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Abstract: The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported
in China and is responsible for Coronavirus disease (COVID-19). Despite being well tolerated by
most patients, a fraction of cases evolve into a potentially fatal condition requiring intensive care. In
addition to respiratory complications, several studies have reported cases of patients who developed
intense thrombosis, including acute myocardial infarction and ischemic stroke, as well as the presence
of elevated coagulation markers. Evidence has shown that the virus can interact directly with platelets
and modulate their thrombotic and inflammatory functions, with significant prognostic implications.
It is important to highlight that the emerging literature shows that when hyperactive these cells
can act as pro-viral infections both in transporting their particles and in increasing inflammation,
leading to a hyperinflammatory state and consequent clinical worsening. In this review, we searched
for studies available in public databases and discussed the interaction of platelet biomarkers in the
pathogenesis of COVID-19. In this context, understanding the mechanism of SARS-CoV-2 and these
cells in different clinical conditions could help us to understand the coagulation and inflammation
profiles of critically ill patients with the disease, guiding faster clinical management and enabling the
reuse and targeting of more efficient therapies.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, an enveloped positive-
sense single-stranded RNA virus belonging to the Coronaviridae family which has in
common with others of the same species the presence of four proteins—Spike protein (S),
envelope protein (E), membrane protein (M) and nucleocapsid protein (N)—which are
closely related to the toxicity and infectivity of these coronaviruses and are responsible for
viral maintenance and replication [1–4].

The S protein has a vital role in the infection and pathogenesis of COVID-19, in
addition to being the glycoprotein that determines the fusion of the virus in cells. This
protein is further subdivided, where the ectodomain is divided into subunits: S1, which
helps in binding to the ACE-2 receptor on the surface of the host cell, and the second, S2,
which is responsible for membrane fusion (Figure 1) [5,6].
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Figure 1. Structure and genomic organization of SARS-CoV-2. Adapted from Ref. [7]. (A) schematic 
representation of the structure of the SARS-CoV-2 virus and the positions of the Spike glycoproteins, 
envelope, membrane, nucleocapsid and viral genome. (B) enlarged schematic representation show-
ing the S1 and S2 subunits of the SARS-CoV-2 spike glycoprotein. Created with BioRender.com, 
accessed on 17 August 2023. 

SARS-CoV-2 became known for its mutagenesis, and despite being less pathogenic 
when compared to other coronaviruses, a high transmission rate was observed due to its 
rapid spread from person to person [8]. Through the transmembrane protease serine 2 
(TMPRSS2), a serine protease that acts in the proteolytic cleavage and activation of the 
Spike protein, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE-2) in or-
der to contribute to the fusion of the virus to the host’s cell membrane and then entry of 
the viral genome into the cell [6,8,9]. 

Even though infection by this virus presents tropism for respiratory endothelial cells, 
studies indicate cases of patients who developed intense thrombosis, including myocar-
dial infarction and ischemic stroke [5,10]. Despite being considered the main effector cells 
of hemostasis and playing an important role in thrombus formation, platelets are also re-
sponsible for mediating inflammatory and immunological responses [11,12]. 

Since platelet activation occurs through inflammatory or infectious events, these are 
commonly associated with a prothrombotic response and, consequently, with platelet hy-
peractivity, as is observed in several viral infections [2], including the human immunode-
ficiency virus (HIV) [13,14], influenza virus [15], dengue virus [16,17] and human cyto-
megalovirus [18]. Similar to the process of thrombocytopathy, coagulopathy and inflam-
mation are observed in patients infected by SARS-CoV-2, leading to a significant increase 
in thrombotic and embolic events [4,9]. 

Therefore, a systematic understanding of the thrombotic effects of SARS-CoV-2 rep-
resents a promising strategy for redirecting and developing therapies capable of minimiz-
ing the damage associated with this disease [19]. 

2. Pathophysiology and Pathogenesis of SARS-CoV-2 
SARS-CoV-2 infection begins when the Spike protein binds to its receptor on the host 

cell membrane, with ACE-2 being considered the main enzyme responsible for the virus’s 

Figure 1. Structure and genomic organization of SARS-CoV-2. Adapted from Ref. [7]. (A) schematic
representation of the structure of the SARS-CoV-2 virus and the positions of the Spike glycoproteins,
envelope, membrane, nucleocapsid and viral genome. (B) enlarged schematic representation showing
the S1 and S2 subunits of the SARS-CoV-2 spike glycoprotein. Created with BioRender.com, accessed
on 17 August 2023.

SARS-CoV-2 became known for its mutagenesis, and despite being less pathogenic
when compared to other coronaviruses, a high transmission rate was observed due to its
rapid spread from person to person [8]. Through the transmembrane protease serine 2
(TMPRSS2), a serine protease that acts in the proteolytic cleavage and activation of the
Spike protein, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE-2) in order
to contribute to the fusion of the virus to the host’s cell membrane and then entry of the
viral genome into the cell [6,8,9].

Even though infection by this virus presents tropism for respiratory endothelial cells,
studies indicate cases of patients who developed intense thrombosis, including myocardial
infarction and ischemic stroke [5,10]. Despite being considered the main effector cells
of hemostasis and playing an important role in thrombus formation, platelets are also
responsible for mediating inflammatory and immunological responses [11,12].

Since platelet activation occurs through inflammatory or infectious events, these are
commonly associated with a prothrombotic response and, consequently, with platelet
hyperactivity, as is observed in several viral infections [2], including the human immun-
odeficiency virus (HIV) [13,14], influenza virus [15], dengue virus [16,17] and human
cytomegalovirus [18]. Similar to the process of thrombocytopathy, coagulopathy and
inflammation are observed in patients infected by SARS-CoV-2, leading to a significant
increase in thrombotic and embolic events [4,9].

Therefore, a systematic understanding of the thrombotic effects of SARS-CoV-2 repre-
sents a promising strategy for redirecting and developing therapies capable of minimizing
the damage associated with this disease [19].

2. Pathophysiology and Pathogenesis of SARS-CoV-2

SARS-CoV-2 infection begins when the Spike protein binds to its receptor on the host
cell membrane, with ACE-2 being considered the main enzyme responsible for the virus’s
entry into the cell. In addition, the high expression of ACE-2 in the nasal and oral mucosa
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makes its entry via inhalation possible. After binding to ACE-2, the TMPRSS2 protease
cleaves and activates the spike protein to favor the fusion of the viral envelope with the cell
membrane [20–22].

Depending on the availability of proteases on the surface of the host cell, the Spike
protein enables virus entry by endocytosis or via direct fusion. Within the alveoli, due to
considerable expression of ACE-2 and TMPRSS2, epithelial cells lining the lower airways
are the primary target. From then on, the structural proteins move along the secretory
pathway to the Golgi complex, where the viral progeny will be assembled and then released
from the host cell by exocytosis [8,23] (Figure 2).
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ment of immune cells in an attempt to contain the infection. In this context, the increase 
in cytokines in the lungs can aggravate this inflammatory response and lead to pneumonia 
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Even though most patients have mild symptoms and a good prognosis, a fraction of 
these individuals may develop severe COVID-19 [26,27], with the occurrence of throm-
bosis and abnormal platelet parameters such as decreased platelet count as well as 

Figure 2. Schematic representation of the entry mechanism and replication cycle of SARS-CoV-2.
Adapted from Ref. [1]. The S protein of SARS-CoV-2 binds to ACE-2 and cleaves the S1/S2 subunits
through TMPRSS2, enabling the entry of the virus into the host’s cells and the consequent translation
of the viral genome. Transcription and replication occur in the Golgi complex, where subgenomic
RNA is translated into structural and accessory proteins that are inserted into the genomic RNA
in the nucleocapsid. Then, the virion is formed and released by exocytosis. ACE-2, Angiotensin
Converting Enzyme 2; TMPRSS2, Transmembrane Protease Serine 2; nsps, Non-structural Proteins.
Created with BioRender.com, accessed on 17 August 2023.

As epithelial cells are infected, the virus induces apoptosis as part of the replica-
tion cycle, which is related to the vascular leakage that initiates local infection and the
recruitment of immune cells in an attempt to contain the infection. In this context, the
increase in cytokines in the lungs can aggravate this inflammatory response and lead to
pneumonia [24,25].

Even though most patients have mild symptoms and a good prognosis, a fraction of
these individuals may develop severe COVID-19 [26,27], with the occurrence of thrombosis
and abnormal platelet parameters such as decreased platelet count as well as changes in
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the coagulation profile, including decreased prothrombin time (PT) and increased activated
partial thromboplastin time (aPTT), D-dimer and fibrinogen, which are associated with the
severity and prognosis of the disease [28–31].

Abnormalities range from coagulopathies commonly associated with serious infec-
tions, such as disseminated intravascular coagulation (DIC) [32,33], to deep venous and
arterial thrombosis—which can cause ischemic stroke, systemic arterial embolism, acute
coronary syndrome and limb ischemia [34]—and pulmonary embolism [35], with preva-
lences in patients in intensive treatment units (ITU) [36].

Although its pathophysiology has not been completely explained, an uninterrupted
and disproportionate immune-inflammatory response is observed, mainly from platelet-
derived signaling proteins that mediate and regulate the immune response [37].

3. Immunothrombosis and SARS-CoV-2 Infection

Platelet activation generally occurs in response to inflammatory and/or infectious
diseases. The infection stimulates a systemic inflammatory response in which activation of
the host’s defense systems results in the activation of coagulation pathways, leading to the
formation of thrombin as a component of communication between humoral and cellular
immunity, called immunothrombosis [38].

Once the pathogen is recognized by platelets, they increase the immune response
through the release of cytokines and antimicrobial peptides and through the platelet–
leukocyte interaction [4,39,40]. During this process, a type of physical barrier is formed
by platelets and immune cells with the aim of preventing the spread and survival of the
pathogen [4,38,41]. However, the accumulation of immune cells, mainly monocytes and
neutrophils, can lead to adverse immunological and hemostatic responses, contributing to
a worse clinical context, with the development of thrombosis and organ failure [4].

The platelet–leukocyte interaction plays a role in the pathophysiology of different
viral infections [42–44], being seen as a driver of vascular disease, and is considered the
main factor responsible for thromboinflammatory responses during COVID-19, associated
with serious disease and elevation of coagulation markers, such as fibrinogen and D-dimer,
where its increase was described in patients in need of ventilatory support and in those
who died in hospital [40].

When in contact with the respiratory system, the virus increases inflammation, trigger-
ing a storm of cytokines that are responsible for recruiting immune cells, establishing the
cycle of inflammation of the lung epithelium and thrombotic events [10]. Polyphosphates
derived from microorganisms activate platelets, mast cells and factor XII (FXII), while the
exacerbated release of cytokines increases the recruitment of leukocytes to the site of injury,
promoting the formation of neutrophil extracellular traps (NETs) which, together with FXII,
stimulate the formation of thrombin and induce a thromboinflammatory state. As vascular
endothelial damage increases, the passage of fluids to the lung cavity is made possible,
leading to respiratory failure (Figure 3) [4,10,44].
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Figure 3. Schematic representation of the immunothrobosis mechanism triggered by SARS-CoV-2.
Adapted from Ref. [7]. When immune cells recognize the virus, inflammatory cytokines are produced
that attract defense cells in an attempt to contain the pathogen. In the presence of a deregulated
immune response and the exacerbated production of these cytokines, the cycle of inflammation is
established, mediated by the platelet–leukocyte interaction and the consequent thrombus formation.
Compromising the vessel wall and resulting in the accumulation of fluids in the bronchioles and
vasoconstriction via platelet activation, the oxygen exchange capacity is reduced. Created with
BioRender.com, accessed on 25 October 2023.

4. Viral Infections, including SARS-CoV-2 and Its Interaction with Platelets

Platelets are widely known for their contributions to thrombosis and hemostasis and
for having a broad expression of immune and adhesion receptors [12]. However, their
interaction and favorability with viral infections have aroused increasing interest among
researchers [12,16].

The involvement of these cells in viral defenses occurs through their direct activity,
where specific receptors are released. Also, the virus can be phagocytosed through the
formation of complexes with the virus and platelets, leading to thrombocytopenia. Through
indirect routes, the virus is neutralized through the formation of aggregates with leukocytes,
platelet apoptosis and/or activation of the vascular endothelium [45].
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Platelets play an important role in the host’s immune defense against viruses; they
engulf viral particles and thus reduce viremia. However, they can also contribute to in-
creased inflammation and tissue damage in these infections [46], such as influenza [15,43],
HIV [14,15], hepatitis C [47,48], dengue [16,17], HSV-1 (herpes simplex virus A) [49] and cy-
tomegalovirus [18], acting on the internalization of virions, platelet activation and contributing
to the transport of these particles [50,51].

Additionally, the interaction of platelets in the pathogenesis of COVID-19 has been
discussed. One study identified the presence of viral particles in the lungs and in megakary-
ocytes morphologically active in the production of platelets in bone marrow in patients who
died from the disease. The same particles were also observed in circulating platelets, sug-
gesting that SARS-CoV-2 is transferred from megakaryocytes to platelets or phagocytized
by them when circulating [19].

Another two studies described platelet activation in patients with severe COVID-19,
demonstrating increased levels of platelet aggregates and immune cells [4,51]. In addition,
one of them showed that the platelets of these patients contained viral RNA, suggesting
that these cells can absorb SARS-CoV-2 mRNA as well as present changes in the expression
of platelet genes, similar to those observed in patients infected with the H1N1 virus [4].

In this context, understanding the mechanistic role of SARS-CoV-2 with platelets
and its development of a cascade of pro-coagulatory events proves to be a key tool for
early diagnostic screening and therapeutic targeting of thrombotic complications of severe
COVID-19 [19,43].

5. Platelet Markers and COVID-19

Platelets are small cellular fragments derived from megakaryocytes which, in addition
to acting in the establishment of hemostasis, play important roles in the immune response.
When activated, platelets release substances responsible for recruiting defense cells to
the site of injury/inflammation and promote their adhesion to platelet thrombi, thus
modulating the functional response of leukocytes [12,52].

Although it is considered an effective way to help protect the body, its critical contri-
butions to thrombosis are already known. During various infections—viral or bacterial—
activated platelets adhere to the subendothelium and their hyperactivity results in the
formation of thrombi, leading to arterial ischemia and even pulmonary embolisms [4,12,41].

The cytoplasm of platelets contains three main types of granules: α, dense and lyso-
somes. Alpha granules are larger and more abundant and store a wide variety of proteins.
Dense granules are smaller and less present [53]. Lambda granules are sparse and composed
of glycohydrolases and lysosomal enzymes. When stimulated, the granules undergo exocy-
tosis and release their contents into the extracellular environment, contributing to platelet
activation and thrombus formation [54,55]. Also, many of these mediators participate in
the recruitment of leukocytes and inflammatory cells, which help in the establishment of
the hyperinflammatory state [55,56].

As knowledge about severe COVID-19 advances, hypercoagulability is identified
as the central pathological characteristic of clinical complications since evidence shows
that the virus can interact directly with platelets and modulate their thrombotic and
inflammatory functions [4,57]. In addition to the severity of the disease, thrombotic events
associated with increased levels of coagulation markers have been shown to be important
in determining the prognosis of patients with COVID-19 [58,59]. The identification of
new platelet markers, in addition to enabling a better understanding of the thrombotic
complications caused by SARS-CoV-2, during evaluation of these molecules during hospital
admission would indicate sick patients with a predisposition to thrombosis and optimize
therapeutic management [60].

Table 1 is made up of a series of platelet molecules acting in thromboinflammatory
processes in the clinical context of COVID-19, followed by their methods of detection. And,
although they have not been sufficiently tested in clinical practice, different studies have
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highlighted the influence of these markers on the risk stratification of the disease, providing
sustainable data for future research.

Table 1. Main Platelet Molecules associated with thromboinflammation in severe COVID-19.

Molecule Biological Function Methods Pro-Infection
Mechanism Clinical Complications Ref.

P-Selectin
Platelet activation; adhesion

and modulation of
platelet–leukocyte interaction.

Flowcytometry Increased surface
expression.

Platelet–leukocyte aggregates;
increased platelet aggregation,

adhesion and spread.
[39,61–63]

VWF

Recruitment of circulating
platelets to the site of injury;

platelet activation and
aggregation.

LIA, ELISA,
immunohistol-

ogy

Increased plasma
levels in patients on

ITU support.

Thrombosis; vasculopathy;
greater severity and in-hospital

mortality.
[64–72]

PAI-1 Fibrinolytic regulation. ELISA Significantly higher
levels in ITU patients.

Predisposition to thrombotic
events; associated with worse

respiratory status and
unfavorable clinical outcome.

[73–78]

PF4
Coagulation; regulating

angiogenesis and inflammatory
and infectious responses.

ELISA
High expression in

plasma and tracheal
aspirate.

Platelet hyperactivation
associated with

immunothrombosis and the
formation of PF4/heparin

immune complexes.

[39,79–91]

TGF-β Inflammatory regulation;
coagulation; wound healing. ELISA

High serum levels
are associated with

greater disease
severity.

Increased coagulation; immune
dysregulation; pulmonary

fibrosis.
[92–97]

PAF

Leukocyte chemotaxis; platelet
aggregation; inflammatory

mediator in infectious
processes.

ELISA

Increased levels were
described in patients

with moderate
COVID-19.

Increased inflammation;
interstitial edema;

immunothrombosis.
[98–107]

MMP-2,
MMP-9

Degradation of extracellular
matrix proteins; embryonic

development and fibrinolysis.

Zymography,
ELISA

Elevated levels of
MMP-2 and MMP-9
in severe COVID-19

patients.

Increased mortality; respiratory
complications; neurological

syndrome.
[108–116]

PDGF Cell differentiation,
proliferation and chemotaxis. ELISA

High levels were
associated with
greater disease

severity.

Platelet activation; formation of
platelet–leukocyte aggregates;

lung damage.
[4,39,117–119]

RANTES
(CCL5)

Monocyte recruitment;
activation and differentiation of

T cells.
ELISA

Increased plasma
levels and activity in
critically ill patients.

Lung damage; NETs;
immunothrombosis. [85,120–127]

Glutamate Regulation of platelet
production and activation.

Chromatography,
mass

spectrometry

Lower glutamine
levels and higher

glutamate levels in
severe COVID-19.

Lung damage; hypoxia;
neurological disability;

thrombosis risk.
[128–136]

Serotonin
Vasoconstriction; T cell

activation and differentiation;
platelet aggregation.

ELISA High serum levels in
severe COVID-19.

Serotonergic toxicity; platelet
degranulation; vascular injury. [137–147]

CLEC-2
Hemostasis; healing;

maintenance of vascular
integrity; platelet adhesion.

CLEIA
Elevated plasma

levels in severe and
critical COVID-19.

Platelet activation; thrombotic
syndrome. [13,148–160]

MPs
Regulation of inflammation;

coagulation; cell proliferation
and differentiation.

Flowcytometry,
ELISA

High levels of
circulating MPs in

ITU patients.

Lung injury; increase in
plateletleukocyte aggregates;

worse clinical outcome.
[161–172]

Legend: VWF, Von Willebrand Factor; ITU, Intensive Treatment Unit; PAI-1, Plasminogen Activator Inhibitor-1;
PF4, Platelet Factor 4; TGF, Transforming Growth Factor; PAF, Platelet-Activating Factor; MMP, Metallopro-
teinase; PDGF, Platelet-derived Growth Factor; RANTES, Regulated on Activation Normal T cell expressed and
secreted; CLEC-2, C-Type Lectin-Like Receptor; MPs, Microparticles; NETs, Neutrophil Extracellular Traps; LIA,
Latex Immunoturbidimetric Assay; ELISA, Enzyme-linked Immunosorbent Assay; CLEIA, Chemiluminescent
Enzyme Immunoassay.
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5.1. P-Selectin

The study by Manne et al. described changes in the expression profile of circulating
platelets in patients with COVID-19. Despite the normal morphology of these cells, they were
hyperreactive and an increase in the expression of basal P-selectin and a greater formation
of circulating platelet–leukocyte aggregates were also evidenced [4]. Therefore, P-selectin
may play a crucial role in endotheliopathy and platelet hyperactivation in SARS-CoV-2
infection [29].

P-selectin is an inflammatory marker of coagulation which is present in the alpha gran-
ules of platelets, the Weibel–Palade bodies of the endothelium and the platelet membrane,
acting as an adhesion receptor to support the rolling and emigration of leukocytes to the
site of inflammation. In its soluble form (sP-selectin), it is responsible for modulating blood
cell and endothelial cell interactions [61,62].

In agreement, other authors also demonstrate increased expression of surface P-selectin
in patients with severe COVID-19 [39], as well as being correlated with higher levels of
platelet–monocyte aggregates in infected individuals admitted to the ITU [63]. In addition,
the levels of soluble selectins have been identified as a predictor of thrombosis in patients
with the disease and in identifying the need for therapeutic intervention with prophylactic
anticoagulants [39].

5.2. Von Willebrand Factor (VWF)

Von Willebrand factor (VWF) is an essential glycoprotein regulating thrombosis and
hemostasis, found in both endothelial cells and platelets [64]. During vascular injury, VWF
assists in the recruitment of platelets to the site, promoting their adhesion and aggrega-
tion [64,65]. Elevated plasma concentrations of this factor are associated with an increased
risk of venous thromboembolism [66] and its deficiency with bleeding disorders [67].

Different studies have described increased plasma levels of VWF in patients with
COVID-19 [68–70], pointing out a strong correlation with disease severity and mortality,
suggesting an important role in the pathogenesis of thrombosis in COVID-19 [69]. Further-
more, a French study carried out with adult hospitalized and outpatient patients described,
through immunohistochemistry, an increase in the reaction to VWF in the pulmonary
endothelium when the disease duration was longer than 10 days [68].

In addition to other authors describing the presence of higher levels of VWF in patients
who died [71], in those admitted to the ITU and when compared to non-ITU patients [29],
they were also associated with a greater severity of the disease [72].

5.3. Plasminogen Activator Inhibitor (PAI-1)

Plasminogen Activator Inhibitor-1 plays an important role in the fibrinolysis regulation
process. This mechanism is regulated by plasminogen activators and inhibitors, in which a
fibrin-rich thrombus is degraded and remodeled by proteases responsible for converting
plasminogen into plasmin as the final product [73]. In patients with COVID-19, reduced
clot lysis was evidenced, suggesting impaired fibrinolytic activity and an increased risk of
thrombotic complications [74].

In inflammatory conditions, the release of PAI-1 through endothelial cells and activated
platelets is stimulated, promoting a high concentration of it at the site, in which, persistent
fibrin deposition in the lung parenchyma establishes the hypofibrinolytic state, which is a
risk factor for venous thrombosis in severe COVID-19 [75].

Furthermore, some studies carried out with hospitalized patients demonstrated ele-
vations in PAI-1 in critically ill patients [76,77], as well as being associated with a worse
respiratory status and an unfavorable clinical outcome [76]. These high plasma levels were
also highlighted as a possible explanation for the high incidence of serious infection in
obese patients since adipose tissue contributes to the production of PAI-1 [78].
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5.4. Platelet Factor 4 (PF4)

PF4 is a chemokine that is mostly present in platelet alpha granules and is released
during platelet activation [79], playing an important role in coagulation, regulation of
angiogenesis and inflammatory and infectious responses [80]. Due to its negative charge at
physiological pH, PF4 binds to endogenous herapan sulfate, neutralizing the side chains
of this glycosaminoglycan, promoting blood clotting and facilitating aggregation and
thrombus formation [79].

Different studies performed in vitro [81,82] and in vivo [83] demonstrated that this
chemokine can also affect hemostasis and thrombosis through inflammatory and vascu-
lar pathways. After pathogen recognition, platelets mediate and propagate the immune
response, activating mechanisms such as the release of inflammatory cytokines and modu-
lation of leukocyte migration to the site of inflammation/infection, inducing the formation
of NETs, which are important mediators in the process of coagulopathy associated with
COVID-19 [84,85], in addition to the increased formation of platelet–leukocyte aggregates
that favor the triggering of immunothrombosis [39].

As an example, circulating PF4 levels were highly elevated in patients with the dis-
ease when compared to the control group, supporting the hypothesis of greater platelet
activation [86]. In addition, its presence was quantified in tracheal aspirates from a patient
with COVID-19 under mechanical ventilation, suggesting that platelet activation products
can infiltrate the airways of patients with severe COVID-19 [39].

Furthermore, the formation of anti-PF4 autoantibodies by binding of PF4 to heparin
has been reported in thrombotic patients with COVID-19 [87,88]. In cases of heparin-
induced thrombocytopenia (HIT), the formation of PF4/heparin immune complexes occurs,
which have the ability to bind to platelet receptors and induce platelet activation and
aggregation, as well as the activation of coagulation pathways that lead to severe thrombotic
syndrome [88–90]. High titers of anti-PF4 antibodies were observed in ITU patients treated
with heparin and in those without prior exposure, suggesting that spontaneous HIT may
occur during viral infection [91].

5.5. Transforming Growth Factor-Beta (TGF-β)

TGF-β is a pleiotropic cytokine stored in its latent form in platelet alpha granules,
known for its participation in the regulation of inflammation, tissue healing and platelet
aggregation [92–94]. However, its continuous stimulation during infectious processes
triggers increased coagulation and immune dysregulation which can lead to tissue fibrosis,
which is common in the inflammatory phase of COVID-19 [92].

Increasing evidence suggests that TGF-β signaling disorder is a feature of the microvas-
cular coagulation and inflammatory injury observed in SARS-CoV-2 infection and such
events could contribute to acute respiratory distress syndrome (ARDS), microthrombosis
and pulmonary fibrosis seen in critically ill patients [92,95]. Furthermore, high serum levels
of this cytokine have been correlated with increased severity of the disease [94,96], and it
has also been shown that serum from these patients can inhibit the function of NK cells
and early control of the virus [97].

5.6. Platelet-Activating Factor (PAF)

Another important effective mediator of inflammation in infectious processes is
platelet-activating factor (PAF), expressed mainly on the surface of leukocytes, endothelial
cells, mast cells and platelets [98,99]. Within platelet cells, PAF promotes aggregation and
clot formation [99], which are linked to a variety of clinical conditions, such as heart failure,
asthma, cancer, atherosclerosis and viral diseases [100,101].

Although PAF promotes a natural inflammatory response, its effect can become
pathogenic in the presence of excessive or unregulated activity, resulting from changes in
its synthesis and termination cycles as a result of diseases or genetic variations [99,102].

The similarities between the physiological effects of PAF and the clinical context of
severe COVID-19 are discussed in different studies [102–104]. PAF release from platelets
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has been reported to stimulate mast cell activation and inflammation [105], and mast cell
degranulation associated with interstitial edema and immunothrobosis has been observed
in the alveoli of deceased COVID-19 patients [106] and increased levels of PAF have been
found in the blood of patients with moderate COVID-19 [107].

5.7. MMP-2, MMP-9

Metalloproteinases (MMPs) are zinc- and calcium-dependent proteinases which have
the ability to degrade extracellular matrix proteins. In their latent form, MMP-2 and MMP-9
are stored mainly in the cytoplasm of platelets, where they mediate inflammatory responses
through the migration of immune cells to the site of infection [108,109], as well as inducing
platelet–leukocyte aggregation [110].

MMPs participate in several physiological processes including embryonic develop-
ment, coagulation cascade and fibrinolysis, as well as in pathological processes such as lung
diseases, vascular changes, obesity, inflammation, cancer and atherosclerosis [108–113].
More recently, these enzymes were also associated with clinical manifestations during
coronavirus infection [114–116].

In view of the known role of MMPs in the lung physiology and respiratory symptoms
of severe COVID-19, a study carried out in patients admitted to the Intensive Care Unit
(ICU) demonstrated higher MMP-9 levels in the COVID-19 group compared to the con-
trol. Also, hypertensive COVID-19 patients had higher levels of MMP-2 compared to the
normotensive COVID-19 group. In addition, a survival analysis had associated greater
mortality with increased levels of MMP-2 and MMP-9 [114].

Another study described higher plasma levels of MMP-9 and greater plasma activity
of MMP-9 and MMP-2 in COVID-19 patients with ARDS compared to those without
ARDS. Furthermore, increased levels of these enzymes were identified in the cerebrospinal
fluid of COVID-19 patients, being associated with the neurological complications of the
disease [116].

5.8. Platelet-Derived Growth Factor (PDGF)

PDGF is a protein responsible for regulating cell differentiation, proliferation and
chemotaxis, as well as acting in the healing and fibrosis processes [117,118]. Present
in platelet α-granules, under biological conditions this peptide is released from platelet
activation during blood clotting. However, PDGF dysregulation is associated with different
pathological contexts, such as atherosclerosis, pulmonary hypertension, diabetes and
cancer [117].

In the context of viral infections, different authors have currently associated increased
levels of PDGF with a more severe clinical condition of COVID-19 [4,39,119]. Furthermore,
significant elevation of PDGF was detected in diabetic and obese COVID-19 patients
compared to the control group [118]. In addition to the presence of this factor in tracheal
aspirates from COVID-19 patients under mechanical ventilation, it is suggested that the
secretory products of platelet activation have access to the airways in severe disease [39].

5.9. RANTES (CCL5)

Regulated on activation, normal T cell-expressed and -secreted (RANTES) is a chemokine
abundantly stored in platelet α-granules and secreted after platelet activation [120]. The
ability to induce monocyte recruitment [121] and T-cell activation and differentiation are
well-defined characteristics of RANTES [122]. However, increased production is associated
with a variety of diseases, such as asthma [123] and respiratory syncytial virus (RSV) infec-
tion [124]. Furthermore, it has been demonstrated that mutations in RANTES can attenuate
aggregation induced by this chemokine [125].

Highly expressed during the inflammatory state, different studies have described an
increased activity of CCL5 in COVID-19 patients, being mentioned as an aggravating factor
in the lung damage observed in these patients [85,126]. Furthermore, the increase in its
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production has been described as influencing the release of neutrophil extracellular traps
(NETs), which can lead to immunothrombosis [85].

Furthermore, another study carried out with ten critically ill patients with COVID-19
demonstrated that blocking its receptor (CCR5) with an antagonist resulted in the restora-
tion of lymphopenia and a reduction in inflammation and plasma viremia, suggesting
that this treatment route may be beneficial not only for its immunomodulatory effects on
inflammation but also in establishing hemostasis in these patients [127].

5.10. Glutamate

The glutaminase enzyme is responsible for converting glutamine into glutamate, an
important neurotransmitter released in large concentrations by platelet dense granules
after their activation [128,129], in which the expression of ionotropic glutamate receptors
in these cells, including N-methyl-D-aspartate (NMDA), has the function of regulating
production and inhibiting platelet activation [128].

Despite the relatively high concentrations of this neurotransmitter in the central
nervous system, studies aimed at using peripheral markers for neurological diseases
demonstrate that increased stroke plasma glutamate levels that remain elevated for up
to 2 weeks may contribute to a greater risk of thrombotic events [130,131]. Furthermore,
different authors have demonstrated the involvement of altered glutamine metabolism in
viral infections, as well as its role in viral proliferation and virus assembly [132,133].

More recently, changes in this metabolic pathway have been associated with the
appearance of adverse effects due to SARS-CoV-2 infection such as lung damage, hypoxia
and neurological impairment and, consequently, with more severe disease [134,135]. A
metabolic analysis performed in African populations identified glutamine/glutamate
metabolism as the most significant pathway associated with severe COVID-19 [134]. In
addition, the metabotropic glutamate receptor subtype 2 (mGluR2) has been indicated as a
facilitator for the internalization of SARS-CoV-2 into cells [136].

5.11. Serotonin (5-HT)

Among neurotransmitters, serotonin plays an important role in the immune system
and in the regulation of inflammatory responses [137]. In the periphery, a large part of
5-HT is stored in the platelet dense granules and is mainly involved in the mechanisms of
vasoconstriction, activation and differentiation of T-cells and platelet aggregation [138–140].

Some studies point to the involvement of serotonin and its receptors in the patho-
genesis of chronic inflammatory conditions [141] and in the induction of systemic shock
dependent on the release of 5-HT from platelets [142].

In the context of COVID-19, due to reports of neurological dysfunction in these
patients, from encephalopathy to thromboembolic diseases, elevated plasma 5-HT levels
have come to be seen as a possible indicator of disease severity [143,144], being associated
with serotonergic toxicity [145] and increased platelet degranulation during SARS-CoV-2
infection [146]. It can also directly affect the integrity of vessels and promote the recruitment
of leukocytes and the release of inflammatory cytokines [142,147].

5.12. C-Type Lectin-like Receptor 2 (CLEC-2)

CLEC-2 is an important platelet-activating receptor that is expressed on the membrane
of these cells [148–150] and plays an important role in normal hemostasis, wound healing,
maintenance of vascular integrity and platelet adhesion [151]. The soluble C-type lectin-
like receptor 2 (sCLEC-2) has been introduced due to its potential as a marker for platelet
activation and thrombotic complications [148,152–154].

Elevated plasma levels of sCLEC-2 have been reported in cases of cardiovascular
diseases [154,155], ischemic stroke [156,157], traumatic brain injury [158] and in thrombotic
microangiopathy [153,159]. In addition, CLEC-2 has been implicated as a facilitator of the
spread of HIV-1 in infected patients [13]. In the current context, elevated levels of soluble
CLEC-2 have been described in patients hospitalized with severe and critical COVID-19
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and have been noted as a useful tool in assessing disease severity [160] and for the early
diagnosis of sepsis-induced coagulopathy [148].

5.13. Microparticles (MPs)

MPs are a type of extracellular vesicles of phosphatidylserine, which is a phospholipid
that stimulates the activation of the coagulation cascade. Their formation occurs in response
to cell activation or apoptosis [161] and, although most MPs are of platelet origin, they
can also be released by leukocytes, erythrocytes, macrophages or endothelial cells, being
considered sensitive markers for vascular damage [162,163]. Evidence points to the role
of these molecules in regulating inflammation, coagulation and cell proliferation and
differentiation [164–166]. However, high levels have been associated with thrombotic
disorders and systemic inflammatory conditions [167].

MPs derived from platelets and containing tissue factor are strong procoagulants,
and due to abnormalities in coagulation markers in SARS-CoV-2 infection, detailed inves-
tigation of platelets in these patients is indicated [168–170]. One study reported higher
levels of platelet-derived microvesicles and platelet–leukocyte aggregates in the circulation
of COVID-19 ITU patients [170], in individuals with the disease associated with acute
pulmonary embolism [171] and in cases with a fatal outcome, correlating with the severity
and being indicated as a possible risk marker for the disease [172].

6. Treatment and Thromboprophylaxis in COVID-19

Hypercoagulopathy is a common and deadly consequence of SARS-CoV-2 infection in
hospitalized patients and was frequently associated with increased levels of the molecules
discussed in this review. Although there are controversies in both the prevention and treatment
of thromboinflammatory complications, some consensus statements and expert opinions are
available on the prophylaxis and clinical management of these patients [173–175].

The International Society on Thrombosis and Hemostasis (ISTH) gathered evidence in
an international panel and released recommendations on anticoagulants and antiplatelet
agents for patients with COVID-19 in different clinical conditions. The guidelines suggest
a weak recommendation for antiplatelet and anticoagulant therapy in non-hospitalized
patients and strong recommendations for the use of prophylactic doses of low-molecular-
weight heparin or unfractionated heparin (LMWH/UFH), for the preferable use of a
therapeutic dose of LMWH/UFH, to the prophylactic dose, and against the addition of
antiplatelets. For hospitalized critical patients, recommendations remain unclear [175]. In a
severe COVID-19 patient population with non-invasive respiratory support, a full-dose pro-
phylactic strategy reduced thrombotic complications without serious bleeding events [176],
while thromboprophylaxis was not beneficial in patients with mild to moderate COVID-19
without requiring hospitalization [177].

Anticoagulation in hospitalized COVID-19 patients has been associated with improved
survival; however, the ideal thrombosis prophylaxis strategy has not yet been defined [174,178].
Due to the common use of prophylactic doses of LMWH in hospitalized patients, for greater
safety, factors such as renal function and body weight must be considered and its administration
is contraindicated in individuals with a platelet count <50 × 109/L, hemoglobin < 8 g/dL,
bleeding in the last 30 days and history of bleeding disorders [177].

And although to date there is no consensus on the ideal medication, start, duration
and dosage of treatment [174,177,179], detailed study of these molecules would help in
understanding the pathophysiology of the disease and could help expand therapeutic
options. The markers discussed here suggest possible therapeutic targets for the treatment
and thromboprophylaxis of patients hospitalized with COVID-19 and perhaps for other
viral infections. However, more research is needed to clarify the scope of antithrombotic
prophylaxis and examine the potential benefits of new prophylactic and therapeutic agents.
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7. Conclusions

In the pandemic context, SARS-CoV-2 infection presented a variable clinical course of
the disease, where severe cases were frequently associated with thrombotic changes and
elevated coagulation parameters. Platelets are widely known for their role in hemostasis;
however, their role as an enhancer in viral infections is well discussed. In this review, we
highlight important platelet molecules associated with thromboinflammation and their
possible role in the risk stratification of COVID-19, contributing to the early identification
of serious disease as well as enabling drug reuse.
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