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Abstract: Investigating the behavior of cardiomyocytes is an important part of drug development. We
present a structure and a related nanoimprint-based fabrication method, where the cardiomyocytes
form isolated fibers, which is beneficial for drug testing, more closely representing the structure of
the cardiomyocytes in vivo. We found that channel structures with walls with a rough top surface
stimulate cardiomyocytes to form such fibers, as desired. Nanoimprint lithography is used as a fast
and cost-efficient method to fabricate our hierarchically structured cell growth substrates.
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1. Introduction

Advanced cell array technologies (e.g., multielectrode arrays, microelectrode arrays
(MEAs) [1] or planar patch clamp [2,3]) have emerged as novel standards for studying
in vitro cardiovascular, neurological and other diseases and for developing novel drugs to
treat them. The application of these technologies to human-stem-cell-derived tissues en-
ables drug discovery and drug safety studies on human preparations. It is well established
that cardiac and non-cardiac drugs can induce prolongation of the Q-T interval of the ECG
and cause arrhythmias [4,5]. Screening for cardiotoxic drug effects therefore became part of
the routine process in drug development and a requirement of regulatory authorities. The
estimation of pro-arrhythmic effects of drug candidates can reduce risk, time and costs for
companies. We use human-pluripotent-stem-cell-derived cardiomyocytes (hPSC-CMs) [6]
in this study. To be able to perform reliable and significant measurements, we wanted the
hPSC-CMs to form fibers that were isolated from each other on planar substrates. The
reason why we wanted to have cardiomyocyte fibers is as follows: Currently, toxicological
studies and drug screening on ionic channels of myocardial cells are commonly performed
on two-dimensional (2D) monolayer cell cultures. Cells in monolayers are, however, con-
nected stochastically, leading to random propagation of the action potentials. In contrast,
in the myocardium, excitation is propagated faster longitudinally along fiber structures
than parallel to the fiber orientation (anisotropy). The results of pharmacological studies on
monolayers with stochastically connected muscle cells (i.e., drug effects on unstructured
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2D cultures) thus cannot be simply transferred to an in vivo-like situation. An alignment
of cells in grooves additionally enables contraction measurements along the fiber axis,
which is closer to the situation in myocardial tissue. hPSC-CMs are either derived by repro-
gramming somatic human cells (hiPSCs, human induced pluripotent stem cells) or from
blastocysts (hESCs, human embryonic stem cells). Human PSCs can self-renew in vitro
while remaining genetically stable, are highly tractable using genome editing technologies
and can differentiate into all cell types of the human body, including cardiomyocytes
(hPSCs-CMs) [7–10]. Major advantages of hPSC derivatives over animal models include
their human origin (making them more representative for drug development), the virtually
unlimited supply of cells from different human genetic backgrounds and the potential to
reduce the number of laboratory animals and testing. More recently, hPSCs have been
used to push further the modeling of human heart formation via the generation of cardiac
organoids (cardioids) [6]. We use iPSC cardiomyocytes (iPSCs–CM) because they can be
differentiated into different subtypes of myocardial cells (atrial, ventricular, sinus node
cells). This would enable studies of atrial, ventricular, etc., fibers for the first time.

It is well known that not only materials, but also certain micro- and nanostructured sur-
faces, can influence the adhesion, orientation and growth of cells on surfaces (e.g., [11–14]);
in particular, structures in the same size region as the cells could cause a guidance of
the cells. It has been shown that line and space structures could assist in aligning cells
(e.g., [15]). Recently, it has also been shown for hPSC-CMs that line and space structures
are helpful for fiber formation [16]. In this work, we focus on the mastering, replication and
testing of hierarchical structures, as well as their influence on cardiomyocyte growth. Here,
the term “hierarchical” stands for larger structures with smaller structures superimposed,
for example structures of several micrometers in dimension with sub-µm structures on top,
like, e.g., in references [17–20]. We present a micro- and nanostructured substrate fabricated
using nanoimprinting, where the CMs form isolated fibers. None of the marketed screening
technologies on myocardial cells currently account, however, for such “tissue-like” struc-
tures. The development of this fiber chip technology is expected to substantially improve
drug safety and drug discovery investigations.

Our fabrication method is based on nanoimprint lithography (NIL) (e.g., [21–25]),
since it is a scalable, mass-fabrication-suited method for the cost-efficient replication of
micro- and nanostructures. NIL has been shown to be able to provide complex micro- and
nanotopographies in a single processing step (e.g., [26–29]), as well as the direct structuring
of biocompatible materials (e.g., [30–34]). For nanoimprinting, a master structure is always
necessary, and from which a stamp is typically replicated, which contains the negative
features of the original master structure. When using this stamp in a nanoimprint process,
micro/nanotopography is created which replicates the structures of the original master
with the same polarity.

In vitro testing to reduce the amount of animal testing is one of the motivations for
our work. Cell cultures are already an important part in the drug discovery and drug
development process. Providing better substrates for cell growth, and allowing the in vitro
tests to be closer to the real tissue, will improve the quality of the test outcomes and
will reduce the need for animal testing, paving the way for improved sustainability in
this process.

Furthermore, as will be discussed below, we think that nanoimprinting will provide a
good and sustainable method for manufacturing cell growth substrates.

2. Materials and Methods
2.1. Structure Design

The goal of the work presented here is to provide a substrate that can on the one
hand be fabricated in a cost-efficient way and on the other hand promote the formation
of cardiomyocyte fibers. It seems likely that a surface structure with channels should be
beneficial for this purpose. We chose channel dimensions in the range of what could be
expected for cardiomyocyte fibers. To enhance the difference between different regions in
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the pattern, we included roughness in our design. It could be expected that this should
have increased the probability of the individual fibers forming with only a certain distance
between each other.

2.2. Nanoimprint Master Fabrication

The master structure for our work was prepared in silicon via photolithography and
reactive ion etching. First, photolithography was carried out to pattern the substrate with
various line and space structures with periods ranging from 20 µm to 60 µm, using contact
exposure with a Cr-hard mask on a Suess MJB3 with AZ 5214 E (MicroChemicals GmbH,
Ulm, Germany) as the photoresist. The silicon substrate was coated with 10 nm Cr and
240 nm Au via sputter deposition (Von Ardenne, Dresden, Germany LS 320 S, Cr: 100 W,
30 s, Au: 25 W, 350 s). The line and space patterns were transferred to the substrate via a lift-off
step. The reactive ion etching process (Oxford Instruments, Abingdon, UK—PlasmaLab 100,
Step 1: 90 min, 30 W, 1.31 × 10−2 mbar, SF6 20 sccm, Ar 5 sccm, O2 5 sccm, Step 2: 2 min,
30 W, 0.12 mbar, SF6 20 sccm, Ar 5 sccm) was tuned to achieve a rough bottom of the
channels produced in silicon. A hard mask structure of 250 nm Au on 10 nm Cr should
have and did protect the underlying Si from reactive ion etching. The roughness of the
bottom areas was achieved due to anisotropically etched surfaces analogous to black silicon.
This roughness is the result of sub-micron features acting as a micro-mask for highly
anisotropic etching. The origin of this micro-masking is still under debate [35] and may be
(i) fluorocarbon-related debris originating from the fluorine etch gas [36,37], (ii) oxygen-
related sources [38] such as silicon oxide formed in situ during etching or (iii) surface
contaminations either from photoresist residues or from sputtered and redeposited hard
mask material [39]. We speculate that redeposited gold from the hard mask may be the
main cause of micro-masking. The ion milling component of the RIE process physically
erodes not only the silicon but also the gold hard mask material. During RIE, the physical
ion milling is well known to lead to the erosion of atoms from the material, but also the
redeposition of sputtered atoms [40]. The sputter-eroded gold may redeposit on the sample
again, as described in [41,42]: forward scattering from the sidewalls of the gold hard mask
may redeposit in etch trenches and backscattering of the sputtered gold via collision with
gas atoms in the plasma will redeposit small amounts of gold on more remote sample
surfaces. The material redeposition during ion milling has been extensively studied and
simulated [43], especially for focused ion beam milling [44] and for RIE [45]. To conclude,
it is plausible that redeposited gold forms a nanoisland film [46] that acts as a micromask
during anisotropic deep trench etching. Such gold nanoislands would mask the silicon
beneath, so that the Au micromask generates the high roughness of the silicon surface. The
fact that small pillars of Si also protrude from the sidewall of the trenches gives rise to our
proposition that micromasking by redeposited gold eroded from the gold hard mask causes
the high roughness of the silicon surface, as reported in [47]. For cell culture substrates,
these corrugated trench floors proved to be ideal in preventing cell adhesion on the chip
surface. The roughness on the bottom of the structures can clearly be seen in Figure 1,
which shows SEM micrographs of different master structures produced using this process.

2.3. Nanoimprinting
2.3.1. Basics

From the master described above, stamps were replicated. For all of our samples,
OrmoComp® (micro resist technology, Berlin, Germany [48]) was used as the nanoim-
print material. It has excellent nanoimprint and optical properties and is known to be
biocompatible (e.g., [13,14,30,49]), which was also verified in our experiments. We used
different types of substrates, like PVC foils and glass, both in processes with and without
a residual layer (see Section 3.1 below). Imprinting was performed at room temperature
in a manual plate-to-plate manner as well as using the roll-to-plate (R2P) NIL tool from
Stensborg A/S [50] (see Appendix A).
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2.3.2. Stamps

For our nanoimprint processes, different kinds of stamps were used. For standard
plate-to-plate nanoimprinting PDMS (poly dimethyl siloxane), stamps were used. In any
stamp fabrication process, the polarity of the master is initially reversed. A first PDMS copy
is produced by casting Sylgard 184 (1:10 mixing ratio) and curing it for 24 h at 40 ◦C, and
from this copy another PDMS copy (again Sylgard 184) is created according to [51]. Both
stamps were used for further nanoimprinting, resulting in samples where the roughness
was either on the bottom of the trenches (first-copy stamp, imprint with the same polarity
as the master) or on the top of the walls (second-copy stamp). Photographs of the master
and first- and second-generation stamps can be found in Figure 2 below.
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For roll-to-plate imprinting, an array of imprints is created first on a glass wafer
(see Appendix A, Figure A2) using the first-copy stamp. The imprint material was OrmoComp®,
which was manually dispensed using a Nordson Performus V dispenser (0.016′′ cone,
0.74 bar, 0.2 s). From this intermediate large-area master, a PDMS stamp was fabricated after
applying a BGL-GZ-83 anti-adhesion layer [52,53]. This large-area PDMS stamp containing
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24 imprint fields was then used to create a printing plate for the R2P nanoimprinting
process. Here, a 150 µm thick PVC foil was used as a backplane and OrmoClear®30 (micro
resist technology GmbH) was used as the imprinting material. The OrmoClear®30 was
manually dispensed (Nordson Performus V, 0.016′′ cone, 2 bar, 2 s, 3 droplets per imprinting
site) on each imprint site, and UV-curing was conducted at 385 nm. The PVC backplane was
activated using O2 Plasma before the imprinting. The printing plate can be seen mounted
in the R2P NIL tool in Figure A1 in Appendix A.

2.3.3. Imprinting Process, and Roughness on the Top or on the Bottom

Initially, while developing the nanoimprint process and also for the first experiments
with cells, the samples were all fabricated using manual nanoimprinting with a single
imprinted area (as compared with the 24 patterned areas in the R2P tool). A circular shape
to fit into a 24-well plate was chosen as the substrate shape. Figure 3 shows a photograph of
such a well plate where, in the two upper rows, nanoimprinted samples have been inserted.
This concept provided the flexibility to quickly change the patterns and substrate material.
As substrate materials, glass and PVC were used. Glass substrates (microscope cover glasses
with a diameter of 15 mm, VWR, Vienna, Austria [54]) were cleaned with de-ionized water
and acetone and oxygen plasma (Diener Plasma GmbH & Co. KG, Ebhausen, Germany
nano [55]) before being coated with an adhesion promoter (HMNP-12, PROFACTOR GmbH,
Steyr-Gleink, Austria [56]). OrmoComp® was manually dispensed onto the substrate and
the PDMS stamp was also manually placed, taking care to avoid air bubble entrapment. For
this process, no pressure in addition to that exerted by the capillary forces and gravity was
applied. Curing was performed at 365 nm using a self-built UV-LED source. The whole
process took place at room temperature. The separation of stamp and imprint was also
conducted manually in a peeling-like motion. Both types of stamps were used in this way,
resulting in samples with either the roughness on top or in the bottom of the channels. An
optical micrograph of a sample with the roughness on the top of the channel walls can be
seen in Figure 4a.
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Figure 3. Photograph of a 24-well plate, with the top 2 rows fitted with nanoimprinted substrates.

2.3.4. Roll-to-Plate Nanoimprinting

For the roll-to-plate nanoimprinting experiments, we used the STENSBORG Desktop
R2P NanoImprinter [57] (Appendix A, Figure A1). It has an ideal size for well-plate-sized
substrates. The maximum printing area in the tool is 100 × 150 mm2, while a well plate is
85 × 128 mm2 in size. The printing plate, as described above, is fixed on the roller using
adhesive tape. The same PVC foils as for the manual imprints are used as substrates. In
the roll-to-plate nanoimprinting process, UV-curing is conducted at room temperature in
the nip, i.e., at the contact line, where the cylindrical roller and the substrate touch. The
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UV-LED wavelength is 395 nm. In the R2P tool, the imprinting force was adjusted in such
a way that the roughness was faithfully replicated. Additional information on the R2P
imprinting can be found in Appendix A.
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2.4. Cells

The hPSCs cardiomyocytes were grown in a 3D organotypic structure, promoting
more mature ion channel expression and morphological features [58]. To take advantage of
these properties, cardiomyocytes were first grown in a 3D cardioid system according to the
protocol in [6]. The cells were then dissociated from the organoids after day 10 using the CM
dissociation kit (STEMCELL Technologies, Vancouver, Canada, #05025) for 7–10 min and
centrifuging for 3 min at 130 g, and the cardiomyocytes were resuspended in CDM-I [6] with
5% FBS (PAA Laboratories, Cölbe, Germany, #A15-108) and 5 micromolar ROCK inhibitor.
Cardiomyocytes were seeded at a density of 150,000 cells per surface inside a 24-well plate;
after adding the cell suspension, the plate was shaken in orthogonal directions to ensure an
even cell spread across the surface. On the subsequent day and every other day after, the
cells were fed with CDM-I. Before seeding, substrates were sterilized with a 25 kGy dose of
gamma irradiation, coated with laminin-511, 0.5 mg/cm2 diluted in DPBS, and incubated
for 1 h at 37 ◦C. Alternatively, cells from a commercial supplier (ICell, Fujifile Cellular
Dynamics, Madison, WI, USA [59]) were used which resulted in similar fiber formation in
the grooves.

3. Results
3.1. Different Sample Geometries
3.1.1. Open and Closed Channels

It is interesting to investigate the behavior of the cells in channels which are closed
at one or both ends, and also with different lengths. In the master structure, the channels
are closed on both ends (if imprinted in such a way that the roughness is on the top of the
walls between the channels). However, the length is fixed to 18 mm. To achieve different
channel lengths quickly without the need to make a new master structure each time, we
investigated a process which should achieve this with two subsequent imprinting steps.
The first imprinting step was a conventional imprint as described above, with a residual
layer and made from OrmoComp®. The amount of material and the placement of the
PDMS stamp were chosen is such a way as to achieve channels that were closed on one
end (Figure 4a) and open on the other end (Figure 4b). For the second imprint, a dedicated
PDMS stamp was cut from a larger PDMS stamp, where only the rough and flat area next
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to the channels was used. Dispensing the OrmoComp® next to the open end of the channel
and placing the stamp on top of the end of the first imprint, the imprint material fills part
of the existing channels and closes them off, thus creating a channel with a length which
can be defined by the placement of the two imprints (see Figure 5). From such a sample,
another stamp was replicated to be able to replicate closed channels in a single imprinting
step. The end of the channels is then rounded due to the shape of the meniscus of the
OrmoComp® when it enters the microchannel, which can also be observed in Figure 6.
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3.1.2. Residual-Layer-Free Samples

To be able to provide more flexibility in sample design, a residual-layer-free nanoim-
printing process was also developed. This should provide samples where the bottom of the
channels, i.e. the location, where the cells should be located, will be made from a different
material then the channel walls. This process was only established for the structures, where
the roughness was on top of the channel walls, since, as discussed below, this structure
provided us with the desired cell growth results, with the cells in the bottom of the channels.
We used a micromolding in capillaries process (MIMIC) [60]. The stamp was carefully
placed on the substrate. Care was taken to make sure that perfect contact between the stamp
and the substrate was achieved, which was ensured via careful observation of the contact-
ing area. Air-gaps between stamp and substrate could be identified via visual inspection.
OrmoComp® as an imprinting material was placed with a droplet dispenser at the open
side of the channels and capillary forces led to the filling of the channels of the stamp, which
form the walls between the channels of the final imprint. The sample shown in Figure 6
was prepared on a silicon wafer without any pretreatment of the substrate. Curing was
performed as described above. Other residual-layer-free samples were prepared on PVC
(with oxygen plasma pretreatment) and on glass (also with oxygen plasma pretreatment).

We used atomic force microscopy (Dimension Edge, Bruker Corporation, Billerica,
MA, USA) to assess the roughness on the samples (see Figure 7). An evaluation of the
images was performed using Gwyddion [61]. The RMS roughness was evaluated and a
value of 174.75 nm ± 5.8 nm was obtained.
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3.2. Cell Growth

Cell seeding showed that when the rough pattern was on top of the substrate channel,
the cells would adhere almost exclusively to the bottom of the channel barriers. Further-
more, the cardiomyocytes would form long fibers (in the mm range). The formation of
the fibers inside the channels is beneficial, since the channel walls provide mechanical
guidance and hold the fibers in place when they beat spontaneously. Figure 8 shows the
cardiomyocyte fibers forming on top of the channel walls, when the bottom of the channels
is rough. Figure 9 shows images of a sample with the roughness on the top of the channel
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walls. It can be seen that the cells form fibers inside the channels. The cells were stained
with troponin T to show cardiomyocyte identity and DAPI (4′,6-diamidino-2-phenylindole)
to show the number of cells in each fiber.
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Figure 9. Sample with the roughness on the top of the channel walls. The cells tend to grow inside
the channels between the walls. (a): Optical micrograph with some of the wall and channel areas
highlighted. (b): Optical micrograph with troponin (red) marking cardiomyocytes and DAPI (gray)
marking cell nuclei used for staining. The scale bar is 100 µm for both images.
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Looking at the larger picture and comparing the channel area with the line and space
pattern with adjacent areas which are either completely rough (with the same roughness as
the top of the channel walls) or completely flat (like the bottom of the channels), it can be
observed in Figure 10 that the cells also stay in the rough regions, although with a lower
density as compared with the flat region. Figure 10c shows the results of an evaluation of
how many cells end up in the grooves and how many end up on top of the walls. It can be
seen that approx. 88.6% of the cells are in the channels. Appendix B provides additional
data on cell growth without the channels. Appendix C provides additional information on
measurements with the cells.
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Figure 10. (a): Overview of optical micrograph showing a small spot of patterned OrmoComp®.
Different types of surface are present: the line/space area with the channels for fiber formation, a
larger area with just the roughness and a smaller area of just flat OrmoComp®. (b): Cells marked
with pan-cardiomyocyte marker (troponin T) seeded on the surface are shown on the left. It can be
seen that the fibers are only formed in the channel area. In the channel area, the roughness repels the
cells and they only grow in the flat areas; roughness on a larger area does not repel the cells. (c): Cell
attachment in the grooves. For the pattern shown in this paper, approximately 88.6% ± 4.5% of all
cells attach to the bottom of the grooves, i.e., stay in the channels. Symbols represent data from the
same surface. N = 3 (biological replicate cells from the same batch of cardioids) and n = 5 (number of
surfaces that were quantified). Paired t-test was performed; **** p < 0.0001.

4. Discussion
4.1. Nanoimprinting

We found that choosing nanoimprinting as a fabrication method provided us with
the necessary flexibility to prepare different sample layouts from a single master structure.
While, generally, nanoimprinting is considered to be a technology that can replicate a given
(even very complex) micro/nanopattern with high accuracy, we used a single master design
to prepare several different kinds of samples, i.e., roughness on the top or on the bottom,
with/without a residual layer, open or closed channels and on different substrates, and
keeping the basic micro/nanostructure dimensions constant. In the R2&D setting of our
project, this proved to be very helpful and provided us with additional flexibility to quickly
provide new sample layouts, while keeping some basic structure parameters constant.

Furthermore, compared to the multistep capillary force lithography described in [62],
NIL offers a cost-effective (fast, flexible, high quality) way to fabricate such samples with a
process suited to industrial applications [63–70].

4.2. Cell Growth

Looking at the fiber formation in the areas with the channels, it seems that the distance
between the two adjacent channels (which is in the range of 10 µm + 30 µm) is small enough
to allow the cells to move into the channels, whereas for larger distances the cells cannot
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move to the areas which are more favorable for them. Interestingly, it can be noted that the
cardiomyocytes only form fibers in the channel regions, and in the other areas, the cells are
randomly oriented. In these areas, the difference in cell density is slight between the rough
large-area region and flat large-area region, while in the channel regions, the roughness
induces the cells to move away into the flat area; this does not work that well in the rough
large-area regions.

The reason why the rough surface structures on the walls separating the grooves
reduce the adhesion of iPSCs-CM is currently not completely clear. In general, an increased
surface area might be expected to increase cell adhesion rather than lead to the observed
reduction in adhesion. It is, however, tempting to speculate that we deal with a similar
effect of rough microstructures, as previously observed for a laser-patterned surface where
the density of murine fibroblasts was significantly lower compared to flat surfaces. It
was proposed [71,72] that spike-like microstructures form a cell-repellent surface, with the
increased hydrophilicity of the surface playing a major role.

To our knowledge, the discovery related to the geometry shown here that rough
structures on top of wall structures prevent the adhesion of myocardial cells is new.

Compared to previous attempts to develop nanopatterned surfaces for the culture of iP-
SCs with much smaller groove diameters (800 nm× 800 nm× 600 nm, groove width × ridge
width × ridge height, see [62]), in the present study, we focused on grooves with a width
between 10 and 30 µm.

5. Conclusions

We successfully fabricated substrates for the growth of cardiomyocyte fibers with
hierarchical micro/nanostructures using UV-based nanoimprint lithography. This method
allowed us to be flexible in terms of substrate design and layout, while at the same time
they were mass-fabrication-compatible. The nanoimprint material OrmoComp® proved
to be suitable for our purposes and allowed for the growth of cardiomyocytes and fiber
formation as desired. Manual imprinting as well as roll-to-plate nanoimprinting were used
to prepare the substrates. Nanoimprinting has been found to be a well-suited method for
research, with the potential to directly upscale the number of samples for testing, which is
especially relevant for life science applications like those presented here.

First, encouraging cell growth experiments indicate that cardiomyocytes are evenly
distributed across the substrate and preferentially attach themselves to the smooth grooves
of the substrate, while not attaching to the rough tops of the walls of the imprinted channels.
Detailed investigations regarding cell growth on different types of substrates that were
prepared in this study are ongoing. The presented design is a simple and effective approach
to induce fiber growth that can be produced by NIL in large quantities for cell culture
disposables. Combined with surface electrodes (MEAs), such a geometry will enable the
analysis of excitation propagation along individual myocardial fibers.
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Appendix A. Roll-to-Plate Nanoimprinting

Roll-to-plate nanoimprinting is an interesting variant of UV-NIL. It provides interest-
ing demolding geometry of roller-based processes combined with the flexibility to use foil
as well as rigid substrates, in our case, non-transparent substrates if necessary. We used the
HoloPrint® uniA6 DT from Stensborg A/S, which is the predecessor of the Desktop R2P
NanoImprinter. The HoloPrint® uniA6 DT provides a maximum of 1 Watt/cm (linear LED
array) which gives 100 mJ/cm2 at 6 m/min. When using the full width of the machine, the
maximum imprinting pressure is around 111 N/cm2, with the minimum at 12 N/cm2.
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For the samples in this work, we used a speed setting of ~3 m/min; a UV setting
of 2 was used, which corresponds to a curing dose of 80 mJ/cm2. The settings were not
optimized for throughput. In the Desktop R2P NanoImprinter, the maximum UV dose is
220 mJ/cm2 at 5 m/min, which is the maximum replication speed. An explanation of how
the printing with the Stensborg Desktop R2P NanoImprinter works can be found in [73].

Appendix B. Cell Growth on Substrates without Micro-Channels

If there are no channels present, there seems to be a slight tendency of the cells to be in
the flat area as compared to the rough area. Both surfaces were OrmoComp®, imprinted on
the same substrate. The measurements for the data in Figure A3 were taken using samples
like those shown in Figure 10.
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Appendix C. Measurements on Single Cardiomyocytes

The data shown before were obtained at IMBA with cardiomyocytes derived from
cardioids, as explained above. At ChanPharm, iPSC-CMs were investigated using standard
path clamp technology. Two different sources of induced-pluripotent-stem-cell-derived
cardiomyocytes (iPSC-CMs) were tested at ChanPharm for fiber formation:

iCell cardiomyocytes from FUJIFILM Cellular Dynamics, Inc. Madison, Wisconsin,
USA [59], that had been previously characterized and that were commercially available.

iPSC-CMs derived from ventricular and atrial cardiac organoids, developed by the
member of the consortium IMBA (group of Sasha Mendjan, IMBA).

Before using iPSC-CMs, some basic parameters needed to be established, such as max-
imum diastolic potential, amplitude of the action potential (AP), upstroke velocity and the
length of the action potentials at 90% repolarization (APD90), and beating frequency (BF).

In order to establish these parameters, ChanPharm dissociated the cardioids obtained
from the consortium member (IMBA) into single cells that were subsequently characterized
by means of standard patch clamp technology. The dissociation procedure is described
in [74]. ChanPharm developed and refined a software package for the automatic analysis
of the above-mentioned action potential parameters.
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Patch Clamp Recordings of Single Cardiomyocytes

The details of the patch clamp recordings can be found in [74]. Spontaneous electrical
activity was recorded in the current clamp mode. Analyses were performed using MATLAB
(MathWorks, version 2020a). Action potential amplitudes were measured from peak to
maximum diastolic potential, and APD values were calculated from action potential peak to
the respective percentage of the amplitude’s repolarization. Parameters were individually
calculated for 15 to 20 consecutive action potentials per cell and then averaged.

Measuring the spontaneous electrical activity of these cells revealed an adequate but
immature phenotype indicated by the low upstroke velocity. AP amplitudes and maximum
diastolic potentials showed low variability, hinting at high homogeneity and efficient
differentiation of the underlying cell population. The durations of action potentials were
longer than in adult human cardiomyocytes (200–450 ms), a feature which is common
among many hiPSC-derived cardiomyocyte systems [75–77].

Taken together, this initial electrophysiological characterization of cardioids further
reinforces their strength to be used in a suitable in vitro system of the developing human
heart and justifies the use of such cells for our experiments.
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