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Abstract: Mismatched power generation is a serious issue in PV systems, resulting from unequal
power generation between PV components. Solutions have been proposed to reduce or eliminate
the mismatch concern. One practical strategy is individually harvesting the maximum power from
each PV component; the more distributed MPPT is applied to a finer level, the more power can
be obtained. This study proposes three-input single-output boost converters that are employed to
effectively increase PV power generation and significantly reduce mismatch issues between the PV
submodule (PV SM). Each boost converter will be controlled to harvest the maximum power from a
group of PV cells inside a single PV module. The outputs of the three boost converters are connected
in series to provide higher output voltage for grid integration. The cascaded power converters are
linked with a forwarding diode to provide a protection feature for the system and prevent the reverse
current from harming the PV module. On the grid side, a single-phase Voltage Source Inverter (VSI)
is used to convert the DC power from the PV module to sinusoidal AC power. The performance of
the suggested inverter has been confirmed through experimental tests.

Keywords: photovoltaic (PV); power electronic converter; DC-DC boost converter; grid-connected system

1. Introduction

Relying on fossil fuel energy resources can lead to several complicated economic
and environmental issues. Thus, utilizing non-conventional energy resources has become
a focus of many researchers. One main contributing player among renewable energy
generators is solar energy. The photovoltaic (PV) solar panels are sensitive to environmental
conditions, including irradiation and temperature. Other non-environmental concerns like
shading, degradation factors, and PV panel orientation can negatively affect the generated
power from the PV system. As a result, the problem of different PV generators with different
behaviors is connected. This can lead to the PV system following the PV component with
the lowest power generation [1–4].

In the last decade, the advancement in power electronic technologies has led the
world to redirect the orientation of energy generation to rely on renewable energy sources.
A typical residential grid-tied PV system usually consists of Solar PV modules, power
electronic DC_DC converters, Battery Energy Storage System (BESS), and grid-interfaced
DC-AC inverters. Figure 1 illustrates an example of a grid-tied residential PV system.
Filter circuits are commonly used on the grid side to eliminate the harmonics after the
conversion process [5,6]. The generated PV power from PV modules flows through DC_DC
power converters where maximum power is generated. The main objective of the MPPT
controllers is to obtain the maximum power from the PV module and then charge the BESS
or pump up the extra power to the grid [7]. The PV module regularly consists of different
groups of PV cells, and a PV module with three submodules (SMs) might be the most
common type of PV module. Low-voltage (LV) PV systems can suffer from various faults
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that negatively affect the performance of the PV system and reduce power generation [8].
The mismatch issue between the PV modules is one of the most common faults in the PV
system, and Partial Shading (PS) can be the most contributing cause to this concern [9].
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The mismatch issues in the PV systems can be categorized into two main groups
according to the type of mismatch faults [10]. Temporary mismatch faults include faults
whose effect does not continue with time, and shading can be the main contributing
factor to these faults. Although the shading effect can be the most common type of
temporary mismatch fault, dust accumulation on PV modules is another serious issue that
can adversely affect the amount of generated power from PV systems [11]. The second
type of mismatch issue is permanent faults where the PV system might continue suffering
from these types of mismatch faults. Commonly, the permanent mismatch faults can
be related to the manufacturing process soldering stage and impurities inside the used
materials. However, the PV module’s degradation factor can also be considered a reason
for permanent mismatch. The permanent faults can reduce the PV system’s efficiency and
reduce the PV system’s output power by 10% [12].

Increased temperature of the PV module can decrease the performance of the PV
system, causing a noticeable reduction in the PV power generation [13]. The temperature
variation can lead to variable current voltage and power voltage curves of the PV mod-
ules [14]. It has been reported in [10] that changing the PV module temperature results
in a noticeable variation in the open circuit voltage of the PV module. Increasing the PV
module temperature can cause a clear reduction in the open circuit voltage, minimizing
the PV module’s output power. Thus, the behavior of the PV modules will vary according
to the operating temperature of each module [15]. The Maximum Power Point (MPP) of
the modules will be different, causing a mismatch issue between the PV modules. In the
Standard Test Condition (STC), the temperature of the PV modules is 25 ◦C; however, in
practice, the operating temperatures of the PV modules are different [16]. The PV modules
might suffer from mismatch issues even if they have the same internal specifications and
operate under the same conditions except for different operating temperatures.

The PV module performance can be directly proportional to solar irradiance intensity,
which determines the power generation from the PV module. The PS results in irregular
solar irradiance profiles, which negatively affects the PV system’s output power [17]. The
PS might be uniform shading or non-uniform shading. In uniform PS, the shading can
cover the whole PV module, while in the non-uniform PS type, only a part of the PV
module becomes shaded. Both types can result in reducing the power production of the PV
module [18]. The shaded part of the PV module behaves differently from the unshaded
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part. The maximum power of the PV module is determined by the percentage of solar
irradiance; thus, a shaded PV module produces lower power compared to an unshaded
one. The nature series connection of PV modules leads to the power of the PV system
being limited by the PV module, with the lowest power generation causing a mismatch
fault between PV modules [19]. PS occurs due to several reasons, including moving clouds,
birds, bird droppings, high buildings, and shading from the trees [18].

A part of the PV module can experience a higher temperature, creating a hot spot (HS)
issue [20]. The HS effect can be a permanent or short-term effect. The PS might cover part
of the PV model for a short time, leading to an increase in the temperature of the shaded
part. Once the PS vanishes, the PV module performs normally. However, in some scenarios,
the HS might continue to affect the PV module’s performance [21]. The defects in the PV
module during the manufacturing process result in permanent HS, causing mismatch faults
between PV cells inside the PV module. This issue can be avoided by a proper monitoring
system that can lead to obtaining high-quality PV modules [22]. The generated power
from faulty PV cells can be fewer than normal operating PV cells, which can produce
power dissipation in the form of heat. Normal operating PV cells can generate more power
compared to faulty PV cells, which produce sink power instead of generating energy. Then,
the power will be dissipated in the form of a head. The associated losses due to this fault in
the PV module can be more than 5% [23].

The mismatch problem between the PV modules is one of the main contributing
factors to the losses in PV systems [24]. The series connection of the PV modules is essential
for most PV applications to obtain the high voltage output requirement at the grid side.
However, it can lead to some issues in terms of performance and power quality of the
PV systems. The unequal irradiance profiles are common in most PV system projects,
which can result in a significant reduction in PV power production. The behavior of the PV
module is usually based on the solar irradiation profiles. Thus, a PV module with a low
irradiance level can generate less power compared to a PV module with a high irradiance
profile. The nature series connection of the PV modules can lead the PV system to follow
the PV module with the lowest power generation, causing a significant power loss to the
PV system [25].

The mismatch problems between PV modules can cause severe issues to the PV
system, including HS and reduced power generation; however, bypassing methods are
effectively mitigating these concerns. Under the mismatch scenarios, the faulty PV module
can generate some power, but it becomes useless using the bypassing approaches since
bypassing strategies aim to isolate the faulty PV module from the PV system during
a mismatch [26]. Thus, distributed power electronic methods are proposed to enable
the utilization of the maximum available power from PV systems when systems suffer
from PS [27]. Its main objective is to distribute the MPPT technique to a finer level,
enabling individual harvesting of the maximum available power from each PV module [28].
Employing Distributed MPPT (DMPPT) not only mitigates the associated problems of
mismatch issues but can lead to utilizing the power from the shaded PV module.

Several strategies have been proposed to overcome the mismatch issue between
PV SMs and enhance both the performance and reliability of the PV systems [29]. The
conventional approach to mitigate the mismatch issues between PV SM is bypassing the
current and isolating the faulty PV SM from the PV system [30]. Therefore, the affected PV
SM does not pose any concerns to the PV system. The mismatch issue can be mitigated
by applying a bypass approach; however, the generated power from the faulty PV SM can
be lost. This study aims to individually harvest the power generation from each PV SM,
which can be a practical solution to overcome the mismatch issue and obtain the power
generation from the affected PV SM.

Shading, temperature variation, and manufacturing tolerance can lead to changing
the behavior of the PV components, resulting in different PV components with different
power generations being integrated into one system. The PV system can be limited by the
PV component with the lowest power generation, resulting in significant power losses.
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The conventional strategy is applied to overcome mismatch power generation between
PV components by integrating a bypass diode and isolating faulty PV components from
the PV system. The shaded PV components can generate power, and utilizing the shaded
component power can maximize the power generation of the PV system. Distributing the
MPPT and employing the power electronic converters can lead to mitigating the mismatch
concern and enhance the power generation of the PV system [31].

The P&O MPPT algorithm is used to obtain the maximum available power from each
PV SM inside a PV module. The PV SM voltage is perturbed, and the corresponding power
is observed accordingly. This tracking strategy is commonly used in commercial inverters
due to its ability to harvest the maximum power from PV components under different
environmental conditions. This study employs the P&O strategy to obtain the MPPT from
each PV SM [20].

This paper proposes a three-input single-output micro inverter to mitigate the mis-
match issue inside a single PV module. The power generated from a PV cell is relatively
low; thus, it cannot be practical to obtain the maximum power from each PV cell. There-
fore, obtaining the maximum power from a group of PV cells might be more effective.
The PV module is usually divided into groups of cells forming SM, and capturing the
maximum power from each group can increase the power generation from the PV system.
A cascaded-boost power electronic converter can be a viable solution to overcome the
mismatch problem between the PV SMs. Though the cascaded-boost converters might
need more passive components, they can improve the power system performance and sig-
nificantly maximize PV module energy harvesting. The suggested topology aims to harvest
the maximum available power from a group of PV cells inside a single PV module. Most
PV modules are divided into three SMs; thus, the proposed topology aims to effectively
harvest the maximum available power from the three PV cell groups of the PV module.

The control strategy of the proposed topology is based on employing the DMPPT
method to harvest the maximum power from each PV SM individually. The local MPPT of
the PV SM is applied to perform the MPPT process. Obtaining the maximum power of PV
SM is achieved by controlling the output voltage of each single PV SM. In conventional
topology, the PS leads to loss of the PV SM power and isolates shaded PV SM from the
PV system.

The rest of this paper is structured as follows: The proposed three-input single-output
micro inverter topology is presented in Section 2. The State Space modeling, passive
components selection, and controller design are provided in Section 3. The experimental
validation and final discussion are demonstrated in Sections 4 and 5, respectively. The final
section summarizes the conclusion of this study.

2. Proposed Distributed Three-Input Single-Output Structure

The PV module commonly has three SMs, which are integrated with a bypass diode
to protect the PV module from HS. The shaded SM will be isolated, resulting in the loss of
the generated power from the shaded SM. Therefore, replacing the conventional bypass
diode with the proper power electronic converter can lead to utilizing the power from the
defective SM. The PV module commonly has three PV cell groups; obtaining the maximum
available power from each PV cell group can mitigate the mismatch concerns between
PV cell groups inside an individual PV module. This paper proposed a new topology to
reduce the problem of mismatch between PV SMs inside a single PV module. Figure 2
shows the proposed cascaded boost converters used for employing the DMPPT at the PV
SM level. The output voltage of the PV SM can be relatively low, and the boost converter
has a limited boosting range for voltage output; therefore, the output of the three boost
converters cascaded to enhance the boosting-up capability of the proposed topology. A
Voltage Source Inverter (VSI) is used on the grid side to convert the PV DC power to AC
power at the utility. The cascaded topology is linked to the utility grid via a forwarding
diode to protect the PV side from reverse currents during a faulty system. A DC link
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capacitor is employed between the PV side and grid side to provide a decoupling function
and mitigate the Total Harmonic Distortion (THD) effect grid [32].
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Figure 2. The proposed topology to apply the DMPPT at the PV SM level inside an individual
PV module.

The nature of PV power is changeable due to different climate conditions, which can
change the PV subsystem’s power generation. The PS is a continuous challenge in PV
systems because it results in a massive reduction in power production and can lead to
unavoidable drops in the output voltage. One of the most proper methods to reduce the
negative impact of unbalanced power generation caused by different irradiation levels
on the PV system is based on dividing the entire PV system into subsystems. It would
be ideal if each PV cell could be handled individually; however, that can result in a
significant increase in the installation cost, and it will require a complicated controlling
system. Therefore, extracting the maximum power from a group of PV cells can be more
practical. The PV cells are commonly grouped into three or four groups inside a single PV
module, and each group of PV cells is integrated with a bypass diode to reduce the impact
of partial shading. The bypass diode will allow the current to flow through it, resulting
in the loss of the power generated from a shaded group of PV cells. The main objective
of the suggested topology is to utilize the power from the affected group by individually
harvesting the maximum power from the PV SM.

Several PV modules are usually integrated, forming the residential PV systems accord-
ing to the local load of the end users. The proposed structure aims to mitigate the mismatch
concern at PV SM inside a single PV module, which can lead to mitigating the root of the
mismatch concerns. Increasing the size of the PV system will not pose an issue since the
mismatch problem is targeted at the PV SM level.

Protecting the PV module is considered during the design stage of the proposed
topology. The integrating diode between the PV module side and the grid side aims to
block the reverse current flows into the PV module. This can maintain the stability of the
suggested system and maintain normal operation of the PV system.

3. State Space Analysis of Proposed Converter to Design System Controllers

Modeling by averaging [33] is a common, effective method to model the switched
power converters in power electronics. It aims to average the model over one switching
cycle to overcome the nature of switching power converters. Power electronic systems are
commonly nonlinear, and modeling nonlinear systems can be a complicated process; thus,
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linearizing these types of systems around one operating point can solve the nonlinearity
issue. After obtaining the linearized model, the system state variables are perturbed by
small values to obtain the small signal model. This model is usually effective and can
mimic the actual model’s dynamic behavior. The derived small signal model of the boost
converter using this strategy is used in this study.

The boost converter module is based on the circuit shown in Figure 3. The converter
component is assumed to be ideal, and the component’s internal losses are neglected. The
system equations are obtained using the general averaging method as follows:
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When the switch Q is turned on, the state equation becomes

L
di
dt

= Vin (1)

C
dv
dt

= −Vo

R
(2)

When the switch Q is turned off, the state equation becomes

L
di
dt

= Vin − Vo (3)

C
dv
dt

= iL −
Vo

R
(4)

During ON state:
X′ = AON X + BONVIN (5)

VO = CON X (6)

During OFF state:
X′ = AOFFX + BOFFVIN (7)

VO = COFFX (8)

After obtaining the state space equations of the boost converter, the ON and OFF state
matrices become as follows:

(1) ON state

AON =

[
0 0
0 − 1

RC

]
BON =

[ 1
L
0

]
, and CON = [0 1]X;

(2) OFF state

AOFF =

[
0 1

L
1
C − 1

RC

]
, BOFF =

[ 1
L
0

]
and COFF = [0 1]X,

where X = [iLvC]
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The following equations are used to obtain the averaged model:

X′ = [AON D + AOFF(1 − D)]X + [BON D + BOFF(1 − D)]VIN (9)

VO = [CON D + COFF(1 − D)]X (10)

Averaged model:

AAV =

[
0 (D−1)

L
1−D

C − 1
RC

]
, BAV =

[ 1
L
0

]
and CAV = [0 1]X

To calculate the steady state values IL and VO , the equation below can be used:

SS = −inv(AAV) ∗ BAV ∗ VIN (11)

A small perturbance is applied to the state variable to obtain the small signal module
where ~ represents the small perturbation to the variables:

d/dt

[
iL +

∼
iL

vC +
∼
vC

]
=

 0 −
−
(

1−D−
∼
d
)

L(
1−D−

∼
d
)

C 0


[

iL +
∼
iL

vC +
∼
vC

]
+

[ 1
L
0

][
Vin +

∼
vin

]

[
VO +

∼
vo

]
= [0 1]

[
iL +

∼
iL

vC +
∼
vC

]

∼
X =

[ 0 −−(1−D)
L

(1−D)
C 0

]
+

 0
∼
d
L

−
∼
d

C 0

[[ iL
vC

]
+

[ ∼
iL
∼
vC

]]

∼
X =

[
0 −(1−D)

L
(1−D)

C 0

][ ∼
iL
∼
vC

]
+

[
1
L

VO
L

0 − IL
C

][
Vin
∼
d

]
After calculating the new AAV and BAV matrices, the transfer function can be obtained

using the following equation:

TF = CAV ∗ inv(s ∗ eye(3)− AAV) ∗ BAV (12)

TF =
VoRDOFF − L R ILs

CLRs2 + Ls + RD2
OFF

(13)

3.1. Passive Component Selection

The proposed topology employs the boost converter since the output voltage of the PV
SM is relatively low. In such a converter, the output voltage will be higher than the voltage
at the MPP. The input voltage from the PV SM might be obtained under the maximum
irradiation level condition. Each PV SM is assumed to operate at the maximum available
power; thus, the PV SM voltage will be represented by VMPP. According to the steady-
state analysis, the duty ratio at the output voltage of each submodule might be expressed
as follows:

δ =
VO − Vin

VO
(14a)

δ = 1 − VMPPSM
VOSM

(14b)

where δ is the duty cycle; VoSM is the output voltage of each boost converter, and VMPPSM
is the corresponding voltage at MPP.
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The input inductor value of the boost converter can determine the input current ripples.
Obtaining the right value for the inductor of the boost converter can be calculated during
the rising state when the boost converter’s switch is turned on. Under the assumption
of constant input current from the PV SM, the capacitor current will be expressed by
subtracting the PV SM input current from the boost converter inductor current. The
waveform of the inductor current of the boost converter is assumed to be triangular;
thus, the capacitor current will have the antiphase triangular waveform. Integrating the
triangular area can equal the amount of charge stored in the capacitor. Figure 4 illustrates
both the circuit and current waveforms of the PV SM boost converter. In a grid-tied inverter,
the DCBUS capacitor value is selected according to the input and output power to buffer the
second-order harmonic distortion of the proposed structure, and current-based derivation
can be used to obtain the most proper value for the DCBUS capacitor. Proper selection of
capacitor value can maintain pure DC power from the PV input and sinusoidal waveform
current at the grid side. In the same concept, the DCBUS capacitor value can be selected
with the assumption that a pure DC flows from cascaded boost converters. The grid current
waveform shape is sinusoidal, which means the current flowing through the capacitor
will be the same as the grid current; however, the capacitor current sign will be reversed
in direction.
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The parameter of the proposed boost converters will be selected according to Continu-
ous Conduction Mood (CCM) as follows:

L
di
dt

= VMPPSM (15a)

L =
∆t VMPPSM

∆i
(15b)

CV =
∫

Capacitor Stored Energy (16a)

CPV ∆VPV =
1
2

(
∆i
2

∗ TSW
2

)
(16b)

CPV =
∆i

8∆VPV fsw
(16c)

The design of the proposed three-input single-output power electronic converter can
be expressed by calculating the output voltage of the common DC bus. The three-output
voltages of the cascaded boost converters are added to express the output voltage at the
DC bus, where n is the number of PV SM.

VBus = ∑n
X=0

VPV SMX
1 − DPV SMX

(17)
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3.2. Open-Loop Analysis and System Dynamic Investigation

After obtaining the transfer function of the boost converter, the values of L, CPV , and
CBUS are calculated according to the CCM and with the assumption that the system has
balanced energy operation; the values of the system are illustrated in Table 1. The obtained
small signal averaged module of the boost converter shows two poles and a nonnegative
zero. In order for the system to achieve internal absolute stability, the two poles have to be
on the left-hand side of the s-plan. The non-negative zero can result in a reduction in the
phase margin and cause undershoot during transient time; however, zero cancelation can
negatively affect the overall stability of the system.

Table 1. The Proposed System Values.

Parameter Value

VMPP 12 V

IMPP 7A

L 2.4 m H

CPV 47 µF

RL 10 Ω

fs 5 kHz

The voltage and current values at the MPP of the PV SM boost converter are selected
according to a typical PV module. In terms of the design of the passive component of the
boost converter, during the ON state of the boost converter, the inductance can be calculated
according to the peak-to-peak ripples of the inductor current, and the selected inductor
value of the PV SM boost converter is calculated considering small peak-to-peak ripple
value. The output capacitor of the PV SM boost converter is selected after a compromise
between the capacitor value and peak-to-peak ripples at the voltage output.

TF =
−1737s + 2.29 ∗ 106

s2 + 7092s + 9.351 ∗ 106 (18)

Thus, the most proper method to minimize the effect of the non-negative zero is trying
to make it faster by locating it far from the origin (0,0) since faster zeros are less harmful
than slower ones. Figure 5 shows the Bode plot of the boost converter without controllers,
and the frequency response illustrates that the system is stable, and both the gain margin
and phase margin are positive numbers. However, the systems seem critically stable since
the gain margin is close to the negative region. The step response of the boost converter is
illustrated in Figure 6, which shows a noticeable undershoot during transient time, which
results from the non-negative zero of the boost converter transfer function. A proper
controller should be selected to overcome this issue and shift the system to a stable region.

3.3. Closed Loop Analysis and Design of the Controller for Proposed Structure

The obtained open-loop system has two complex poles at −261 rad/s and one positive
zero at 1610 rad/s. From control theory, the system stability is directly related to the pole
position of the system. Enhancing the system stability is usually related to the capability
of the controller to shift the poles to the left-hand side. The positive zeros usually do not
lead to total loss of stability of the system; however, they can pose serious issues like a
large undershoot and minimizing the phase margin of the system. A common strategy to
minimize the negative effect of the positive zeros on the systems is trying to make the zeros
fast. Fast zeros are the zeros that are located far from the origin (0,0). The fast zeros have
low negative effects compared with slow ones. The SISO tool in SIMULINK/MATLAB has
been used to obtain and tune the parameters of the controller of the proposed system. The
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compensator improves the system’s stability and gives better performance by shifting the
system’s poles to the stable side LHS.
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The poles and zeros for the parameters illustrated in Table 1 are plotted in Figure 7. The
ki gain of the controller is fixed to 0.6, while kp varies from [0.2 to 0.5] to study the proposed
system dynamics. The 0.25 gain of the kp parameter of the PID controller can provide the
most proper dynamic response to the system. The SISO tool in SIMULINK/MATLAB has
been used to obtain and tune the PR controller parameters, and the result illustrates that
the most proper kp and kr gains of the PR controller that achieve appropriate stability and
appropriate bandwidth are 3 and 5, respectively.

The Proportional Integral Derivative (PID) controller is one of the most commonly
used controllers for power electronic converters, and it has been used for the input side of
the proposed structure. The proposed controller will determine the current at the maximum
power point at a specific temperature and irradiation level. This current is obtained as a
reference current for the controller, which will be compared to the actual inductor current
of the boost converter. The error between the two current values of each boost converter
will be controlled by a PID controller. The purpose of the controlling process is to keep
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the input current from the PV submodule flat DC with minimal ripples, which can lead
to a more accurate tracking process. Figure 8 illustrates the improvement in the dynamic
system response and the step response characteristic when applying the proper controller
to the system.
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The proposed closed-loop input current controller at the PV submodule is shown
in Figure 9. IMPP drives the subsystem input controller at the submodule level. The
compensator aims to regulate the DC from the input current and mitigate the negative
effect of the second harmonics of grid frequency. Eliminating or reducing the second
harmonics distortion from the PV side can improve the performance of the maximum power
point tracking algorithm and improve the PV system efficiency. The MPP tracking system
calculates the IMPP of the submodule according to the irradiation level and temperature; if
this current is used as a reference input of the compensator, then it will be compared to the
actual input current of the boost converter to perform the controlling process.
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The total output voltage from the inverter side of the proposed system can be expressed
as follows:

Vo = Vsin(ωt + θ) (19)

where V is the voltage amplitude of the vs., the Vg is defined as the magnitude of the grid
voltage and * represent the reference value of grid current. If the proposed system injects
an active power P to the grid at the power factor cos(α), the single-phase output current
can be expressed as follows:

Ig =
2P

Vgcos(α)
(20)

Usually, controlling the alternating current is based on converting the alternating
current to constant values and then performing a controlling process by a conventional
PID controller and converting it back to controlled alternating signals. This strategy has
been used for years, and it can be appropriate for several applications; however, it requires
several design stages, which might affect the performance of the controlling process. The
Proportional Resonant (PR) controller has been used in several applications to control
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alternating signals, and its validity has been proven. The PR controller is used in this study
to control the grid current to maintain a sinusoidal current waveform at the grid side. The
controlling strategy used in this study is based on sensing the grid current and comparing
it with the desired value to calculate the error between the two signals. This will pass
through the PR controller, which performs the control process and tracks the sinusoidal
referenced grid signal. The block diagram of the controller for the proposed topology is
illustrated in Figure 10.
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Figure 10. The block diagram of the grid current controller for the proposed microinverter.

The PR controller Laplace transformation is

GPR = kp +
kr

s2 + ω2
o

(21)

where kp is the proportional gai; kr and wo are resonant gain and frequency, respectively.
The conventional PID controller is suitable for systems with constant values, such as DC-DC
converters, and it can eliminate steady-state errors and provide fast response. However,
the PID controller cannot track sinusoidal waveforms. The PR controller can provide an
infinite gain at a selected frequency; thus, it is commonly used in grid-connected inverters.
The grid side of the proposed system can be represented by an LC filter, as illustrated in
Figure 11. The bode plot of the PR controller used in this study is shown in Figure 12.
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4. Experimental Results

The experimental setup for obtaining the maximum available power from the three
SMs inside an individual PV module is shown in Figure 13. Each PVSM is rated at 250 W;
thus, the maximum available power from a PV module is rated at 750 W. The system is
controlled by the Texas Instrument Digital Signal Processor (TMS320F28335), which is
used to control the gate signals for the three boost converters at the input side. DC power
supplies are used to mimic the PVSM. The PV module output is linked to the utility grid
through an autotransformer, which steps down the grid voltage from 240 V to 100 V. The
three PV SMs are connected to three separate DC power sources, mimicking the PV module.
The output DC power from the PV module is inverted to a Low Voltage AC grid (LV AC)
to examine the validity of the proposed topology.

The experimental results of the suggested topology for employing the DMPPT at the
PVSM level are shown in Figure 14. Figure 14a shows the total input power of the system.
Figure 14b shows the output voltage and current when the power is injected into the grid
through the autotransformer at unity power factor. Figure 14c shows the DC-link voltage
between the PV SMs and the DC/AC inverter. Finally, Figure 14d shows the input currents
of the PV SMs.

The stability of the proposed system is examined by suddenly dropping the output
power of the system by 50%. Figure 15 shows the response of the grid current to variation
in the output power, resulting in a decrease in its maximum value. Also, the input current
of the three SMs is dropped as a result of decreasing the output power of the system.
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The results illustrate that applying the MPPT at PV SM can lead to harvesting the
available power from each group of PV cells individually. Thus, the amount of power gen-
eration from each PV SM is directly related to the irradiation level. Unlike the conventional
strategy where shaded PV SM is isolated from the PV system, the suggested topology aims
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to obtain the available power from PV SM, regardless of the amount of power of the other
two PV SMs.
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5. Discussion

The PS and mismatching concerns can result in a great reduction in the power genera-
tion of an individual PV module. These issues are unavoidable in most scenarios and can
affect the performance of the PV system. It has been proven that distributing the MPPT
system can achieve higher power generation and mitigate the problem of mismatch. The
output voltage of a single PV cell is relatively small, and cascading several PV cells is
required to obtain a higher output voltage. This strategy can solve the low voltage problem
of a PV cell; however, under the PS effect, the power generation of the PV system is reduced.

The series connection of PV cells results in different power generation under the
existence of the PS problem. Obtaining the power generation from each PV cell needs a
complex control system and maximizes the system cost. Three or four strings of PV cells
are commonly connected, forming a PV module. The conventional method to tackle the
mismatch issue between the solar cell strings is to integrate a bypass diode with each PV cell
string. The result is isolating the shaded PV cell string from the system and allowing the PV
module current to pass through the bypass diode. Isolating a part from a PV module means
that the generated power from an isolated solar cell string is lost. Figure 12 illustrates how
the proposed distributed power converter can contribute to maximizing the PV module
power generation.

The power generation for the proposed topology is illustrated in Figure 16 and demon-
strated in the following manner. In the initial stage, at T1, the power generation of the
three-PV SM is equally likely, starting from zero and gradually increasing to reach max-
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imum power At T2. The power of a single-PV SM is 80 W; thus, the total power of a PV
module is 240 W. In the subsequent period, the PS covers one PV SM. In the conventional
method, the power generation from shaded PV SM is lost. However, in the suggested
topology, power generation will be harvested individually, resulting in utilizing the power
from shaded PV SM.
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The presented structure aims to harvest the power from the shaded part of the PV
module instead of isolating it from the PV module by employing a power electronic boost
converter with each SM. The purpose of the boost converter is to obtain the maximum
available power from each PV cell group. Boost converter has been chosen due to its
capability to step up the low voltage at the PV SM side. Although the boost converter is
designed to boost the input side voltage to a higher voltage at the output side, its boosting
capability is limited to a specific output range. The output voltage of boost converters is
connected in series to meet voltage requirements at the utility grid. Also, the proposed
topology is designed to harvest the maximum power from the PV side with DC to AC
inverting capability.
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The proposed topology targets the future residential PV system since the existing
Grid-connected system uses conventional PV modules where PV SMs are integrated with
bypass diodes. Prototypes for PV cell optimizers have not yet been produced; however,
related companies have started applying the Distributed MPPT on the PV SM.

6. Conclusions

The proposed micro-inverter, which is based on linking three-input DC-DC boost
converters with single-output VSI, is demonstrated in this paper. The proposed PV system
structure is designed to reduce mismatch concerns between PV SMs inside a single PV
module. Employing the suggested topology, which aims to connect a boost converter with
each PV SM, enables harvesting the maximum available power from individual groups
of PV cells inside a PV module. The suggested low-voltage microinverter has a series
input connection; thus, the large step-up voltage ratio is not required. This paper uses two
controlling systems. One is for regulating the grid side current to meet the distribution
network requirements. The second controller is responsible for minimizing the ripples from
the input current at the PV side, which can maximize energy harvesting and improve the
MPP tracking system performance. The validity of the proposed microinverter architecture
is investigated by both simulation and experimental tests. The experimental results have
illustrated the capability of the suggested topology to obtain the maximum available power
from the PV SMs inside a single PV module during both normal conditions and under a
mismatch effect.
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