const. In other words, within the transition region,

the difference in specific heats between the two phases does not vary with temperature.
This is often interpreted as parallel baselines as proposed by Privalov [11]. The implications
and consequences of such an assumption are not entirely clear, but once it is accepted, it
leads to

∆U
N H(T) = ∆H0 + (T − T0)∆C0

P,

∆U
NS(T) = ∆S0 + ln(T/T0)∆C0

P.
(4)

Therefore,

∆U
NG(T) = ∆U

N H(T)− T∆U
NS(T)

= ∆H0

(
1 − T

T0

)
− T0∆C0

P

(
1 − T

T0
+

T
T0

ln(T/T0)

)
.

(5)

Here, we utilize the fact that at the transition point T0, the free energy difference equals
zero, implying ∆S0 = ∆H0

T0
. Conversely, considering a phase transition in proteins, which

are finite-length heteropolymers, the transition interval should not be zero but cannot be
excessively large either. This justifies the approximation T

T0
≈ 1 (for any temperature T

within the transition interval), enabling the expansion of the last term of Equation (5) into a
Taylor series. The resulting expression is quadratic in temperature:

∆GNU(T) = ∆HNU(T)− T∆SNU(T)

= ∆H0

(
1 − T

T0

)
− T0∆C0

P

(
1 − T

T0

)2
.

(6)

Hawley was the pioneer in employing such a formula to describe the cold denaturation of
chymotrypsinogen [13,14]. However, the Formulas (5) or (6) representing the Gibbs free
energy expenditure for unfolding are not suitable for interpreting experimental DSC data
on protein folding. Recall that we assumed a constant jump in heat capacity to derive
Equation (5). Now, the bad news is that unfolding DSC experiments yield a temperature-
dependent dome-shaped curve rather than the fixed jump as modeled with ∆U

NCP = const.
To effectively fit this curve, an adjustment [12] to the aforementioned two-state model is
necessary. Specifically, the enthalpy difference Equation (3a) is multiplied by the fraction of
unfolded units in the protein

θU(T) =
KNU

1 + KNU

KNU = exp[−∆GNU(T)/RT],
(7)
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where θU is the degree of denaturation and KNU represents the equilibrium constant
between the native (N) and unfolded (U) states. The modified expression for the en-
thalpy reads:

∆H(T) = ∆HNU(T)θU(T), (8)

resulting in the specific heat

CP(T) = ∆U
N H(T)

dθU
dT

+ ∆C0
PθU(T). (9)

The ansatz in Equation (8) disrupts the equivalence between the two specific heat formulas
in Equation (1). Anyway, Equation (9) is used to fit the experimental data within the
two-state model [12]. It involves three fitting parameters: T0, ∆H0, and ∆C0

P.

3. Results and Discussion

With the detailed derivation we performed above, we can now proceed to the main
goal of this paper: the comparison of fitting procedures based on Equation (5) and its
approximation Equation (6).

To analyze experimental data, we converted heat capacity plots from various publi-
cations into the digital format (see Table 1 for references). For digitization, we took the
graphs from the original papers and uploaded them to an online digitization tool sys-
tem [16] that is an opensource software leveraging computer vision technology to assist in
extracting numerical data from images, including plots, maps, and various other visual ma-
terials. WebPlotDigitizer ensures an accurate data extraction of information by employing
a combination of computer vision algorithms and manual techniques.

All data are expressed in molar units, with specific heat measured per residue.
The data we digitized primarily originate from curves with baselines subtracted by the
original authors who conducted the measurements, and only once did we use the linear
extrapolation of the initial slope of the heat capacity function to perform the subtraction.
Consequently, we refrain from deliberating on the efficacy or limitations of the baseline
subtraction procedures employed by other authors. Here, we focus on comparing how
two different approaches of the two-state model fit the heat capacity data, reported by
other authors. Least-square fit was performed with the domestic code in Python, using the
‘optimize.curve_fit’ function of the ‘scipy’ library.

The results of fitting 33 experimental data to both the logarithmic (Equation (5)) and
square (Equation (6)) formulas (see Appendix A) are shown in Table 1. In general, both for-
mulas result in very similar fits. As shown in Figure 1, the qualitative similarity between the
fitted curves can be seen visually. However, it is not clear what the statistical consequences
would be of using the approximate formula while processing a dataset of experimental
points. In order to study the statistical quantitative similarity, in Figure 2, we compare
the histograms of fitted parameters and their mean values for 33 proteins in Table 1. The
histograms were constructed with a domestic code in Python (https://www.python.org/),
with the help of the ‘histogram’ function of the ‘numpy’ library.

https://www.python.org/
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Figure 1. (a) corresponds to #4 in Table 1; (b) corresponds to #22 in Table 1; (c) corresponds to #8 in
Table 1; and (d) corresponds to #25 in Table 1.

As we can see from Figure 2, although the historgams differ a little, the mean values
of fitting parameters (see the legends) for both the logarithmic and square equations show
a very high degree of proximity. Additionally, the two datasets of fitted values can be
compared using the concept of the Root Mean Square Deviation (RMSD):

RMSD =

√
1
n

n

∑
i=1

(x1 − x2)
2 (10)

and the Normalized Root Mean Square Deviation (NRMSD)

NRMSD =
RMSD

x
, (11)

where
x =

x1 + x2

2
. (12)

These measures allow to quantify how far the two datasets are from each other. Usually,
such analysis is used in the context of the comparison of two conformations of a protein,
but nothing stops us from using it for our purposes. The analysis has shown that the
NRMSD(∆H0) = 0.02, NRMSD(∆C0

P) = 0.11 and NRMSD(T0) = 0.002, which means the
parameter values obtained from the fit performed with two formulas are very close to
each other.
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Figure 2. Histograms of fitted parameters for the dataset of 33 proteins. The blue line corresponds
to the logarithmic formula given by Equation (5) and the dashed red line to the square formula and
Equation (6) for the two-state model. The mean and NRMSD values are calculated not from the
histogram but from the parameters set recorded in Table 1. (a) The histogram of ∆H0 with the bin
width of 25 kJ/mol. NRMSD(∆H0) = 0.02; (b) the histogram of ∆C0

P with the bin width of 1 kJ/(mol K).
NRMSD(∆C0

P) = 0.11. (c) The histogram of T0 with the bin width of 5 K. NRMSD(T0) = 0.002.
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Table 1. The results of the fits using the logarithmic and square formulas.

# Protein Reference N 2-State (square) R2 2-State (log ) R2

1 gpW Ref. [17], Figure 4a 62

T0 : 338 (0.2) K

∆H0 : 185 (3.8) kJ/mol

∆C0
p : 3.3 (8.8) kJ/(mol K)

0.897

T0 : 338 (0.2) K

∆H0 : 184.1 (3.3) kJ/mol

∆C0
p : 3.4 (7.6) kJ/(mol K)

0.908

2 ubiquitin pH 2.0 Ref. [5], Figure 1b 76

T0 : 328 (0.02) K

∆H0 : 203.9 (0.4) kJ/mol

∆C0
p : 3.96 (1) kJ/(mol K)

0.995

T0 : 328 (0.02) K

∆H0 : 203.3 (0.4) kJ/mol

∆C0
p : 4.2 (1.3) kJ/(mol K)

0.998

3 ubiquitin pH 2.5 Ref. [5], Figure 1b 76

T0 : 333 (0.02) K

∆H0 : 214 (0.5) kJ/mol

∆C0
p : 4.1 (1.3) kJ/(mol K)

0.994

T0 : 333 (0.02) K

∆H0 : 216 (0.5) kJ/mol

∆C0
p : 4 (2) kJ/(mol K)

0.995

4 ubiquitin pH 3.0 Ref. [5], Figure 1b 76

T0 : 346 (0.03) K

∆H0 : 253.2 (0.8) kJ/mol

∆C0
p : 3.9 (3.7) kJ/(mol K)

0.988

T0 : 346 (0.03) K

∆H0 : 254.5 (0.7) kJ/mol

∆C0
p : 3.85 (3.1) kJ/(mol K)

0.990

5 ubiquitin pH 3.5 Ref. [5], Figure 1b 76

T0 : 357 (0.05) K

∆H0 : 274.6 (1.4) kJ/mol

∆C0
p : 4 (6.6) kJ/(mol K)

0.969

T0 : 357 (0.04) K

∆H0 : 274.86 (1.2) kJ/mol

∆C0
p : 4 (5.7) kJ/(mol K)

0.972

6 ubiquitin pH 4.0 Ref. [5], Figure 1b 76

T0 : 362 (0.03) K

∆H0 : 295.4 (0.7) kJ/mol

∆C0
p : 3.5 (4.7) kJ/(mol K)

0.992

T0 : 362 (0.02) K

∆H0 : 296.7 (0.6) kJ/mol

∆C0
p : 3.4 (4.6) kJ/(mol K)

0.992

7 barnase pH 1.8 Ref. [5], Figure 1a 110

T0 : 295 (0.02) K

∆H0 : 271.4 (0.5) kJ/mol

∆C0
p : 6.2 (2.9) kJ/(mol K)

0.996

T0 : 295 (0.02) K

∆H0 : 275.96 (0.5) kJ/mol

∆C0
p : 5.6 (3.6) kJ/(mol K)

0.993

8 barnase pH 2.5 Ref. [5], Figure 1a 110

T0 : 303 (0.009) K

∆H0 : 363 (0.3) kJ/mol

∆C0
p : 5.7 (3.2) kJ/(mol K)

0.996

T0 : 303 (0.007) K

∆H0 : 364 (0.3) kJ/mol

∆C0
p : 5.5 (2.7) kJ/(mol K)

0.997

9 barnase pH 2.8 Ref. [5], Figure 1a 110

T0 : 314 (0.008) K

∆H0 : 402.8 (0.3) kJ/mol

∆C0
p : 3.15 (7) kJ/(mol K)

0.995

T0 : 314 (0.007) K

∆H0 : 403.2 (0.3) kJ/mol

∆C0
p : 3.07 (6.7) kJ/(mol K)

0.996

10 barnase pH 3.45 Ref. [5], Figure 1a 110

T0 : 320 (0.009) K

∆H0 : 448 (0.4) kJ/mol

∆C0
p : 6 (4.6) kJ/(mol K)

0.992

T0 : 320 (0.008) K

∆H0 : 448 (0.4) kJ/mol

∆C0
p : 6 (4.1) kJ/(mol K)

0.993

11 barnase pH 5.5 Ref. [5], Figure 1a 110

T0 : 329 (0.007) K

∆H0 : 504.33 (0.4) kJ/mol

∆C0
p : 3.9 (7.3) kJ/(mol K)

0.994

T0 : 329 (0.006) K

∆H0 : 504.67 (0.3) kJ/mol

∆C0
p : 3.8 (7.2) kJ/(mol K)

0.994

12 Sox-5 Ref. [5], Figure 3a 81

T0 : 315 (0.1) K

∆H0 : 185.5 (2.3) kJ/mol

∆C0
p : 4.7 (3.2) kJ/(mol K)

0.893

T0 : 315 (0.1) K

∆H0 : 170 (3) kJ/mol

∆C0
p : 5.7 (4) kJ/(mol K)

0.932

13 bovine β-lactoglobulin A Ref. [18], Figure 2a 162

T0 : 352 (0.01) K

∆H0 : 313.87 (0.3) kJ/mol

∆C0
p : 3 (3.6) kJ/(mol K)

0.995

T0 : 352 (0.01) K

∆H0 : 314.95 (0.3) kJ/mol

∆C0
p : 2.9 (3.3) kJ/(mol K)

0.995

14 S44[A] mutant of T4 lysozyme Ref. [4], Figure 3a 164

T0 : 327 (0.02) K

∆H0 : 350.5 (0.8) kJ/mol

∆C0
p : 8.8 (3.5) kJ/(mol K)

0.948

T0 : 327 (0.02) K

∆H0 : 349 (0.8) kJ/mol

∆C0
p : 9.03 (3.1) kJ/(mol K)

0.949

15 pseudo-WT T4 lysozyme pH 2.8 Ref. [4], Figure 2 164

T0 : 323 (0.008) K

∆H0 : 528.7 (0.5) kJ/mol

∆C0
p : 10.9 (3.5) kJ/(mol K)

0.988

T0 : 323 (0.007) K

∆H0 : 529.3 (0.4) kJ/mol

∆C0
p : 10.8 (3.3) kJ/(mol K)

0.989

16 pseudo-WT T4 lysozyme pH 3.0 Ref. [4], Figure 2 164

T0 : 327 (0.007) K

∆H0 : 557.1 (0.4) kJ/mol

∆C0
p : 8.4 (4.6) kJ/(mol K)

0.991

T0 : 327 (0.006) K

∆H0 : 557.45 (0.4) kJ/mol

∆C0
p : 8.34 (4.4) kJ/(mol K)

0.991

17 pseudo-WT T4 lysozyme pH 3.3 Ref. [4], Figure 2 164

T0 : 332 (0.006) K

∆H0 : 588 (0.4) kJ/mol

∆C0
p : 11.6 (3.8) kJ/(mol K)

0.993

T0 : 332 (0.005) K

∆H0 : 587.85 (0.3) kJ/mol

∆C0
p : 11.44 (3.4) kJ/(mol K)

0.993

18 pseudo-WT T4 lysozyme pH 3.5 Ref. [4], Figure 2 164

T0 : 335 (0.006) K

∆H0 : 593.7 (0.4) kJ/mol

∆C0
p : 13 (3.2) kJ/(mol K)

0.993

T0 : 335 (0.005) K

∆H0 : 595 (0.3) kJ/mol

∆C0
p : 12.75 (3) kJ/(mol K)

0.994

19 pseudo-WT T4 lysozyme pH 3.7 Ref. [4], Figure 2 164

T0 : 337 (0.008) K

∆H0 : 601 (0.5) kJ/mol

∆C0
p : 14.8 (3.8) kJ/(mol K)

0.991

T0 : 338 (0.007) K

∆H0 : 602.69 (0.4) kJ/mol

∆C0
p : 14.4 (3.4) kJ/(mol K)

0.992

20 metmyoglobin pH 3.9 Ref. [3], Figure 3a 153

T0 : 333 (0.05) K

∆H0 : 230 (1.3) kJ/mol

∆C0
p : 6.8 (2) kJ/(mol K)

0.972

T0 : 333 (0.04) K

∆H0 : 225.57 (1.2) kJ/mol

∆C0
p : 7.33 (2) kJ/(mol K)

0.988

21 metmyoglobin pH 4.08 Ref. [3], Figure 3a 153

T0 : 340 (0.02) K

∆H0 : 297.5 (0.6) kJ/mol

∆C0
p : 7 (2) kJ/(mol K)

0.994

T0 : 340 (0.02) K

∆H0 : 302 (0.7) kJ/mol

∆C0
p : 6.67 (2.7) kJ/(mol K)

0.994

22 metmyoglobin pH 4.2 Ref. [3], Figure 3a 153

T0 : 345 (0.01) K

∆H0 : 344 (0.4) kJ/mol

∆C0
p : 6.6 (2.3) kJ/(mol K)

0.998

T0 : 345 (0.01) K

∆H0 : 346.5 (0.4) kJ/mol

∆C0
p : 6.37 (2.5) kJ/(mol K)

0.997
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Table 1. Cont.

# Protein Reference N 2-State (square) R2 2-State (log ) R2

23 metmyoglobin pH 4.44 Ref. [3], Figure 3a 153

T0 : 349 (0.02) K

∆H0 : 391.3 (0.6) kJ/mol

∆C0
p : 7.7 (2.7) kJ/(mol K)

0.991

T0 : 349 (0.02) K

∆H0 : 394.7 (0.8) kJ/mol

∆C0
p : 7.28 (5.7) kJ/(mol K)

0.989

24 mutant SpA(L20A + Y15W) Ref. [19], Figure 6 58

T0 : 324 (0.09) K

∆H0 : 107.8 (2) kJ/mol

∆C0
p : 3 (2) kJ/(mol K)

0.975

T0 : 327 (0.09) K

∆H0 : 124.6 (1.5) kJ/mol

∆C0
p : 2.5 (2.9) kJ/(mol K)

0.954

25 Lysozyme pH 2.5 Ref. [12], Figure 8 129

T0 : 335 (0.006) K

∆H0 : 441.6 (0.3) kJ/mol

∆C0
p : 11.1 (1.6) kJ/(mol K)

0.996

T0 : 335 (0.006) K

∆H0 : 444.85 (0.3) kJ/mol

∆C0
p : 10.6 (1.7) kJ/(mol K)

0.995

26 Apolipoprotein A-1 Ref. [12], Figure 7 245

T0 : 326 (0.04) K

∆H0 : 315 (1.5) kJ/mol

∆C0
p : 8 (2.4) kJ/(mol K)

0.825

T0 : 325 (0.03) K

∆H0 : 289.8 (1) kJ/mol

∆C0
p : 11.3 (1.4) kJ/(mol K)

0.942

27 ubiquitin Ref. [20], Figure 1 76

T0 : 329 (0.009) K

∆H0 : 201.5 (0.2) kJ/mol

∆C0
p : 2.9 (0.8) kJ/(mol K)

0.999

T0 : 329 (0.004) K

∆H0 : 204.6 (0.08) kJ/mol

∆C0
p : 2.66 (0.4) kJ/(mol K)

0.999

28 thioredoxin Ref. [21], Figure 2a 104

T0 : 362 (0.02) K

∆H0 : 431.5 (0.7) kJ/mol

∆C0
p : 4.6 (9.8) kJ/(mol K)

0.996

T0 : 362 (0.02) K

∆H0 : 433.33 (0.7) kJ/mol

∆C0
p : 4.3 (10.3) kJ/(mol K)

0.995

29 Cold shock protein CspB Ref. [22], Figure 2 67

T0 : 327 (0.05) K

∆H0 : 177.5 (0.8) kJ/mol

∆C0
p : 2.3 (3.4) kJ/(mol K)

0.996

T0 : 327 (0.04) K

∆H0 : 179.55 (0.8) kJ/mol

∆C0
p : 2.2 (3.5) kJ/(mol K)

0.995

30 villin headpiece Ref. [23], Figure 3 35

T0 : 339 (0.2) K

∆H0 : 132.7 (2.9) kJ/mol

∆C0
p : 1.6 (8.4) kJ/(mol K)

0.955

T0 : 340 (0.2) K

∆H0 : 133.4 (2.4) kJ/mol

∆C0
p : 1.64 (7.4) kJ/(mol K)

0.960

31 gpW Ref. [24], Figure 1a 58

T0 : 338 (0.2) K

∆H0 : 184.5 (3.5) kJ/mol

∆C0
p : 3.3 (8.4) kJ/(mol K)

0.911

T0 : 338 (0.2) K

∆H0 : 183.95 (3) kJ/mol

∆C0
p : 3.37 (7.2) kJ/(mol K)

0.920

32 SH3 Ref. [24], Figure 1b 57

T0 : 339 (0.02) K

∆H0 : 202.8 (0.4) kJ/mol

∆C0
p : 2.4 (1.9) kJ/(mol K)

0.998

T0 : 340 (0.009) K

∆H0 : 204.8 (0.2) kJ/mol

∆C0
p : 2.3 (1.1) kJ/(mol K)

0.999

33 thioredoxin h Ref. [25], Figure 1b 113

T0 : 335 (0.01) K

∆H0 : 288 (0.4) kJ/mol

∆C0
p : 3.3 (3.2) kJ/(mol K)

0.996

T0 : 335 (0.01) K

∆H0 : 288.84 (0.3) kJ/mol

∆C0
p : 3.22 (2.7) kJ/(mol K)

0.996

With the results of the fitting summarized in Table 1, we can answer the question
posed: is the condition of smallness of the reduced transition interval ∆T/T0 satisfied for
the 33 randomly chosen globular proteins from our set? Under the assumption that all the
proteins considered are two-state, we can re-write Equation (12) of Ref. [26] as

∆T
T0

=
4RT0

∆H0
, (13)

where R = 8.314J/molK is the gas constant, and estimate the reduced interval using fitted
values from Table 1. The results of such an estimate, presented in Figure 3, indicate a certain
span of values around the mean value of 0.04 for the members of the set. Nevertheless,
the parameter remains small, justifying the validity of series expansion and resulting in the
equivalence of the logarithmic (Equation (5)) and square (Equation (6)) formulas.
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Figure 3. Reduced transition intervals of 33 samples from Table 1, calculated under the assumption of
two-state formula, using Equation (13) (red dots). The mean value is 0.04, shown as a blue dashed line.

4. Conclusions

We fit the specific heat experimental data (33 samples) using two formulas for the free
energy difference between the native and the unfolded states within the two-state model.
Despite the fact that the square formula is just an approximation of the logarithmic one,
valid for small transition intervals, they both result in very similar outcomes, at least for
the random pick of experimental data we have used. Fitted curves often coincide visually,
with the coefficients of determination at least R2 > 0.9 and mostly R2 > 0.99, indicating
very good fits to data points for both formulae. Although there are some differences in
histograms of fitted parameters, depending on the type of the formula used in fit, the aver-
ages are very close to each other. The comparison of the two datasets of fitted parameters
performed with the help of NRMSD analysis has also shown a high degree of similarity.
Although the estimate of reduced transition intervals indicates some span of values around
the mean value of 0.04, values remain small and justify the use of series expansion. To
summarize, the analysis above allows to consider both the exact logarithmic and the ap-
proximate square formulae for the free energy difference of (un)folding to be practically
equivalent and suggests the use of Equation (5) or Equation (6) at one’s convenience.
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Abbreviations
The following abbreviations are used in this manuscript:

DSC Differential Scanning Calorimetry
BPTI bovine pancreatic trypsin inhibitor
RMSD Root Mean Square Deviation
NRMSD Normalized Root Mean Square Deviation

Appendix A. Fitting Formulas

Fitting formula for two-state model

∆CP = ∆U
N H

dθU
dT

+ ∆C0
pθU , (A1)

where
∆U

N H = ∆H0 + ∆C0
p(T − T0) (A2)

θU is the fraction of unfolded protein

θU =
KNU

1 + KNU
(A3)

KNU is an equilibrium constant of native (N) and unfolded (U) states.

KNU = exp(−∆GNU/RT) (A4)

∆G is the simplified Gibbs free energy:
For log

∆GNU = ∆H0

(
1 − T

T0

)
+ ∆C0

p(T − T0)− T∆C0
p ln

(
T
T0

)
, (A5)

for square

∆GNU = ∆H0

(
1 − T

T0

)
− T0∆C0

p

(
1 − T

T0

)2
. (A6)
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