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Abstract: This study mainly concerns the use of Fuzzy-PI adaptive sliding control (Fuzzy-ASMC) to
force the stat space of MAGLEV to track a desired trajectory. The usage of adaptive sliding mode
control allows the MAGLEV to operate in an uncertain environment and in the presence of external
disturbances. The Fuzzy-PI schema is designed to improve the performance of adaptive sliding mode
control and reduce the main drawback caused by the discontinuous term of this method, which is the
well-known chattering phenomenon. The results of our study prove the effectiveness of the proposed
approach in achieving desired performances.
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1. Introduction

Magnetic levitation (MAGLEV) systems have gained popularity because of their
practical importance in many engineering fields, such as high-speed passenger trains,
frictionless bearings, the centrifugation of nuclear reactors, levitated wind tunnel models,
magnetic suspension and balance systems, the vibration isolation of sensitive machinery,
the levitation of molten metal in induction furnaces and heart pumps, etc. [1]. The model
that describes the dynamics of MAGLEV is the highly unstable, nonlinear state space
model.

One of the most elegant strategies in the field of control is adaptive control. This
method can treat systems with parametric variation when the operating conditions are
degraded; however, this approach fails if they are affected by external perturbation later.

Several studies have been developed in the field of the control of non-linear systems,
for example, adaptive control (Isidori 1989 [2], Slotine and Li 1991 [3]). However, sliding
mode control (SMC) proposed by Utkin 1977 [4] has been the most popular approach for use
in controlling uncertain, non-linear, single-input, single-output SISO systems (Drakunov
and Utkin 1992 [5], Slotine 1984, 1987 [6,7]) because of its simplicity and its robustness
against external disturbances. Sliding mode control is part of the family of controllers
with variable structures, which can deal with uncertainties and unmodeled dynamics,
insensitivity to external load disturbances, stability and a fast dynamic response [8–10]. The
principle of this method is to constrain the trajectories of a system to achieve a given sliding
surface and then stay there. However, in practice, control by sliding mode induced high-
frequency switching known as chattering. These switches can excite unwanted dynamics
that risk destabilizing, damaging or even destroying the system under study.

Many studies have proposed methods of dealing with chattering phenomena, which
include replacing the sgn function by the saturation function or sigmoid function [11] and
high-order sliding mode control, whose principle is to reject the discontinuities in higher
derivatives of a system input [12,13]. Another method is to use an asymptotic observer
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via sliding mode, the aim of which is to generate ideal sliding modes in an auxiliary
observation loop so that this observer loop does not integrate any unmolded dynamics [14].

Among these different proposed schemes, the Fuzzy-PI strategy has shown its effec-
tiveness in alleviating the chattering phenomenon due to its smoothness, speed and the
ease of implementation. Motivated by the above-mentioned discussion, we propose in this
paper a new architecture control design based in adaptive sliding mode control (ASMC)
to force the MAGLEV’s to track a given desired trajectory, and the second part combi-
nation between Fuzzy-PI controller and ASMC controller used to reduce the chattering
phenomenon caused by the dis-continuous term of the ASMC.

2. System Description

The dynamic model for the MAGLEV system as given as [15]:
dp
dt = w

V = Ri + dL(p)i
dt

m dw
dt = mg−Q

(
i
p

)2
,


dp
dt = w

V = Ri + dL(p)i
dt

m dw
dt = mg−Q

(
i
p

)2
, (1)

where p is the ball’s position, w denotes the ball’s velocity, i is the current in the electro-
magnet, V denotes the applied voltage, R and L are the coil’s resistance and inductance,
respectively, g is the gravitational constant, Q denotes magnetic force constant and m is the
mass of the levitated ball.

The inductance L is assumed to be the nonlinear function of the ball’s position p and is
approximated as:

L(p) = L1 +
2Q
p

, (2)

where L1 is a system parameter determined by the electromagnet coil inductance. Let us
define x1 = p, x2 = w, x3 = i and u = V and let us state that the vector is x = (x1 x2 x3)T; the
state space model of the MAGLEV system can be expressed as [15]:

dx1
dt = x2

dx2
dt = g− Q

m

(
x3
x1

)2

dx3
dt = − R

L x3 +
2Q
L

x2·x3
x2

1
+ u(t)

L

. (3)

3. Problem Formulation and Controller Design
3.1. Problem Formulation

The solution to the MAGLEV control problem is initiated by considering the nonlinear
change of coordinates as follows:

ξ1 = x1 − x1d
ξ1 = x2 − x2d

ξ1 = g− Q
m

(
x3
x1

)2
. (4)

Assuming xd = (x1d, 0, x1d
√

gm/Q,) the dynamic model of the MAGLEV with external
disturbance d(t) in a new coordinate system can be re-written as [16]:

.
ξ1 = ξ2.
ξ2 = ξ3.

ξ3 = f (ξ) + g(ξ)u(t) + d(t)

, (5)
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where f (ξ) and g(ξ) are given by:

f (ξ) = 2(g− ξ3)
((

1− 2Q
L(ξ1+x1d)

)
ξ2

ξ1+x1d
+ R

L

)
,

g(ξ) = −2
L(ξ1+x1d)

√
Q(g−ξ3)

m

(6)

Consequently, the control objective is now modified to design the control input u, so
that the closed loop system (5) states (ξ1, ξ2, ξ3) converge to zero in finite time under the
presence of disturbance d(t).

After this, with some development in Equation (6), system (5) becomes:
.

ξ1 = ξ2.
ξ2 = ξ3

θ3
.
ξ3 = (∑3

i=1 θi fi(ξ)) + g(ξ)1u(t) + d(t)

, (7)

where fi(ξ) and g1(ξ) are given by:

f1(ξ) =
−4(g−ξ3)
(ξ1+x1d)

ξ2
ξ1+x1d

,

f2(ξ) = 2(g− ξ3),
f3(ξ) = 2(g− ξ3)

ξ2
ξ1+x1d

,

g1(ξ) =
−2
√

(g−ξ3)
ξ1+x1d

,

(8)

where θi are given by:
θ1 = θ3Q

L ,

θ2 = θ3R
L ,

θ3 =
√

mL√
Q ,

(9)

3.2. Controller Design

Considering the following sliding surface:

s(t) =
(

d
dt

+ λ

)n−1
e(t), (10)

where λ is a positive constant, n is the order of system and e(t) = ξ1 = x1 − x1d is tracking
error.

Given that n = 3rd sliding, this becomes:

s(t) = λ2ξ1 + 2λξ2 + ξ3, (11)

The derivative of sliding surface can be formulated as:

.
s = f1(ξ) + f2(ξ) + f3(ξ) + g1(ξ)u(t) + d(t) + λ2ξ2 + 2λξ3, (12)

Note that in the conventional sliding mode control for system (5), the design of the
control system will be as follows [5]:

u = ueq + us

ueq = −
[

∂s
∂ξ g(ξ)

]−1
∂s
∂ξ f (ξ)

us = −
[

∂s
∂ξ g(ξ)

]−1
sgn(s)

, (13)
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where K is a positive constant, and ueq and us are the equivalent control vector and the
switching part of the control. sgn is the sign function defined by:

sgn(s) =


1 si s > 0
0 si s = 0
−1 si s < 0

, (14)

Now, let us design the control law for system (7) under the presence of parametric
uncertainties and perturbation.

If we consider the following Lyapunov candidate function:

V =
1
2
(θ3s2 + ∑3

i=1
1
γi

θ̃2
i ), (15)

where:
θ̃i = θi − θ̂i, (16)

where θ̂i denotes the estimations used for uncertain terms θi, θ̃i is the estimation error and
γi denotes positive constants. After carrying out some mathematical manipulations, the
derivative of the candidate Lyapunov function can be obtained as:

.
V =

(
s
(

f3(ξ) + +λ2ξ2 + 2λξ3

)
− 2

γ3

.
θ̂3

)
θ̃3 +

(
f2(ξ)s−

1
γ2

.
θ̂2

)
θ̃2 +

(
f1(ξ)s−

1
γ1

.
θ̂1

)
θ̃1 − K|s|+ d(t). (17)

Assigning parameter update rules as:

..
θ̂3 = sγ3

(
f3(ξ) + +λ2ξ2 + 2λξ3

)
, (18)

..
θ̂2 = γ2 f2(ξ)s, (19)
..

θ̂1 = γ1 f1(ξ)s, (20)

η > k− D, (21)

where D = max(d(t)). Equation (17) turns out to be:

.
V ≤ −η|s| ≤ 0, (22)

The time derivative of the Lyapunov function defined in (15) is given in (22). Note that
the function in (22) is negative semi-definite, ensuring the stability of the dynamical system
given by (11) and (18) to (22). Moreover, this is proven according to the LaSalle–Yoshizawa
theorem [5]. Thus, the existence of a sliding regime is proven.

Indeed, the discontinuous term K sgn (s) of the sliding mode control excites strong
oscillations around the surface, which causes the appearance of what is called “chattering”.
These can deteriorate the performance of the system and even lead to its instability [5]. In
order to alleviate this problem, we suggest the Fuzzy-PI sliding mode controller [17] (see
Figure 1).

In this case, the discontinuous term is replaced by a Fuzzy-PI regulator as follows:

us = Kp(Ks·K·sat(s)) + ki

∫
Ks·K·sat(s)dt, (23)

where Ks is the gain of the speed surface, Kp is the proportional factor, Ki is the integral
factor, k is negative constant, sat is the saturation function and S is the speed surface.
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m/s2. System states are assigned as [x1 x2 x3]T = [0 0 0.7]T, and 𝜃  = 1, ..., 3 are set to 0. The 
values of the gains are taken as kp = 100, ki = 100 and k = −100. Adaptation gains are set as 𝛾  = 0.75, 𝛾  = 1000, 𝛾  = 1500 and 𝜆 = 50. System states are assigned to track the fol-
lowing state values: [x1d x2d x3d]T = [0.01 0 0.2884]T, under the disturbance d(t) = 
0.5.sin(0.2.t). 

The membership functions for the input and output of the FL controller are obtained 
by trial and error to ensure optimal performance and are shown in Figure 2. 
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4. Results and Discussion

In order to test the proposed controller, the model properties of the magnetic levitation
system used in this study are R = 22 Ω, L = 0.5 H, Q = 0.003, m = 0.055 Kg and g = 9.81 m/s2.
System states are assigned as [x1 x2 x3]T = [0 0 0.7]T, and θi = 1, . . . , 3 are set to 0. The
values of the gains are taken as kp = 100, ki = 100 and k = −100. Adaptation gains are set as
γ1 = 0.75, γ2 = 1000, γ3 = 1500 and λ = 50. System states are assigned to track the following
state values: [x1d x2d x3d]T = [0.01 0 0.2884]T, under the disturbance d(t) = 0.5·sin(0.2·t).

The membership functions for the input and output of the FL controller are obtained
by trial and error to ensure optimal performance and are shown in Figure 2.
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Then, the rules of the fuzzy logic controller can be written as:

If s is BN then us is BB
If s is MN then us is B
If s is Z then us is M
If s is MP then us is S

If s is BP then us is BS.

(24)

The numerical simulation results of the ball position, ball velocity and current of
coil obtained by Fuzzy-PI ASMC and ASMC are represented in Figures 3–9. Figure 3
evidently shows that both the Fuzzy-PI ASMC and ASMC provide fast convergence to their
respective set point (0.01) in finite time of about 0.5 s. It is clear from Figure 4that Fuzzy-PI
ASMC exhibits height accuracy and precision without any chattering, whereas the ASMC
depicts some chattering phenomenon. Figure 5 highlights that the both methods were
able to stabilize the current coil in 0.2884 s; however, the ASMC creates some important
oscillation, which can lead to some undesirable performance and instability.
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Figure 6 outlines the control signals of Fuzzy-PI ASMC and ASMC. One can see that
Fuzzy-PI ASMC clearly outperform the ASMC approach by obtaining finite, continuous
and smooth control input.

Figures 7–9 represent the estimated parameters for both Fuzzy-PI ASMC and ASMC.
It is obvious from the results of those figures that the Fuzzy-PI ASMC was more successful
in capturing those parameters and obtaining a lesser signals.

From the aforementioned discussion, we can simply conclude that Fuzzy-PI ASMC
verifies our claims by obtaining fewer continuous signals and improving the ASMC.

5. Conclusions

This paper presented Fuzzy-PI adaptive sliding mode control to force the position of
MAGLEV to track a given trajectory. The proposed approach takes advantages from ASMC
in its high accuracy, fast dynamic response, stability, the simplicity of implementation and
robustness for changes in internal or external parameters, and from Fuzzy-PI, it takes its
capability to handle system uncertainty, as well as nonlinear situations, its smoothness,
speed, ease of implementation and especially its performance in alleviating the chattering
phenomenon caused by sliding mode control. The results obtained for the proposed
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controller were encouraging in terms of the application of MAGLEV in order to ensure the
robustness and quality of the MAGLEV’s performances.
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