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Simple Summary: Here, kinetic models of the response of radiation-dependent risk-reducing factors
were developed for common radiation-nonspecific cancers. The dose M that induces the maximum
hormesis effect, while satisfying the condition that the risk is approximately proportional to a dose
above NOAEL (No Observed Adverse Effect Level), can be obtained theoretically when the rate
constants for generation and degradation of a risk-reducing factor are the same. When these rate
constants are different, we theoretically determined that such a dose M depends on both rate constants,
but the dose M increases as the rate constants become closer together, reaching a maximum dose.

Abstract: To date, the radiation-adaptive response has been reported as a low-dose-related phe-
nomenon and has been associated with radiation hormesis. Well-known cancers are caused by
non-radiation active reactants, in addition to radiation. A model of suppression for radiation-specific
cancers was previously reported, but the model did not target radiation-nonspecific cancers. In
this paper, we describe kinetic models of radiation-induced suppressors for general radiation non-
specific cancers, estimating the dose M that induces the maximum hormesis effect while satisfying
the condition that the risk is approximately proportional to a dose above NOAEL (No Observed
Adverse Effect Level). The radiation hormesis effect is maximal when the rate constant for generation
of a risk-reducing factor is the same as the rate constant for its decomposition. When the two rate
constants are different, the dose M at which the radiation hormesis effect is maximized depends on
both rate constants, but the dose M increases as the two rate constants approach each other, reaching
a maximum dose. The theory proposed in this paper can only explain existing experiments with
extremely short error bar lengths. This theory may lead to the discovery of unknown risk-reducing
factor at low doses and the development of risk-reducing methods in the future.

Keywords: radiation-adaptive responses; radiation hormesis; LNT; low-dose exposure; sequential
reaction; theoretical; risk-reducing factor

1. Introduction

Ionizing radiation induces a large variance of different types of damage and thus has
the potential to induce transmissible genetic changes that promote the process of neoplastic
transformation and, hence, radiogenic tumors [1–6]. Radiation safety management is
based on the linear non-threshold (LNT) hypothesis, which states that the probability of
carcinogenesis is proportional to a low radiation dose [7]. If Sv is considered the same as
Gy, a sample size of 6200 persons at 100 mSv, approximately 620,000 persons at 10 mSv,
and approximately 61.8 million persons at 1 mSv would be needed to make the data
statistically significant. Therefore, it is difficult to statistically evaluate the probability
of cancer occurrence at low doses, so whether the risk is increased or decreased is not
known [8–16]. The Environmental Protection Agency (EPA) proposed no longer using
LNT, as it increases fear of radiation and radiation therapies [17], and Calabrese et al. agree
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with this proposal [18]. Our current study finds the possibility of banning the use of LNT.
Radiation-adaptive responses have been reported as reductions of detrimental effects at
low doses [19–31], and radiation hormesis as the hypothesis that low-dose radiation is
beneficial to an organism [32–40]. The bystander effect [9,24,25,31,34,35,41–52] and genomic
instability [9,15,24–26,30,31,34,41–43,45,47–50,52–55] are other phenomena at low doses. In
addition to LNT and hormesis, some possible models in the low-dose range (supra-linear,
linear-quadratic, threshold, sigmoidal threshold, and hyper-radiosensitivity) have been
proposed [52,56]. Biological findings and mathematical models at the molecular–cellular
level have been studied to unravel the mysteries of low-dose exposure [32,43–48,53–68],
and we have previously proposed a linear–hormesis coupling theory.

Our theory is based on the hypothesis that radiation risk is approximately proportional
to doses above 100 mSv, and that a hormesis effect occurs below 100 mSv [69–71]. If we
assume that cancer is caused solely by radiation, then the radiation risk at 0 mSv must
be zero (Figure 2A,D of Ref. [69] and Figure 1E of Ref. [71]). Furthermore, when a risk-
reducing factor depends solely on radiation, the amount of this factor at 0 mSv must be
zero [69,71]. To satisfy both conditions, the graph of the increase/decrease in the amount
of the risk-reducing factor needs to be a peak with two inflection points (Figure 1B of
Ref. [69] and Figure 1B of Ref. [71]). In our previous paper, we mathematically proved that
the risk-reducing factor is generated in the second step by using the concept of chemical
reaction kinetics [71].

On the other hand, ordinary cancers are caused by radiation and active substances other
than radiation, such as reactive oxygen species [24,25]. Therefore, even at 0 mSv, the risk is
not zero, due to active substances other than radiation that make it positive [36,41,69,71–73].
For example, it is estimated that the percentage of deaths due to cancer for a population in
Japan is ~30% at 0 mSv, according to the official website of the Ministry of the Environment,
Japan [74], and increases by 0.5% at a cumulative radiation dose of 100 mSv [7,74,75].
Defining the effective dose as E and the risk as R, the risk can be expressed as in Equation (1).
In this paper, we considered a general linear–hormesis coupling theory for the case of
positive risk (R0) at 0 mSv, based on the chemical reaction kinetics previously considered.
Searching for and overexpressing risk-reducing factors based on the kinetic model of this
theory may lead to the emergence of hormesis phenomena.

At first, we considered universal models. As a proportionality constant, rho was set.
After that, we performed specific numerical calculations for the case of Ref. [74].

R = R0 + ρE (1)

2. Results and Discussion

The amount of the risk-reducing factor is denoted by Q(E). Considering the risk-
reducing factor, Equation (2) can be obtained from Equation (1). Note that R ≥ 0 is always
satisfied, since the risk is non-negative. The positive value k is a proportionality constant
and combines R and Q(E) into a single equation. This equation is substantially the same as
the equations shown in previous research [43,47,49–51]:

R = R0 + ρE − kQ(E) (0 < k ≤ R0 + ρE
Q(E)

) (2)

First, let us consider what kind of continuous function Q(E) should be. From Equation (1),
the risk is R0 at 0 mSv. This is also true for Equation (2), so Q(0) is zero when a risk-reducing
factor depends solely on radiation. As the radiation dose increases, the risk-reducing
factor increases, but as the radiation dose increases further, the factor is inactivated by
radiation and decreases. To obtain a hormesis region in Equation (2), Q(E) need not have
an inflection point in the increasing region, but only one inflection point in the decreasing
region (Figure 1A of Ref. [69] and Figure 1A of Ref. [71]). The shape of this graph is
not new—a hunchback graph has been proposed in the past as a factor involved in the
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radiation-adaptive response [76], and this shape was significantly improved much later,
from the modeling point of view [42,77,78].

2.1. A Sequential Model Reaction When the Two Rate Constants Are the Same

Considering function Q(E), as in the previous paper [71], given that the dose rate is
constant and the dose E is proportional to time, each component quantity can be expressed
as a function of the dose E in reaction kinetics using differential equations. The raw
material P decomposes to produce Q, and the product Q of the first step decomposes
to another substance (Scheme 1). When two rate constants are the same and the rate
constant a is positive, the function Q(E) is obtained as Equation (3), where P(0) is the initial
component amount of component P. This equation yields a hunchback graph with single
inflection point.

Q(E) = P(0)aEe−aE (3)
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Scheme 1. Sequential reaction when two rate constants are the same.

From Equations (2) and (3) and the new definition K = kP(0), Equation (4) is obtained:

R = R0 + ρE − KaEe−aE (4)

From this, the new function q(E) is defined as in Equation (5):

q(E) := KaEe−aE (5)

Ignoring the increase from 0 mSv to N mSv (No Observed Adverse Effect Level—
NOAEL [34,79]; See Appendix A), Equation (4) implies Equation (6):

R ≈ R0 − KaEe−aE (6)

When E is M, suppose R is at its minimum, 0, and q is at its maximum, R0 (Protection
Factor—PROFAC [34,80]) (Equations (7) and (8)):

M = 1/a (7)

q(M) = R0 (8)

Then, K is R0e and q(E) takes the following form:

q(E) = R0eaEe−aE (9)

When E is N mSv, the following equation is obtained:

q(N) = R0eaNe−aN (10)

Here, performed specific numerical calculations for the case of Ref. [74]. We set
NOAEL to 100 mSv. When we allow an error of 10%, 30.5% is multiplied by 0.9 to obtain
27.45% as the risk at 100 mSv. Therefore, we subtracted 27.45% from 30% to obtain 2.55% as
q(100). Now, since M is greater than 0 and less than 100, a is greater than 0.01. When 100a is
defined as A (A > 1), Equation (10) yields the following equation:

q(100) = 30eAe−A = 2.55 (11)
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Therefore, Equation (12) is obtained:

Ae−A = 3.13 × 10−2 (12)

Solving Equation (12) using Grapher 2.5 (Mac OS 10.10.5), we obtained that A is 5.09,
so a is 5.09 × 10−2. From Equation (7), M is 20 mSv. Therefore, Equation (4) implies
Equation (13), which is graphed in Figure 1. From the above, it can be determined that
the cumulative radiation dose at which the hormesis effect is maximized is approximately
20 mSv.

R = 30 + 0.005E − 4.15Ee−0.0509E (13)
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2.2. A Sequential General Model Reaction When the Two Rate Constants Are Different

In Section 2.1, we showed that the component Q in Scheme 1 obeys Equation (3).
However, it is not common for two reaction rate constants to be the same. Therefore, we
considered a general model in which the two reaction constants are different (Scheme 2).
Following the well-known differential equations, we obtained Equation (14), where P(0) is
the initial component amount of component P, and the rate constants a and b are positive.
This equation yields a hunchback graph with one inflection point.

Q(E) = P(0)
a

b − a

(
e−aE − e−bE

)
(14)
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From Equations (2) and (14) and the definition K = kP(0), Equation (15) is obtained:

R = R0 + ρE − K
a

b − a

(
e−aE − e−bE

)
(15)

As shown in Appendix A, the increase in risk from 0 mSv to N mSv can be ignored.
Therefore, Equation (15) may be approximated by Equation (16), similar to that shown in
Section 2.1:

R ≈ R0 − K
a

b − a

(
e−aE − e−bE

)
(16)

Here, the new function q(E) is defined by Equation (17):

q(E) := K
a

b − a

(
e−aE − e−bE

)
(17)
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As in Section 2.1, when E is M, the value of q is its maximum, R0. M is solved for
as follows:

M =
lnb − lna

b − a
(18)

Here, the value obtained by dividing b by a is defined as t (t > 0). The detailed
derivation of the following equations is shown in Appendix B.1. As in Section 2.1, we set
R0 = 30%, N = 100 mSv, and error = 10% (0 < M < 100). The relational expression between t
and X is finally derived. Figure 2 shows Equation (19) plotted using Grapher 2.5:

t
t

t−1
1

t − 1

(
tB − tBt

)
= 0.085, B :=

−1
X(t − 1)

(19)
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Figure 2. Graph of Equation (19), with t on the horizontal axis and X on the vertical axis. When t = 1,
X reaches the maximum value of 0.196 (the dotted lines).

By definition, t represents the relationship between a and b, and X is 1/100 of the dose
M at which the hormesis effect is maximized. From the results in Figure 2, we can see that
as the relationship between a and b changes, the dose M at which the hormesis effect is
maximized changes. What we are most interested in next is how large the dose M can be.
From the results in Figure 2, when t is 1, X reaches its maximum of 0.196. Therefore, M is
20 mSv. Although not surprising, this value is the same as the conclusion in Section 2.1.
From the graph, in the range where t is greater than 0.947 and less than 1.056, X is 0.196.
When t is 0.947, a is 0.0523 and b is 0.0496. When t is 1.056, a is 0.0496 and b is 0.0523. Thus,
if the lower-limit value of the risk’s error is fixed, the dose M is maximum in the range
where the difference between the formation rate constant a and the decomposition rate
constant b of component Q is 5% or less. The greater the difference between a and b, the
lower the dose M becomes. For example (see Appendix B.2 for details), when the original
a (a = 0.0509) is tripled, b = 0.031 and M = 13 mSv (Figure 3, blue line). Multiplying the
original a by 10 yields b = 0.0268, and M becomes 6 mSv (Figure 3, orange line). Therefore,
in order to make radiation exposure more advantageous for humans, it is desirable to
search for the component Q with almost the same rate constants a and b.
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2.3. Changing of Section 2.1’s Error and NOAEL Values

Here, we considered the case where the error value and NOAEL value set in Section 2.1
were changed. First, NOAEL remained at 100 mSv and the error value was changed to
20%. When we allow an error of 20%, 30.5% is multiplied by 0.8 to obtain 24.4% as the
risk at 100 mSv. Therefore, we subtracted 24.4% from 30% to obtain 5.6% as q(100). As in
Section 2.1, we calculated a using Grapher 2.5, and then a was 0.0409. Thus, Equation (20)
was obtained as a function of R. We mathematically obtained that M is 24 mSv using
graphical calculation. A graph of Equation (20) is shown in Figure 4a:

R = 30 + 0.005E − 3.34Ee−0.0409E (20)
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of Equation (20) using NOAEL = 100 mSv and error = 20%. (b) Graph of Equation (21) using
NOAEL = 200 mSv and error = 10%. (c) Graph of Equation (22) using NOAEL = 200 mSv and
error = 20%.
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Next, when NOAEL was 200 mSv and the error value was 10%, the risk R was obtained.
Here, 31% was multiplied by 0.9 to obtain 27.9% as the risk at 200 mSv. Therefore, we
obtained 2.1% as q(100). Using Grapher 2.5, a was 0.0267, and Equation (21) and Figure 4b
were obtained. Thus, M was 37 mSv. Similarly, when NOAEL was 200 mSv and the error
value was 20%, Equation (22) and Figure 4c were obtained, and M was 47 mSv:

R = 30 + 0.005E − 2.19Ee−0.0267E (21)

R = 30 + 0.005E − 1.71Ee−0.0209E (22)

Thus, the dose M that maximizes a risk-reducing factor naturally changed when the
NOAEL and the error were changed. Although not cumulative doses, other researchers
have reported that a best annual effective dose was 60 mSv [81] and that an optimal single
absorbed dose was 25 mGy [66]. In the future, it will be necessary to construct a new model
that takes the dose rate into account, but if we choose the NOAEL and error appropriately
in our kinetic model, the risk-reducing factor that induces hormesis effects in systems used
by other researchers may be able to be identified.

2.4. An Example of Applying Our Model to Existing Data

Ref. [34] contains many data points, but basically most of them have large error
bars. In our theory, short error bars are acceptable, but data with long error bars are
inappropriate. Still, in the Figure 2.8 of Ref. [34] (60 kVp X-rays), we used an experimental
result [82] that has short error bars. Assume that we applied the equations obtained in
Sections 2.1 and 2.2 to the data used this time. That is, E is assumed to be an absorbed
dose instead of a cumulative effective dose, and R is assumed to be a transformation
frequency (TF). If we read from the data that TF is 3 at 0 mGy and 3.7 at 360 mGy, we obtain
TF = 3 + 0.00194E, which corresponds to Equation (1). Since M is 20 mGy and TF = 1.3, the
following Equation (23) (Figure 5a, red line) is obtained by calculations, as in Section 2.1.
According to Equation (23), TF(160) = 3.30, which is within the range of the error bar of the
measured value [34,82]. It was also determined that the NOAEL is 96 mGy.

TF = 3 + 0.00194E − 0.236Ee−0.05E (23)
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Figure 5. Graph of transformation frequency (TF), with dose (mGy) on the horizontal axis and TF
(×105) on the vertical axis. (a) Two graphs that can be applied within error bars of experimental
values. The red line indicates Equation (23), and the black line indicates Equation (24). (b) Graph
using two rate constants. The gray line indicates Equation (23) (identical to the red line of panel (a)).
The blue line indicates Equation (25), and the orange line indicates Equation (26).
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On the other hand, a different line can be obtained from TF(0) = 2.5 and TF(160) = 3.7.
Using the value 1.3 when M = 20 mGy, Equation (24) was obtained. TF(360) = 5.2 obtained
from this equation is appropriate because it is within the error bar range of the experimental
value. The graph is shown in Figure 5a (black line). NOAEL was 64 mGy.

TF = 2.5 + 0.0075E − 0.183Ee−0.05E (24)

Next, based on Equation (15), we considered two different rate constants, as in
Scheme 2. At this time, we considered how far the two rate constants can be changed
within the range of the error bar. For example, when a is set to 0.1, two-fold of the origi-
nal 0.05, b = 0.0203 was obtained by graphical calculation in order to keep M at 20 mGy.
Equation (25) was obtained from TF(20) = 1.3. TF(160) = 3.18 and TF(360) = 3.69 are values
within the range of the error bar, and then Equation (25) (Figure 5b, blue line) is appropriate.
NOAEL was 127 mGy.

TF = 3 + 0.00194E − 3.27
(

e−0.0203E − e−0.1E
)

(25)

When the lower limit of the error bar for the experimental value of 360 mGy was 3.65,
a = 0.14 and b = 0.0105 were found (details are shown in Appendix C). Equation (26) was
thus obtained, and the NOAEL was 180 mGy. TF(160) = 2.88 was obtained, which is within
the error bar of the experimental value.

TF = 3 + 0.00194E − 2.32
(

e−0.0105E − e−0.14E
)

(26)

Thus, even in cases where the error bars are short, this variety of formulas can be used.
The theory proposed in this paper can only explain existing experiments with extremely
short error bar lengths. Our theory rather provides a policy to find unknown risk-reducing
factors in terms of kinetics.

3. Conclusions, Problems, and Implications

We had previously reported a model that suppresses radiation-specific cancer de-
velopment [69–71]. In this paper, we considered reaction kinetic models that suppress
radiation-nonspecific cancer. With the special reaction kinetic model (Section 2.1), we
considered the case in which the rate constant for the formation of the risk suppressor is the
same as the rate constant for its degradation. As a result, the calculations led to a maximum
effect of radiation hormesis at 20 mSv.

With the general model (Section 2.2), we considered the case where the rate constants
for production and decomposition were different. As a result, it was theoretically deter-
mined that the dose M at which the effect of radiation hormesis is maximized depends
on the relationship between the rate constant for production and the rate constant for
decomposition, and that the dose M increased as the values of the two rate constants
approached each other. In this case, the dose M reached a maximum of about 20 mSv when
the relationship was near identical.

In Section 2.3, when the error value and NOAEL value set in Section 2.1 were changed,
the dose M that maximizes a risk-reducing factor changed. In Section 2.4, when an ex-
perimental result with short error bars was used, it was assumed that we applied the
equations obtained in Sections 2.1 and 2.2. Even in cases where the error bars are short,
several equations can be obtained. Thus, the theory proposed in this paper can only explain
existing experiments with extremely short error bar lengths and provides a policy to find
unknown risk-reducing factors in terms of kinetics.

The weakness of the above conclusion Is, of course, that this article is only hypothetical.
Equation (13) has the largest hormesis effect as a result of adjusting for k, which links the
risk to the risk-reducing factor in Equation (2), and the initial raw material amount P(0).
For the hormesis effect to be buried in a linear increase, we must first allow a 10% error
in Equation (1) at 20 mSv and the risk must be at least 27.1%. Applying a = 0.0509 and
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R = 27.1% to Equation (4), Equation (27) (Figure 6, red line) was obtained. From Figure 6,
Equation (27) shows that the risk increased linearly with the dose when a 10% error was
allowed in R:

R = 30 + 0.005E − 0.417Ee−0.0509E (27)
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Equation (27) is the case where k and P(0) in Equation (13) were very small. In
the future, if k or P(0) can be increased, a hormesis effect will appear at low doses. For
example, if an unknown factor is found that is maximal at 20 mSv, such a factor may
be a risk-reducing factor, and its overexpression in vivo would reduce risk; then, the
model proposed in this paper is justified. Of course, it is not realistic to maximize the
risk-reducing factor (Figure 6, gray curved line), and it would be possible to partially
observe hormesis effects by increasing K, as seen in the purple and blue lines in Figure 6.
Thus, the exploration and overexpression of such risk-reducing factors obeying the kinetic
model of this paper may lead to the development of cancer-reducing therapeutic modalities.
If cancer suppression by such factors is achieved, it is expected that the perspective on
low doses will change. These factors may be found by exploring unknown substances
present in radioresistant bacterium [83], radio-tolerant hyper-thermophilic archaea [84],
and radio-tolerant tardigrades [85]. In addition to proteins, risk-reducing factors may
include some DNA damage [1,2] causing mutations [86] that are less likely to lead to cancer.
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Abbreviations

NOAEL No Observed Adverse Effect Level
LNT Linear non-threshold
EPA Environmental Protection Agency
PROFAC Protection Factor
TF Transformation frequency
Iz 2,5-diamino-4H-imidazol-4-one
Oz 2,2,4-triamino-5(2H)-oxazolone

Appendix A. Not ignoring the 0.5% increase from 0 mSv to 100 mSv

In the approximation in Section 2.1 using Equation (6), the increment of 0.5 for 0 mSv
to 100 mSv was ignored. In the current section, Equation (4) is used without neglecting
this increment. We allow an error of 0.1, so 30.5% is multiplied by 0.9 to obtain 27.45%
at 100 mSv. Substituting this value into Equation (4) yields Equation (A1), which when
reorganized becomes Equation (A2):

27.45 = 30 + 0.5 − 100Kae−100a (A1)

Ka = 0.0305e100a (A2)

Substituting Equation (A2) into Equation (4) yields Equation (A3):

R = 30 + 0.005E − 0.0305Eea(100−E) (A3)

As the definition of M, when E is M, the risk is its minimum, 0 (Equation A4). Differ-
entiating Equation (A3) yields Equation (A5). Since Equations (A4) and (A6) both hold,
Equations (A7) and (A8) follow:

R(M) = 0 (A4)

dR
dE

= 0.005 − 0.0305(1 − aE)ea(100−E) (A5)

dR
dE

(M) = 0 (A6)

30 + 0.005M − 0.0305Mea(100−M) = 0 (A7)

0.005 − 0.0305(1 − aM)ea(100−M) = 0 (A8)

From Equations (A7) and (A8), eliminating the exponential term yields Equation (A9).
(Note: This M is different from the M in Section 2.1, so 1 − aM is not zero.)

30 + 0.005M =
0.005M
1 − aM

(A9)

This equation can be rearranged into Equation (A10), which is quadratic in M. Fur-
thermore, solving Equation (A10) yields Equation (A11):

aM2 + 6000aM − 6000 = 0 (A10)

M = 3000
(

1 +
1

1500a

)0.5
− 3000 (A11)

Substituting Equation (A11) into Equation (A8) establishes Equation (A12), using the
new definition provided in Equation (A13) and recalling that 100a = A (A > 1):

eA−30Aβ = 0.164
1

1 − 30Aβ
(A12)
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β :=
(

1 +
1

15A

)0.5
− 1 (A13)

Using Equations (A12) and (A13), we can find A using Grapher 2.5. Note that since M
is greater than 0 and less than 100, beta is less than 1/30, and from Equation (A13), A is
greater than 0.984.

The result shows that A is 4.87, implying that a is 0.0487. Using Equation (A11), we
obtain that M is 20 mSv. Equation (A3) can thus be expressed as Equation (A14), which was
graphed using Grapher 2.5 to obtain the risk at 20 mSv, which is almost zero (Figure A1):

R = 30 + 0.005E − 3.99Ee−0.0487E (A14)

The dose at which the hormesis effect is maximized is approximately 20 mSv, which is
the same dose as in Section 2.1 when considering two significant digits. This indicates that
the increase from 0 mSv to 100 mSv can be disregarded.
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Appendix B

Appendix B.1. Derivation of Equation (19)

By the definition of t, Equation (18) (Section 2.2) can be rewritten as Equation (A15),
and the value of q when E is M can be found, as shown by the sequence of steps in
Equation (A16):

M =
lnt

a(t − 1)
(A15)

q(M) = K 1
t−1

(
e−aM − e−atM)

= K 1
t−1

(
e
−lnt
t−1 − e

−tlnt
t−1

)
= K 1

t−1

(
t
−1
t−1 − t

−t
t−1

)
= K 1

t−1 t
−1
t−1

(
1 − t−1)

= Kt
−t

t−1

(A16)

When E is M, the value of q is R0, and the following equation is obtained:

Kt
−t
t−1 = R0 (A17)

Here, we perform specific numerical calculations for the case of Ref. [74]. We set
NOAEL to 100 mSv. As in Section 2.1, q(100) is 2.55, so Equation (A18) can be derived as
shown from Equation (17) and the definition of t:

q(100) = K
1

t − 1

(
e−100a − e−100at

)
= 2.55 (A18)
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By eliminating K using Equation (A17) and R0 = 30, Equation (A19) can be derived:

t
t

t−1
1

t − 1

(
e−100a − e−100at

)
= 0.085 (A19)

Recalling that 100a = A (A > 0), Equation (A19) becomes Equation (A20):

t
t

t−1
1

t − 1

(
e−A − e−At

)
= 0.085 (A20)

To make it easier to interpret the graph (Figure 2), we newly define X as the value
obtained by dividing M by 100 (0 < X < 1). From Equation (A15) and the definition of A, X
becomes that shown in Equation (A21). From Equation (A21), A is expressed in terms of X
and t, as shown in Equation (A22). From Equations (A20) and (A22), B is newly defined,
and Equation (19) is derived (in Section 2.2):

X =
lnt

100a(t − 1)
=

lnt
A(t − 1)

(A21)

A =
lnt

X(t − 1)
(A22)

Appendix B.2. Details of Figure 3

Also see Section 2.2. When a = 0.153, t = 0.203 is found by graphical calculation from
Equation (A19). Thus, b = 0.0310 is obtained. Additionally, according to Equation (A17), K
is 45.0. Thus, Equation (A23) is obtained, and M is 13 mSv:

R = 30 + 0.005E − 56.5
(

e−0.031E − e−0.153E
)

(A23)

Similarly, when a = 0.509, we obtain, in order, t = 0.0527, b = 0.0268, and K = 35.3. The
equation for R in this case is as follows, and M is 6 mSv:

R = 30 + 0.005E − 37.3
(

e−0.0268E − e−0.509E
)

(A24)

Appendix C. Derivation of Equation (26)

Also see Section 2.4. If a > b, then exp(−aE) << exp(−bE). Equation (15) is approxi-
mated, as shown in Equation (A25) below:

TF = 3 + 0.00194E − K
a

b − a

(
e−aE − e−bE

)
≈ 3 + 0.00194E − Ke−bE (A25)

From TF(20) = 1.3 and TF(360) = 3.65, Equations (A26) and (A27) are obtained:

1.3 = 3 + 0.00194 × 20 − Ke−20b (A26)

3.65 = 3 + 0.00194 × 360 − Ke−360b (A27)

From Equations (A26) and (A27), if K is eliminated, we obtain b = 0.0105. Substituting
the value of b and M = 20 mGy into Equation (18) yields a = 0.140. From TF(20) = 1.3, Ka/(b
− a) = −2.32 is obtained. Therefore, Equation (26) is obtained.

Appendix D. Equations of Figure 6

Also see Section 3. Equation (A28) is the function of the purple curved line in Figure 6:

R = 30 + 0.005E − 1.04Ee−0.0509E (A28)
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Equation (A29) is that of the blue curved line in Figure 6:

R = 30 + 0.005E − 2.08Ee−0.0509E (A29)
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and priming dose influence: The quantification of the Raper-Yonezawa effect and its three-parameter model for postradiation
DNA lesions and mutations. Radiat. Environ. Biophys. 2022, 61, 221–239. [CrossRef]

67. Fornalski, K.W. Radioadaptation and radioresistance during deep space travels. J. Space Saf. Eng. 2022, 9, 385–389. [CrossRef]
68. Schöllnberger, H.; Ménache, M.G.; Hanson, T.E. A biomathematical modeling approach to explain the phenomenon of radiation

hormesis. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 867–890. [CrossRef]
69. Kino, K. The prospective mathematical idea satisfying both radiation hormesis under low radiation doses and linear non-threshold

theory under high radiation doses. Gene Environ. 2020, 42, 4. [CrossRef]
70. Kino, K.; Ohshima, T.; Takeuchi, H.; Kobayashi, T.; Kawada, T.; Morikawa, M.; Miyazawa, H. Considering existing factors that

may cause radiation hormesis at <100 mSv and obey the linear no-threshold theory at ≥100 mSv. Challenges 2021, 12, 33.
71. Kino, K. The radiation-specific components generated in the second step of sequential reactions have a mountain-shaped function.

Toxics 2023, 11, 301. [CrossRef]
72. Calabrese, E.J.; Shamoun, D.Y.; Hanekamp, J.C. Cancer risk assessment: Optimizing human health through linear dose-response

models. Food Chem. Toxicol. 2015, 81, 137–140. [CrossRef]
73. Scott, B.R. Residential radon appears to prevent lung cancer. Dose Response 2011, 9, 444–464. [CrossRef] [PubMed]
74. Ministry of the Environment, Japan. Uniform Basic Information on Health Effects of Radiation, Etc. 2016 Edition Ver.2017001.

Available online: https://www.env.go.jp/chemi/rhm/h28kisoshiryo/h28kiso-03-07-03.html (accessed on 13 December 2023).
75. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publication 103; Elsevier Oxford:

Amsterdam, The Netherlands, 2007.
76. Raper, J.R. Effects of total surface beta irradiation. Radiology 1947, 49, 314–324. [CrossRef] [PubMed]
77. Feinendegen, L.E. Low doses of ionizing radiation: Relationship between biological benefit and damage induction. A synopsis.

World J. Nucl. Med. 2005, 4, 21–34.
78. Agathokleous, E.; Kitao, M.; Calabrese, E.J. Environmental hormesis and its fundamental biological basis: Rewriting the history

of toxicology. Environ. Res. 2018, 165, 274–278. [CrossRef] [PubMed]
79. Agathokleous, E.; Saitanis, C.; Markouizou, A. Hormesis shifts the No-Observed-Adverse-Effect Level (NOAEL). Dose Response

2021, 19, 15593258211001667. [CrossRef] [PubMed]
80. Sanders, C.L.; Scott, B.R. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response

2008, 6, 53–79. [CrossRef]
81. Luckey, T.D. Documented optimum and threshold for ionising radiation. Int. J. Nucl. Law 2007, 1, 378–409. [CrossRef]
82. Redpath, J. Radiation-induced neoplastic transformation in vitro: Evidence for a protective effect at low doses of low LET

radiation. Cancer Metastasis Rev. 2004, 23, 333–339. [CrossRef]
83. Sadowska-Bartosz, I.; Bartosz, G. Antioxidant defense of Deinococcus radiodurans: How does it contribute to extreme radiation

resistance? Int. J. Radiat. Biol. 2023, 99, 1803–1829. [CrossRef]
84. Ranawat, P.; Rawat, S. Radiation resistance in thermophiles: Mechanisms and applications. World J. Microbiol. Biotechnol. 2017,

33, 112. [CrossRef] [PubMed]
85. Kasianchuk, N.; Rzymski, P.; Kaczmarek, Ł. The biomedical potential of tardigrade proteins: A review. Biomed. Pharmacother.

2023, 158, 114063. [CrossRef]
86. Kino, K.; Kawada, T.; Hirao-Suzuki, M.; Morikawa, M.; Miyazawa, H. Products of oxidative guanine damage form base pairs

with guanine. Int. J. Mol. Sci. 2020, 21, 7645. [CrossRef]
87. Cadet, J.; Berger, M.; Buchko, G.W.; Joshi, P.C.; Raoul, S.; Ravanat, J.-L. 2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-β-D-

erythro-pentofuranosyl)amino]-5-(2H)-oxazolone: A novel and predominant radical oxidation product of 3′,5′-di-O-acetyl-2′-
deoxyguanosine. J. Am. Chem. Soc. 1994, 116, 7403–7404. [CrossRef]

88. Neeley, W.L.; Delaney, J.C.; Henderson, P.T.; Essigmann, J.M. In vivo bypass efficiencies and mutational signatures of the guanine
oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole. J. Biol. Chem. 2004, 279, 43568–43573. [CrossRef]

https://doi.org/10.1093/biostatistics/kxw004
https://doi.org/10.1093/rpd/ncq474
https://www.ncbi.nlm.nih.gov/pubmed/21159745
https://doi.org/10.1371/journal.pcbi.1003513
https://doi.org/10.1504/IJLR.2020.113538
https://doi.org/10.1097/00004032-200308000-00003
https://doi.org/10.2203/dose-response.11-007.Scott
https://doi.org/10.2203/dose-response.07-027.Leonard
https://doi.org/10.1007/s00411-022-00963-9
https://doi.org/10.1016/j.jsse.2022.04.001
https://doi.org/10.1080/20018091094709
https://doi.org/10.1186/s41021-020-0145-4
https://doi.org/10.3390/toxics11040301
https://doi.org/10.1016/j.fct.2015.04.023
https://doi.org/10.2203/dose-response.11-027.Scott
https://www.ncbi.nlm.nih.gov/pubmed/22461755
https://www.env.go.jp/chemi/rhm/h28kisoshiryo/h28kiso-03-07-03.html
https://doi.org/10.1148/49.3.314
https://www.ncbi.nlm.nih.gov/pubmed/20266006
https://doi.org/10.1016/j.envres.2018.04.034
https://www.ncbi.nlm.nih.gov/pubmed/29734028
https://doi.org/10.1177/15593258211001667
https://www.ncbi.nlm.nih.gov/pubmed/33815016
https://doi.org/10.2203/dose-response.06-003.Sanders
https://doi.org/10.1504/IJNUCL.2007.014806
https://doi.org/10.1023/B:CANC.0000031771.56142.9b
https://doi.org/10.1080/09553002.2023.2241895
https://doi.org/10.1007/s11274-017-2279-5
https://www.ncbi.nlm.nih.gov/pubmed/28470425
https://doi.org/10.1016/j.biopha.2022.114063
https://doi.org/10.3390/ijms21207645
https://doi.org/10.1021/ja00095a052
https://doi.org/10.1074/jbc.M407117200


Radiation 2024, 4 84

89. Duarte, V.; Gasparutto, D.; Jaquinod, M.; Cadet, J. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage
using modified oligonucleotides. Nucleic Acids Res. 2000, 28, 1555–1563. [CrossRef]

90. Henderson, P.T.; Delaney, J.C.; Gu, F.; Tannenbaum, S.R.; Essigmann, J.M. Oxidation of 7,8-dihydro-8-oxoguanine affords lesions
that are potent sources of replication errors in vivo. Biochemistry 2002, 41, 914–921. [CrossRef]

91. Kino, K.; Takao, M.; Miyazawa, H.; Hanaoka, F. A DNA oligomer containing 2,2,4-triamino-5(2H)-oxazolone is incised by human
NEIL1 and NTH1. Mutat. Res. 2012, 734, 73–77. [CrossRef] [PubMed]

92. Suzuki, M.; Kino, K.; Kawada, T.; Morikawa, M.; Kobayashi, T.; Miyazawa, H. Analysis of nucleotide insertion opposite 2,2,4-
triamino-5(2H)-oxazolone by eukaryotic B- and Y-family DNA polymerases. Chem. Res. Toxicol. 2015, 28, 1307–1316. [CrossRef]
[PubMed]

93. Morikawa, M.; Kino, K.; Oyoshi, T.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. Product analysis of photooxidation in isolated
quadruplex DNA; 8-oxo-7,8-dihydroguanine and its oxidation product at 3′-G are formed instead of 2,5-diamino-4H-imidazol-4-
one. RSC Adv. 2013, 3, 25694–25697. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/nar/28.7.1555
https://doi.org/10.1021/bi0156355
https://doi.org/10.1016/j.mrfmmm.2012.03.007
https://www.ncbi.nlm.nih.gov/pubmed/22465744
https://doi.org/10.1021/acs.chemrestox.5b00114
https://www.ncbi.nlm.nih.gov/pubmed/26010525
https://doi.org/10.1039/c3ra44290j

	Introduction 
	Results and Discussion 
	A Sequential Model Reaction When the Two Rate Constants Are the Same 
	A Sequential General Model Reaction When the Two Rate Constants Are Different 
	Changing of Section 2.1’s Error and NOAEL Values 
	An Example of Applying Our Model to Existing Data 

	Conclusions, Problems, and Implications 
	Appendix A
	Appendix B
	Derivation of Equation (19) 
	Details of Figure 3 

	Appendix C
	Appendix D
	References

