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Abstract: Engineered nanoparticles (NPs) have the potential to revolutionize disease diagnostics and
treatment. However, NP interactions with proteins in biological fluids complicate their in vivo control.
These interactions often lead to the formation of protein coronas around the NP surface, shaping
NP fate and behavior within biological systems. To harness the full potential of NPs in biomedical
applications, it is therefore essential to gain a comprehensive understanding of their interactions with
proteins. Within this context, it must be recognized that traditional equilibrium-based descriptions of
NP–protein interactions, which encompass parameters like equilibrium binding affinity and corona
composition, do not provide sufficient detail to predict NP behavior in vivo. This limitation arises
because the open in vivo system is a nonequilibrium state characterized by constantly changing
concentrations and dynamic regulation of biological processes. In light of these considerations, this
review explores the kinetics and timescales of NP–protein interactions, discussing their relevance,
fundamental concepts, measurement techniques, typical ranges of association and dissociation rate
constants, and dynamics of protein corona formation and dissociation. The review concludes by
outlining potential areas for further research and development in this field.

Keywords: nanoparticles; nanoparticle–protein interactions; protein corona; binding affinity; kinetics;
surface plasmon resonance

1. Introduction

Engineered nanoparticles (NPs) offer unique capabilities for diagnosing and treating
human diseases [1]. In drug delivery applications, NPs can be designed to carry therapeutic
drug formulations through the bloodstream and deliver them to specific tissues and cells,
thus optimizing therapeutic efficacy while minimizing off-target toxicity [2,3]. However,
despite significant efforts to date, precise control over the in vivo behaviors of NPs remains
a challenging task. Upon exposure to a biological fluid, NPs readily interact with proteins
and other biomolecules present in the medium [4–7]. For some NP types, these interactions
result in the formation of a stable, adsorbed protein corona on the NP surface, while for
other NPs, only a transient corona might form. Regardless, NP–protein interactions remain
crucial in determining NP fate and behavior in the complex biological environment [8–13].

There are a myriad of interdependent factors that govern NP–protein interactions
and corona formation, including the identity of the interacting proteins, their affinity for
the NP surface, the kinetics of binding and unbinding, and the protein conformational
changes, among others. In response to this challenge, ongoing research in the field aims to
elucidate the underlying mechanisms of NP–protein interactions with the ultimate goal of
manipulating these interactions to achieve desired bioresponses [7,14–17].

It must be realized that a static or equilibrium-based description of NP–protein in-
teractions, which focuses on parameters such as equilibrium binding affinity (KD) and
corona composition, is insufficient to understand NP biobehavior in vivo. This is because
the open in vivo system is a nonequilibrium state, where concentrations are in constant
change and biological processes are dynamically regulated [16,18,19]. To illustrate, the
rate constants governing binding and unbinding between proteins and NPs, along with
the concentrations involved, exert a direct influence on the rate of protein adsorption and
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corona formation. Simultaneously, the rate constant of complex dissociation dictates the
residence time of the bound protein on the NP surface. In this way, it becomes essential to
consider the timeframes of both binding and unbinding events in relation to the timescales
of relevant biological processes in order to gain a comprehensive understanding of how
NPs impact biological function (Figure 1) [6,16,20–23].
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Figure 1. The significance of kinetics and timescales in bio–nano interactions.

This review is centered on the kinetics and timescales of bio–nano interactions. Specif-
ically, we illustrate some relevant timescales in biology and nanomedicine (Section 2),
provide a concise overview of the fundamentals of binding kinetics (Section 3), briefly
describe a few measurement techniques (Section 4), discuss the kinetics of NP–protein
interactions and the dynamics of protein corona formation (Sections 5–7), and conclude by
providing a brief overview of potential areas requiring further development and exploration
(Section 8).

2. Kinetics and Timescales in Biology

Biological processes are regulated by a complex network of interactions in both time
and space. To illustrate the temporal aspects of biological regulation, Table 1 presents a
selection of characteristic timescales observed in various biological contexts [18,24–30].

Table 1. Selection of characteristic timescales observed in various biological contexts.

Event Timescale Comment Ref.

Protein diffusion 1–10 s Protein diffusion across a 10 µm diameter cell [18]
Cell movement 1 µm/min HeLa cells [18]
Cell cycle 1 day HeLa cells [18]

Protein folding 1 ms to 1 min Most proteins fold on timescales of the order
of milliseconds [18,29]

Natural antibody-antigen residence
time (RT) 1 h Longer RTs do not provide selective

advantage [24]

Clathrin-mediated endocytosis 1 min HeLa cells [18]
Cellular uptake and lysosomal
degradation of LDL particles 60 min Fibroblasts [30]

LDL receptor recycling 10 min Time between LDLR internalization and
recycling to the plasma membrane [30]

Turnover of plasma membrane 0.5 h to 2 h Time it takes for cells to endocytose the area
equivalent of their entire plasma membrane [26]

Plasma halflives (t1/2) of large
proteins (MW > 60 kDa) Several hours to days

HSA and IgGs have exceptionally long t1/2;
in humans, HSA has a t1/2 of 19 days and
IgGs of 1–4 weeks

[25,27]
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Table 1. Cont.

Event Timescale Comment Ref.

Plasma halflives of small proteins
(MW < 60 kDa), e.g., growth factors A few minutes to a few hours Clearance through degradation and

renal filtration [25,27]

Residence time for
drug–receptor binding 0.2 min to 35 h Residence times for selected therapeutically

relevant drugs bound to their GPCR targets [28]

Plasma halflives of therapeutic drugs
and protein biologics A few minutes to a few hours Clearance through renal filtration,

degradation, and hepatic elimination [25]

Before proceeding, it is instructive to address the concept of drug–receptor binding
kinetics within the field of pharmacology, as it highlights the significant role of timescales
in practical scenarios. Namely, the timescales associated with drug–receptor binding and
unbinding have emerged as valuable predictors of in vivo drug efficacy, sometimes sur-
passing traditional equilibrium potency measures like binding affinity and half-maximal
inhibitory concentration (IC50) [19,31,32]. Specifically, drugs exhibiting prolonged drug
target residence times can elicit durable therapeutic effects, even when most of the drug
has been eliminated from the body. Drug rebinding to its cognate receptor presents an
additional mechanism that enhances the duration of target occupancy, consequently pro-
longing the clinical action of the drug [33,34]. On the other hand, when the plasma drug
halflife exceeds the drug target residence time, target occupancy is primarily governed
by simple mass balance effects [35]. The significance of the drug target residence time
concept extends to drug toxicity. On one hand, a prolonged residence time enables the
optimization of dosing schedules to minimize off-target toxicities. However, too long a
drug target residence time could lead to on-target toxicity, making a shorter residence time
desirable in such scenarios [19].

To conclude, research has shown that integrating drug–target binding and unbind-
ing kinetics, alongside consideration of established pharmacokinetic parameters such as
drug distribution, metabolism, and elimination, is paramount for optimizing the clinical
effectiveness of therapeutic drugs within the dynamic in vivo system [19,31–34,36,37].

3. Fundamentals of Binding Kinetics

Here, we provide a brief overview of the kinetics of protein–protein interactions,
which serves as a foundation to describe NP–protein interactions (Sections 5–7). We begin
by introducing the simplest model of a single-step binding reaction (Figure 2A) involving
receptor (R) and ligand (L) proteins:

R + L
kon


koff

RL (1)

where kon (units of M−1s−1) and koff (units of s−1) represent the association and dissociation
rate constants of the forward and reverse reactions, respectively, and KD = koff/kon is the
equilibrium binding affinity.

The rate of the forward reaction, kon, is constrained by diffusion and has an upper
limit of approximately 109 M−1s−1, which is known as the Smoluchowski limit [38,39].
However, proteins impose strict geometric constraints in forming the correct binding
interface, resulting in a maximum kon of around 105–106 M−1s−1, which is defined as the
basal rate of association [39,40]. It is worth noting that additional processes, like favorable
electrostatic interactions and desolvation of hydrophobic patches, can enhance the rate of
association beyond the basal level, leading to kon values exceeding 106 M−1s−1 [41]. On the
other hand, desolvation of polar/charged residues and conformational changes decrease
the kon relative to the basal level, resulting in kon values lower than 105–106 M−1s−1 [39–41].
With regards to the unbinding rate, koff, it defines the residence time (tr) of the RL complex,
where tr = 1/koff. The magnitude of the koff is controlled by short-range interactions at
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the binding interface, including hydrogen bonds, salt bridges, van der Waals forces, and
hydrophobic interactions.
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Figure 2. Free energy profiles characteristic of (A) one-step and (B) two-step binding reactions
between receptor (R) and ligand (L) proteins. The free energy of binding is indicated by ∆GD. See
text for additional details.

Under pseudo first-order conditions (i.e., [L] >> [R]), formation of the RL complex
from the isolated components proceeds with an observed rate constant, kobs, as such:

kobs = kon[L] + koff (2)

The resulting observed association halftime, tobs, is expressed as tobs = ln 2/kobs. Thus,
the speed of a binding reaction can be influenced by either kon, koff, or both, dependent
upon the concentration of the ligand and the magnitude of the kinetic parameters. Three
cases can be considered [42]: (i) for high-affinity interactions where [L] > KD, the reaction
rate, kobs, predominantly relies on the product, kon[L]; (ii) for weak interactions where
[L] < KD, the reaction rate is primarily dictated by koff; and (iii) when [L] ~ KD, then both
kon[L] and koff contribute to kobs.

For more comprehensive insight into the kinetics of protein interactions, it is useful
to consider the presence of an intermediate state within the reaction pathway (Figure 2B).
This intermediate state, referred to as the encounter complex (EC), remains predominantly
solvated and retains nearly native separations and orientations. Subsequent steps of
desolvation and conformational changes within the EC lead to the formation of the final
bound state [39–41]. These events can be represented as follows:

R + L
k1


k−1

RL∗ k2


k−2

RL (3)

where RL* represents the EC, k1 is the diffusion-controlled rate of formation of the EC, k−1
is the rate of dissociation of the EC, k2 is the rate of conversion of the EC into the final
bound state, and k−2 is the rate of dissociation of the bound state back to the EC. Values
of k1 can theoretically span the range from ~105 M−1s−1 (the second-order basal rate of
association, as defined above) to 109 M−1s−1 (the Smoluchowski rate constant).

For the two-step binding reaction described above (Equation (3)), the observed rate
constant of complex formation is given by the following:

kobs =
k2[L]

K1 + [L]
+ k−2 (4)
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where K1 = k−1/k1 is the binding affinity of the EC. A plot of kobs vs. [L] thereby produces a
hyperbolic curve from which the binding parameters can be extracted through fitting [43,44].

Under steady-state conditions, the overall rate constants of association and dissociation
of the two-step binding reaction are governed by the kinetics of each discrete reaction step,
as follows:

kon =
k1k2

k−1 + k2
(5)

koff =
k−1k−2

k−1 + k2
(6)

These equations delineate two limiting regimes [39,40]. For a diffusion-controlled
reaction, the conformational rearrangement is fast relative to dissociation of the EC, that is,
k2 >> k−1. Hence, kon can be approximated as kon ≈ k1, while koff ≈ k−1k−2/k2. On the other
hand, when complex formation is reaction-limited, the intermediate step of conformational
changes proceeds slowly, that is, k2 << k−1, and the approximations kon ≈ k2k1/k−1 = k2/K1
and koff ≈ k−2 apply. Furthermore, the expression for KD is given by the following:

KD =
k−1k−2

k1k2
= K1K2 (7)

For reaction-limited association, it becomes apparent that the overall KD equals the
affinity of the encounter complex, K1, multiplied by the factor K2 (K2 < 1) accounting for
the subsequent tightening steps of desolvation and conformational changes.

4. Measurement Techniques

This section provides a succinct overview of the primary experimental techniques
used to evaluate binding kinetics. These include the manual mixing technique and stopped-
flow spectroscopy as solution-based methods, as well as surface plasmon resonance (SPR)
spectroscopy as a surface-based technique. For further in-depth information on these
techniques (including data collection, modeling, and interpretation), readers are directed to
specialized texts [44–46].

It should be acknowledged that there are additional methods that can provide highly
specialized and valuable insights into interaction kinetics and the dynamics of protein
corona formation. In particular, single-molecule-based methods can offer a detailed mech-
anistic understanding of protein–surface interactions, although their application in the
study of NP–protein interactions is still emerging [47–49]. In addition, the application
of super-resolution microscopy and single-molecule imaging enables the exploration of
protein corona formation and evolution on a particle-by-particle basis [50,51]. This ap-
proach offers a unique opportunity to visualize and understand the issue of heterogeneity
in protein adsorption. In future, widespread application of these advanced methods is
expected to provide novel insights into NP–protein interactions, hence complementing the
more conventional ensemble-based approaches.

4.1. Solution-Based Techniques

The simplest solution-based approach to study NP–protein interaction kinetics is
the manual mixing technique. This method is especially well-suited for studying slow
reactions with time constants ranging from several minutes to several hours. Interactions
can be monitored in real-time by following changes in optical signals, such as fluorescence
emission. Alternatively, the bound or unbound protein mass can be directly quantified
using calorimetric assays at specific time points, typically following centrifugation to
separate unbound proteins from NP–protein complexes. The manual mixing technique
can be used to measure the kinetics of protein corona formation when it occurs slowly
under given experimental conditions [52,53]. In general, however, this method has limited
applicability in measuring NP–protein association kinetics due to the rapid nature of
protein adsorption and corona formation. On the other hand, the manual mixing technique
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can be highly effective for examining protein dissociation from NP surfaces [54], which in
the case of strong interactions, can last for several hours or even days. The dissociation
reaction can be induced by either dispersing NP–protein complexes in a protein-free buffer
solution or through competitive displacement of adsorbed labeled proteins via excess
unlabeled proteins in a solution. It is important to recognize that these different methods
may yield varying conclusions regarding the dissociation kinetics [55]. At any rate, the
obtained signal change over time is typically analyzed by fitting an exponential function to
extract the first-order dissociation rate constant, koff. Of note, modeling the dissociation
reaction may require a combination of exponential functions for a satisfactory data fit. In
such cases, it may or may not be possible to mechanistically assign each determined koff
value to a specific NP–protein binding configuration or other underlying phenomena.

Fast interactions occurring within seconds or even milliseconds can be analyzed using
mechanical mixing coupled with real-time optical detection. This can be readily accomplished
using commercially available stopped-flow spectroscopy systems, capable of achieving dead
times of a few milliseconds or less in conjunction with a time resolution on the order of
approximately 1 millisecond. Fluorescence stopped-flow spectroscopy is ideal for evaluating
fast NP–protein dissociation kinetics in the case of low-stability complexes, such as those
formed with ultrasmall NPs (Section 6). Furthermore, the stopped-flow approach could
prove valuable in assessing the short residence times of soft corona proteins on the surface of
NPs, although to the best of our knowledge, this specific application has yet to be explored.
Similarly as described above for the manual mixing technique, more than one exponential
function may be required to fit the dissociation reaction. The stopped-flow method is also
well-suited for studying NP–protein association reactions, which can occur extremely fast.
Importantly, the millisecond time resolution afforded by the technique enables the potential
identification of intermediate steps within the reaction pathway, along with a quantification
of the rate constants of formation and dissociation of individual species. For example, given
a two-step binding reaction as shown in Figure 2B, plotting the observable rate constant for
complex formation (kobs) against the ligand concentration ([L]) would yield a hyperbolic
curve. Employing the kobs equation (Equation (4)) to fit this experimental curve would then
provide the affinity K1 of the EC, as well as the first-order rate constant k2 that governs the
rate of final complex formation. The k−2 rate, in turn, would be best estimated through
a competitive displacement assay. While stopped-flow spectroscopy can yield valuable
insights into fast binding reactions, it does have certain limitations to consider: the technique
relies on changes in optical signals, which may not occur in all interactions, thereby restricting
its applicability, as well as low-throughput data collection and high sample consumption.

NMR spectroscopy stands as another important solution-based technique that can pro-
vide a wealth of information on the dynamics of NP–protein interactions [56–61]. It also
can offer unique details about binding configurations, including interaction epitopes and
local/global protein conformations [56,62,63]. For example, Ceccon et al. studied the global
motions and exchange kinetics (kobs and koff) of the small protein ubiquitin on the surface of
unilamellar liposomes [60]. Their findings revealed a residence time for bound ubiquitin of
around 20µs. Moreover, the bound ubiquitin exhibited internal rotation and wobbling motions
on the micro- and nanosecond timescales, respectively. An application of NMR spectroscopy
for studying NP–protein association kinetics is further mentioned in Section 5.3. Readers are
referred to specialized texts for more in-depth information on this technique [56,57,59].

4.2. Surface-Based Techniques

Surface-based methods used to evaluate binding kinetics include label-free biosen-
sor technologies such as SPR spectroscopy, biolayer interferometry, optical waveguide
light-mode spectroscopy (OWLS), grating-coupled interferometry, and quartz crystal mi-
crobalances [64]. The label-free nature of these methods eliminates the need of conjugating
extrinsic reporter molecules (like fluorescent probes) to the binding partners. Among
the various available techniques, SPR is the best-known and most extensively used [45].
Therefore, the comments that follow pertain to SPR.
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In SPR, one of the binding partners, termed the ‘ligand’, is immobilized on a sensor
‘chip’ within a flow cell, while buffer solution containing the ‘analyte’ continuously flows
over the surface. Interactions between the applied analyte and immobilized ligand are
monitored in real-time by detecting signal changes (refractive index changes) through the
sensor ‘chip’. The apparent kon and koff interaction rate constants are then determined by
fitting a suitable binding model equation to the obtained kinetic data.

The kinetic constants that can be determined using SPR cover a wide range, from
around 102 to 106–107 M−1 s−1 for association rate constants and from 10−5 to 1 s−1 for
dissociation rate constants. The exact range depends on the particular system and experi-
mental conditions. Accurate measurement of very fast association reactions is hindered by
mass transport limitations, which involve the diffusion-controlled delivery of the analyte
from the bulk solution to the surface. Likewise, characterization of very fast dissociation
reactions is hindered by analyte rebinding to the immobilized ligand (also a manifestation
of mass transport limitation), that is, the analyte rebinds to the surface before it has time to
diffuse away from it. Conversely, very slow dissociation reactions lasting from many hours
to days are limited by the extended time required for data collection.

Previous studies have conducted systematic comparisons between SPR and solution-
based techniques for quantifying biomolecular interactions [65]. It has been concluded
that SPR is generally able to provide reliable results. However, this reliability depends
on addressing several factors [45,66–68]. Firstly, SPR is susceptible to mass transport
limitations, as already noticed. Secondly, SPR can be influenced by inherent sources of
binding heterogeneity. These sources can include, among others, changes in the binding
properties of the immobilized ligand due to interactions with the surface, effects of chemical
crosslinking, avidity effects, and spatial variations in surface properties at the microscopic
scale. Indeed, it has been shown that even biomolecular interactions conforming to a
1:1 binding scheme in a solution may exhibit significant binding heterogeneity when
evaluated using SPR [66–68]. Nonetheless, these issues can be mitigated to some extent
through well-planned experiments and the adoption of data analysis methods that account
for surface heterogeneity [66,67].

To quantify NP–protein interactions, it is advisable to explore various immobilization
strategies, including the use of both the NP and the protein as immobilized ligands. In the
first scenario, multiple proteins can bind to a single immobilized NP. This set-up can be
particularly useful for investigating both strong and weak protein interactions with the NP
surface [6,69,70]. It is also crucial to carry out experiments with varying levels of surface
immobilization. As a rule of thumb, it is best to immobilize the minimum possible amount
of ligand (while ensuring a sufficient signal-to-noise ratio) to mitigate mass transport
limitations and the potential for avidity effects.

As a final note, it is important to recall that NP–protein complexes may exhibit inherent
sources of binding heterogeneity, as discussed in Section 5.2. Therefore, distinguishing the
true binding heterogeneity intrinsic to the interaction from that introduced artificially by
surface immobilization can present a challenge.

5. Kinetics of Protein Interactions with ‘large’ NPs

In this review we distinguish between two primary categories of NPs based on their
size: ‘conventional’ or ‘large’ NPs with sizes typically greater than 10 nm, and ultrasmall
NPs (usNPs) with sizes smaller than 3 nm [71,72]. In this section, we explore the kinetics of
binding and unbinding of individual proteins with conventional NPs, while the dynamics
of protein corona formation in complex biofluids are discussed in Section 7. Section 6 is
dedicated to exploring protein interactions with usNPs.

5.1. Interaction Mechanism

It is instructive to consider NP–protein interactions in analogy to the kinetic mech-
anism of protein–protein complexation, as described in Section 3 (Figure 2). However,
this analogy assumes only direct NP–protein interactions and neglects the occurrence of
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interprotein interactions and other secondary phenomena. Accordingly, NPs and proteins
undergo random collisions in a solution until they bind in the proper orientation, forming
a first-encounter complex with a second-order rate constant, k1. The magnitude of k1 is
expected to approach the Smoluchowski diffusion limit, that is, k1 ≈ 108–109 M−1 s−1,
depending on NP size. This is primary because NPs are considered spherical and uniform,
which means that formation of the proper binding interface depends only on the orienta-
tional constraint imposed by the protein itself [73]. The encounter complex can undergo
partial desolvation of polar groups and interfacial restructuring (local protein structural
changes) characterized by the first-order rate constants k2, k3, and so on along the reac-
tion pathway. The energy barriers associated with these processes slow down the overall
association reaction. Simultaneously, the tightening steps of desolvation and interfacial re-
structuring collectively lower the free energy of the system toward a more stable final state.
The final complex can be stabilized by a combination of van der Waals forces, hydrogen
bonds, electrostatic interactions, and hydrophobic effects, with the relative importance of
each interaction depending on the specific NP and protein characteristics [74].

Assuming a three-step binding reaction for simplicity (Figure 3), it can be hypothe-
sized that the initial interfacial restructuring occurs rapidly (‘large’ k2), accompanied by
modest alterations in the native protein structure, leading to reversible adsorption (‘large’
k−2). Subsequently, slower and more extensive structural rearrangements may take place
(‘small’ k3), ultimately contributing to the ‘irreversible’ adsorption of proteins (‘small’ k−3).
According to this view, proteins can undergo a transition from reversible to irreversible
adsorption on the surface of NPs over time [75,76]. However, as emphasized in a recent
comprehensive review, proper quantitative assessment of this reversible-to-irreversible
transition is hindered by the scarcity of available published data [55]. Certainly, for certain
NP types, the interactions may be best described as a two-step process, in which case slower
protein denaturation steps are absent and a reversible NP–protein complex is formed. An-
other potential scenario involves the occurrence of some structural changes over time, but
which may not contribute to further complex stability, thus preventing the transition to
irreversible binding.
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Secondary phenomena, including interprotein interactions and steric effects, add
complexity to the adsorption process. For example, proteins that arrive late at the NP
surface encounter limited available area for adsorption. Consequently, there may be a
significant reduction in the value of k1 and, by extension, in the overall kon rate constant.
Furthermore, these proteins have restricted space to spread out and form strong bonds
with the NP surface, which may result in reversible adsorption [14].

In conclusion, the molecular mechanisms underlying NP–protein interactions are in-
herently complex, as they are influenced by numerous physicochemical and environmental
factors. In this respect, kinetic studies play a crucial role in providing mechanistic insights
into NP–protein complexation.

5.2. Dissociation Kinetics and Residence Times

According to the general model for NP–protein complexation presented above, the
overall koff rate constant is a combination of the rate constants of the individual reaction
steps. For ‘truly irreversible’ adsorption, the apparent koff should be around 10−5 s−1

or less, corresponding to a residence time of approximately 27 h or longer. In some
cases, the individual off-rate constant of the last reaction step may serve as a reasonable
approximation of koff. It is also possible that intermediate stages in the reaction pathway
might potentially yield a stable complex within biologically relevant timescales. In this
context, subsequent stages of conformational rearrangements could induce further protein
denaturation without yielding a biologically advantageous extension in residence time.

Based on the current literature, it is clear that both reversible and irreversible complex-
ation can occur between proteins and NPs. For instance, Wang et al. observed irreversible
binding of transferrin to hydrophobic polystyrene (PS) NPs, whereas reversible binding
was detected when using hydrophilic carboxyl-functionalized PS NPs [75]. In contrast, a
previous study by Milani et al. reported that binding of transferrin to similar types of PS
NPs was irreversible [77].

The distinction of NP–protein complexes as either ‘reversible’ or ‘irreversible’ is, of
course, an oversimplification. There is actually a continuum of NP–protein complex resi-
dence times encompassing a biologically relevant range that extends from seconds to hours,
or even days. Previous studies have conducted quantitative assessments of the binding and
unbinding kinetics between individual proteins and ‘conventional’ NPs [6,54,61,77–89].
Figure 4A presents a compilation of the apparent kon and koff rate constants obtained from
these investigations (for individual values, refer to Supplementary Table S1). In some
studies, only koff values have been determined, and these are included in Figure 4B. The
majority of measurements have been performed using SPR spectroscopy. Determination of
the rate constants using various solution-based methods has yielded comparable outcomes,
although with limited studies available in this regard.

Examining the koff values in Figure 4B for conventional (‘large’) NPs reveals a broad
range, spanning from approximately 1 to 10−5 s−1. This translates to residence times
spanning from 1 s to 28 h. It is interesting to note that, among the 58 entries in Figure 4B,
11 exhibited koff values greater than 10−2 s−1 characteristic of transient interactions (tr < 100 s),
whereas only 7 entries displayed koff values smaller than 10−4 s−1, indicating more stable
interactions (tr > 2.7 h). The majority of the data (40 entries) were associated with interme-
diate koff values between 10−2 and 10−4 s−1. Further examination of Supplementary Table
S1 unveiled that, among the 11 cases pertaining to transient interactions, 7 corresponded
to liposome or lipid NPs, 1 case was related to the soft corona, and only 3 were linked
to other NP classes. These observations could potentially suggest that soft NPs, such as
liposome and lipid NPs, tend to form less stable interactions with proteins when compared
to other NP classes. However, the limited number of studies performed to date precludes
making definitive conclusions regarding the influence of NP ‘softness’ and other crucial
physicochemical parameters on the residence time of NP–protein complexes. Thus, ad-
ditional studies are clearly needed to provide a more comprehensive understanding of
these dynamics.
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Figure 4. Compilation of NP–protein interaction kinetics data. (A) kon and koff rate constants
for both large and ultrasmall NPs. Dashed lines delineate distinct KD values in the kon–koff plot.
(B) Compilation of koff rate constants and corresponding tr values for large and ultrasmall NPs,
including studies with koff data only. Dark green triangles refer to interactions between functional
usGNPs and their target receptor (see text for details). Specific values of the rate constants are
provided in Supplementary Tables S1 and S2.

It is important to acknowledge certain limitations of SPR when it comes to deter-
mining dissociation kinetics, some of which are also relevant to other characterization
techniques. Firstly, a given apparent koff rate constant obtained through SPR provides only
an average representation of the dissociation process. In reality, the bound proteins can
exhibit a range of koff values, which in turn can be influenced by several factors, such as
NP surface heterogeneity, lateral interprotein interactions, distinct binding orientations,
and steric effects. Secondly, the determination of the koff from SPR typically proceeds
after completion of the association phase, which normally spans from a few minutes to
about an hour. Hence, SPR experiments generally do not assess the impact of incubation
time and long-term protein denaturation on the dissociation of NP–protein complexes.
Thirdly, protein dissociation is measured in SPR via washing the NPs with pure buffer,
but it should be noted that bound proteins may exhibit higher rates of dissociation if they
are competitively displaced by other soluble proteins that have stronger binding affinities
to the NP surface [14,55].

Several studies have reported the formation of protein multilayers on the surface
of NPs [50,77,90–92]. The process of multilayer formation is mediated by interprotein
interactions between a strongly bound first layer (‘hard’ corona) and a loosely bound
second layer (‘soft’ corona). Milani et al. used fluorescence correlation spectroscopy size
measurements to investigate protein multilayer formation on model PS NPs [77]. They
reported that transferrin initially formed a strongly bound monolayer, followed by the
formation of a weakly bound secondary layer. Notably, the residence time associated
with the second layer was estimated to be in the range of seconds (koff >> 1 min−1), as
determined by competitive displacement of a labeled soft corona with excess unlabeled
transferrin. On the other hand, some authors argue against the prevalent occurrence of
multilayer coronas for individual proteins [14,93].

Figure 5 provides a summary of the various factors discussed above that have the
potential to influence the kinetics of protein dissociation from the surface of NPs.
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5.3. Association Kinetics

The kinetics of NP–protein association (kon) have primarily been investigated using
SPR spectroscopy. Again, it is important to acknowledge certain limitations linked to SPR,
some of which might extend to other characterization techniques as well. Firstly, SPR cannot
reliably measure very high rates of association, typically having a practical limit around
106–107 M−1s−1. Secondly, proteins may exhibit a range of association kinetics influenced
by factors like NP surface heterogeneity, interprotein interactions, and steric effects, among
others, but which might not be distinguishable individually. Thirdly, the limited temporal
resolution achievable with SPR precludes the identification of intermediate steps within the
reaction pathway. Hence, the experimental finding of a single apparent kon rate constant
may oversimplify what could be a very complex binding reaction.

Figure 4A presents apparent kon values obtained for various proteins and conventional
NPs, spanning a range from 2 × 102 to 7 × 106 M−1 s−1. However, for the majority of the
data, the kon values are lower than 105 M−1 s−1. These lower kon rates are significantly
smaller than the estimated diffusion-controlled association rate of 108–109 M−1 s−1 for
NP–protein interactions. In these cases, NP–protein association is reaction-limited, that
is, binding must overcome one or more energy barriers associated with desolvation/ion
removal and structural rearrangements.

The rate constants kon and koff, along with the concentrations of the interacting part-
ners, fundamentally govern the timescale of NP–protein association (tobs). Assuming
pseudo first-order kinetics for simplicity and strong interactions where [L] > KD, then
tobs ≈ (kon[L])−1. For example, considering a protein concentration of 100 nM and a
kon = 104 M−1 s−1, the resulting tobs would be 16 min. If the kon were 100-fold greater,
the tobs would reduce to just 10 s. On the other hand, with a smaller kon of 103 M−1 s−1, tobs
would extend up to 2.7 h. This extended duration could hold significant implications for
the dynamics of hard protein corona formation in vivo, although the real scenario within
biological fluids is undoubtedly more complicated. In contrast, in cases of soft corona
formation, both tobs and tr would be small (in the order of minutes, seconds, or even less),
meaning that the bound soft corona would undergo dynamic exchange with the other
proteins in the solution.

To characterize the tobs of NP–protein association in cases involving protein mixtures,
Xu et al. implemented the SOFAST-HMQC NMR technique combined with the use of
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a tryptophan reference standard [58]. Their experiments focused on the model proteins
ubiquitin and GB3 competing for the surface of 15 nm gold NPs. For both proteins, a
significant amount of binding occurred within the experiment dead time (< 5 min). Nev-
ertheless, it was observed that initially adsorbed ubiquitin was slowly displaced by GB3,
with GB3 adsorption and ubiquitin desorption taking place with similar time constants of
approximately 140 min. This example highlights the ability of multidimensional NMR spec-
troscopy to resolve individual residues associated with different proteins, thus providing
the potential for studying competitive binding kinetics within protein mixtures.

To conclude, knowledge of the kon provides insights into association mechanisms, such
as whether a given interaction is diffusion- or reaction-controlled. However, more detailed
mechanistic analysis requires monitoring the association process at a high time resolution
(e.g., with stopped-flow spectroscopy) to identify individual reaction steps [86,94]. In
practical scenarios, knowledge of the apparent kon is useful for estimating association
times, as exemplified above. Unfortunately, accurately determining the kon for NP–protein
interactions is not straightforward.

6. Kinetics of Protein Interactions with Ultrasmall NPs

Ultrasmall NPs (d < 3 nm) are characterized by dimensions comparable to or smaller
than those of a typical globular protein of 3 to 6 nm in diameter [71,72,95]. Similarly as
described above for large NPs, it is informative to consider usNP–protein interactions in
analogy to protein–protein interactions [96–98]. Here, the analogy becomes even more
pertinent due to the small size and high surface curvature of usNPs, which provide a limited
binding interface for protein interactions. Hence, when proteins interact with usNPs,
significant protein spreading and denaturation on the usNP surface are unlikely [99–101],
and major lateral interactions between bound proteins are also improbable. In fact, usNPs
with a diameter of 1.5 nm or less may be so small as to bind only to a single protein
(Figure 6A) [95].

Ultrasmall NP–protein interactions often result in the formation of short-lived com-
plexes (Figure 6A). For instance, Boselli et al. employed an agarose gel-shift assay to
study the stability of ultrasmall gold NP (usGNP)–protein complexes formed in human
plasma [102]. They found that 2 nm PEG-coated and carboxyl-terminated usGNPs exhib-
ited minimal signs of protein interaction, whereas even a slight increment in particle size
(from 2 to 3 nm) resulted in the formation of more stable complexes.

Using SPR and fluorescence stopped-flow spectroscopy, Lira et al. and Ferreira et al.
carried out quantitative analyses of the binding kinetics of purified proteins with anionic
usGNPs [73,96,103–106]. The proteins used in their studies included α-thrombin, CrataBL,
ubiquitin, and factor XII (FXII). Their findings indicated koff values within the narrow range
of 0.015 to 0.5 s−1, corresponding to tr values from 2 to 66 s (Supplementary Table S2).
These outcomes align with the concept of transient and short-lived interactions between
proteins and usNPs. Figure 4B, in particular, clearly illustrates the distinct ranges of koff
and tr that are characteristic of ultrasmall versus conventional NPs. Of note, one should
bear in mind that certain types of usNPs may exhibit enhanced binding stability and longer
residence times, including functional usNPs [107–110], dendrimers with exceptionally high
charge densities, or hydrophobic carbon NPs like fullerenes.

Lima et al. further assessed the residence times of usGNP–protein complexes qualita-
tively as a function of the incubation time [99]. The panel of proteins encompassed serum
albumin, thrombin, chymotrypsin, trypsin, and FXII. Their findings demonstrated that
interactions between proteins and usGNPs resulted in reversible complexes, regardless of
incubation time (10 min vs. 24 h). In other words, there was no observed time-dependent
enhancement in the stability (‘hardening’) of these interactions.

The near lack of irreversible nonspecific protein binding to usNPs presents an oppor-
tunity to engineer functional usNPs that can retain their functionality in complex biological
fluid [107,109–114]. Moreover, the ability to attach multiple functional moieties to the
usNP surface opens up the possibility to exploit avidity effects, enabling high-affinity and
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long-lasting interactions between functional usNPs and their receptors. In this context,
Seiler et al. designed an effective inhibitor for the survivin protein by immobilizing tweezer
macromolecules on the surface of usGNPs [110]. Characterization using SPR demonstrated
that these functional usGNPs formed long-lasting complexes with their target receptors
influenced by avidity effects, resulting in characteristic residence times of 0.45 and 2.3 h
depending on the design (Figure 4B, dark green triangles).

Studies have also explored the association kinetics of usNP–protein interactions. In
particular, Lira et al. and Ferreira et al. employed SPR spectroscopy to quantify the apparent
kon for CrataBL and thrombin binding to model usGNPs that were surface-coated with
either p-mercaptobenzoic acid (AuMBA) or glutathione (AuGSH), respectively [73,103].
While both surface ligands featured a COO--exposed surface group, GSH also possessed
an additional zwitterionic group (COO-/NH3

+) at the opposite end of the molecule. This
distinction translated into a ~100-fold difference in the measured kon, namely, kon ~106 and
104 M−1s−1 for protein binding to AuMBA and AuGSH, respectively. The disparity in
kon was attributed to the presence of a larger energy barrier for protein association with
AuGSH. Computer simulations were employed to address the chemical nature of this
barrier, revealing a greater energy penalty for the removal of interfacial ions from the
more complex counterion atmosphere surrounding AuGSH. In another study, stopped-
flow spectroscopy was used to characterize the association kinetics between ubiquitin and
AuMBA with a millisecond time resolution [96]. The results supported a multi-step reaction
mechanism. In essence, complexation proceeded via formation of an electrostatically
stabilized and weakly bound EC characterized by an affinity constant K1 of approximately
9 µM. EC formation was followed by discrete tightening steps of partial desolvation/ion
removal and structural rearrangement, which collectively enhanced the affinity of the final
bound state by nearly 100-fold, leading to an apparent KD of 0.1 µM. Furthermore, it is
interesting to note that the dissociation rate constant of the EC can be estimated from
the expression k−1 = K1 × k1, with k1 ≈ 108 M−1s−1. For the present case, this gave
k−1 ≈ 900 s−1, which translated into a residence time for the EC of only 10−3 s.

From Figure 4A, it becomes evident that certain usGNP–protein interactions can
exhibit relatively high overall kon rate constants (>106 M−1s−1), resulting in considerable
binding affinities (low nM range) while displaying short residence times (few seconds).
Therefore, under conditions of high particle concentration ([usGNP] > KD ≥ [protein]),
which are common in some in vitro assays, most proteins are complexed with usGNPs
driven by simple mass balance effects. On the other hand, under conditions of large excess
protein, such as in vivo, usGNPs undergo constant binding and unbinding events with
different proteins rather than forming long-lasting complexes with any single protein.
In this scenario, the koff (or tr) can become as important as the KD in shaping the safety
profile and bioresponses of the usGNPs (Figure 6B). A case in point is the interaction
between AuMBA and FXII, a constituent of the contact system of coagulation. Lira et al.
showed that transient AuMBA–FXII interactions (KD ~200 nM; tr ~10 s) were capable of
activating FXII and triggering the coagulation cascade in human plasma [106]. Notably, the
activation of FXII took place despite a ~1500-fold lower concentration of FXII relative to
serum albumin. The cell uptake of usNPs, particularly under conditions of excess protein,
constitutes another domain where specific ranges of koff (or tr) can hold significance. In this
context, Muraca et al. prepared tiopronin-coated usGNPs, which demonstrated transient
protein interactions, and investigated their cellular uptake [115]. Their findings unveiled a
significant increase in cellular uptake as the serum concentration changed from 10 to 50%.
This phenomenon was attributed to the establishment of sufficiently long-lived interactions
between the usGNPs and specific serum proteins, leading to receptor-mediated uptake
of usGNP–protein complexes (Figure 6C). Overall, manipulating the residence time of
usNP–protein interactions by precisely controlling the size and surface composition of
usNPs could open up exciting new prospects in nanomedicine. For example, interactions
could remain sufficiently transient to mitigate particle toxicity yet persist long enough to
facilitate cellular entry via receptor-mediated mechanisms [115].
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a single protein type for simplicity, but a similar concept applies to biological fluids. (C) Potential
impact of tr on receptor-mediated cellular uptake of usNPs. The figure illustrates usGNP binding to
specific soluble proteins, which then interact with membrane receptors to initiate endocytosis within a
characteristic timescale of τuptake. Hypothesis 1: cell uptake is unlikely when tr < τuptake. Hypothesis
2: cell uptake becomes possible when tr > τuptake. Reprinted with permission from ref. [115] (C).

7. Dynamics of Protein Corona Formation in Complex Biofluids

In this section, we address the kinetics of protein corona formation on conventional
NPs immersed in complex biofluids, such as fetal bovine serum (FBS), human serum, and
human plasma. Despite the intricate nature of biological fluids, it remains valuable from
a mechanistic standpoint to consider the dynamic aspects of protein corona formation in
terms of similar principles to those outlined above in Section 5.
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Typically, the adsorbed corona is categorized as either ‘hard’ or ‘soft’, reflecting pro-
teins either firmly or transiently bound to the NP surface [77,116–118]. Additional charac-
teristics of hard and soft coronas are illustrated in Figure 7. From a practical standpoint,
proteins that remain attached to the NP surface during centrifugation and washing consti-
tute the hard corona, whereas those proteins that are loosely bound and can be removed
during these procedures are identified as part of the soft corona. In a more quantitative
approach, the protein corona can be globally characterized in terms of a distribution of
apparent koff and tr values, as illustrated below.
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Figure 7. Schematic illustration of hard and soft protein coronas and their main characteristics.
(A) Protein multilayers: The first adsorbed layer constitutes the hard corona, while additional layers
form the soft corona. (B) Protein monolayer: Both the hard and soft coronas originate from the same
proteins within a single adsorbed layer. In this case, it may be hypothesized that neighboring proteins
might restrict the ‘hardening’ of soft corona proteins by constraining their unfolding on the particle
surface. (C) Primary characteristics of hard and soft protein coronas.

In 2007, Cedervall et al. published a landmark study, which explicitly introduced the
concept of the protein corona [6]. In their work, the authors employed SPR spectroscopy
to monitor the overall dissociation of plasma proteins from the surface of copolymer NPs
(Figure 8A). The obtained data were best fitted assuming two independent dissociation pro-
cesses, representing ‘weakly’ and ‘strongly’ associated proteins (Supplementary Table S3).
More recently, Stordy et al. employed biolayer interferometry to investigate the dissociation
of plasma proteins from the surface of gold and liposome NPs [69]. The dissociation kinetics
were also modeled assuming independent weak and strong binding modes. Interestingly,
the study explicitly investigated the influence of incubation time (from 10 to 120 min) on
the apparent koff values. For gold NPs, the dissociation rates decreased as a function of
incubation time until approximately 40 min, beyond which the rates stabilized (Figure 8B
and Supplementary Table S3). Specifically, for strongly associated proteins, the koff rate
constant decreased from 1.8 × 10−4 to ~10−7 s−1. In other words, it took about 40 min for
a truly ‘irreversible’ protein corona to form on the surface of the gold NPs. For weakly
associated proteins in turn, the koff rate constant reduced to 3.4 × 10−4 s−1 after 120 min
of incubation, resulting in an average tr of 0.8 h. For liposomes, the trends were similar,
except the dissociation rates took much longer to stabilize (Supplementary Table S3).
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Figure 8. Kinetics of protein corona formation and dissociation. (A) Dissociation kinetics of plasma
proteins from copolymer NPs determined using SPR spectroscopy. Left: cartoon of immobilized NPs
with interacting proteins and flowing buffer. Right: SPR data presented for more hydrophilic (blue)
and hydrophobic (red) copolymer particles. Data were fitted (black lines) assuming independent
weak and strong binding modes (Supplementary Table S3). (B) Dissociation kinetics of plasma
proteins from gold NPs obtained through biolayer interferometry as a function of incubation time.
Values of koff were derived assuming weak and strong binding modes (koff1 and koff2, respectively).
(C) In vivo dissociation kinetics of fluorescently labeled serum proteins from silica NPs obtained using
differential dynamic microscopy. (D) Kinetics of hard protein corona formation. Polyacrylamide
gel electrophoresis was utilized to identify hard protein coronas formed from human serum and
human blood as a function of incubation time. The graph illustrates the linearized relative protein
band intensities plotted against the incubation time. Two kinetic phases can be discerned, with a
transition time between phases at around 30 s (vertical lines). Reprinted or adapted with permission
from ref. [6] (A), ref. [69] (B), ref. [119] (C), and ref. [120] (D).

Recently, Latreille et al. expanded the investigation of protein corona dissociation
kinetics to a model in vivo system employing zebrafish larvae (Figure 8C) [119]. This
research introduced differential dynamic microscopy (DDM) in fluorescence-imaging mode
for quantifying protein adsorption on NP surfaces. The experiments involved precoating of
PS NPs with fluorescently labeled serum proteins, injection of precoated NPs into zebrafish
larvae, and subsequent analysis using DDM. It was observed that, within a period of 3 h,
the number of preadsorbed labeled proteins on the NP surface decreased by 40%. This
decrease indicated an exchange dynamic with circulating blood proteins characterized by
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a timescale of 67 min. The authors concluded that the protein corona was long-lived but
dynamic in nature.

Apart from examining the dissociation kinetics of the NP protein corona, other studies
have focused on how fast a hard protein corona can develop on the surface of NPs [120,121].
Weiss et al., in particular, utilized a microfluidic device that enabled reducing incubation
times down to 2 s [120]. Interestingly, their results showed that formation of the hard corona
could be kinetically divided into two separate phases, with a transition time between phases
at around 30 s (Figure 8D). The adsorption kinetics of phase I was relatively slower than that
of phase II. The authors proposed a cooperative mechanism wherein the proteins adsorbed
during phase I facilitated the subsequent adsorption process in phase II. These findings
suggest a complex kinetic mechanism underlying the formation of a hard protein corona.

To gain a more comprehensive understanding of the protein corona, it is essential
to identify its individual protein components and observe how the system evolves over
time. According to the Vroman model [122–125], the process initiates with the preferential
adsorption of smaller proteins present at higher concentrations, which attach to the NP
surface at higher rates. Subsequently, these initially adsorbed proteins are replaced by
less abundant but more strongly binding proteins. Importantly, the Vroman model also
establishes that larger proteins can accelerate the displacement of smaller ones, which
otherwise would not desorb so readily on their own [14]. Over time, a stable adsorbed layer
is formed, whose composition typically differs from that of the bulk solution. Additionally,
the adsorbed proteins may undergo denaturation, as already discussed.

Several mathematical models have been developed to simulate the dynamics of
protein corona formation and the Vroman effect [20,85,126–128]. In one such model by
Dell’Orco et al., the time evolution of the interaction between three human plasma proteins
(HSA, fibrinogen, and HDL) and a copolymer NP was numerically calculated using experi-
mentally determined association and dissociation rate constants [85]. Later, Sahneh et al.
derived a set of analytical simplifying equations that replicated nearly all of Dell’Orco’s
previous findings [126]. Overall, the simulations and calculations revealed that, during the
first 20 s, a metastable corona composition was established, with HSA covering most of the
NP surface, followed by HDL and fibrinogen. However, after 4 h, an equilibrium state was
attained, with HDL becoming the dominant component, followed by HSA (Figure 9).

The validity of the Vroman effect was critically examined by Tenzer et al., who con-
ducted a comprehensive experimental investigation of the time evolution of the protein
corona composition on silica and polystyrene NPs [121]. These authors employed quan-
titative proteomics to obtain time-resolved profiles of human plasma coronas from time
points as early as 0.5 min. Contrary to predictions of the classic Vroman model, the types of
proteins forming the corona remained relatively constant over time, but their quantities
varied at different time points during plasma exposure (Figure 10). For example, certain
proteins exhibited low abundance at both the beginning and end of plasma exposure but
reached peak abundance at intermediate times (‘peak’-shaped profile); conversely, other
proteins showed the exact opposite behavior (‘cup’-shaped profile) [121,129]. An inde-
pendent investigation led by Weiss et al. supported the conclusions of the Tenzer et al.
study [120]. Using gel electrophoresis, Weiss et al. showed that human serum was adsorbed
irreversibly on silica NPs after just 2 s of exposure and that the adsorbed layer did not sig-
nificantly change in composition over time. Moreover, Hadjidemetriou et al. also observed
‘peak’- or ‘cup’-shaped binding kinetics of corona proteins formed in vivo on the surface of
liposomal NPs [130]. Collectively, these intriguing findings suggest novel binding kinetics,
which challenge more simplified models and underscore the intricate nature of NP–protein
interactions within complex biological environments. Potential confounding effects include
lateral interprotein interactions, cooperative adsorption, steric effects, protein clustering,
and so on. Moreover, Zhdanov proposed a complementary kinetic model for the formation
of protein corona within complex biofluids [127]. This model posits an exchange mecha-
nism for protein adsorption, namely, the concerted replacement of attached proteins by
proteins from a solution.
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Figure 9. Mathematical modeling of protein corona formation process. (A) Schematics of protein
corona formation. Proteins of type i attach to the NP surface with association and dissociation rate
constants of ki,on and ki,off. On average, a maximum number of ni proteins of type i can occupy the NP
surface. (B) Results from numerical simulations illustrating the time evolution of corona formation
on copolymer NPs. HSA (red), HDL (blue), and fibrinogen (green) were used as model proteins in the
simulations. Left and middle panels capture the first 0.05 and 20 s of simulation, respectively, while
right panel depicts 20,000 s of simulation where a stable equilibrium has been reached. Reprinted
with permission from ref. [126] (A) and ref. [85] (B).
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The hard protein corona of NPs has received significant attention in research, while the
soft corona remains comparatively less understood. To address this gap, new technological
advances have recently emerged to analyze the soft corona [50,70,87,117,131]. On the one
hand, techniques have been devised to separate and identify the proteins comprising the
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soft corona of NPs within complex biofluids [70,87,131,132]. However, there is still a need
to better understand the kinetics governing the formation and dissociation of the soft
corona. A recent study by Mohammad-Beigi et al. contributed valuable insights into this
aspect [87]. First, these authors identified apolipoprotein H (ApoH) as a major component
of the soft corona on silica NPs. Using SPR spectroscopy, they were further able to measure
the apparent KD, kon, and koff for ApoH binding to a preformed FBS hard corona (Figure 11).
The results yielded an apparent KD of 17 µM and a koff of 0.048 s−1, corresponding to an
ApoH residence time of 21 s on the hard corona. Despite these latest advances, additional
work is needed to characterize the composition, architecture, and dynamics of the soft
corona, as well as its biological significance.
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8. Conclusions and Outlook

This review underscored key aspects of NP–protein binding kinetics, encompassing
(i) the role of kinetics in providing insights into the molecular nature of interactions;
(ii) common measurement techniques, along with their limitations; (iii) characteristic
association and dissociation rate constants governing interactions between individual
proteins and NPs; (iv) and dynamics of protein corona formation and dissociation. Despite
significant progress in the field, several important questions remain unresolved. Listed
below are a few examples of potential areas requiring further development and exploration.

Measurement techniques—Surface-based techniques have predominantly been utilized
to quantify NP–protein binding kinetics. However, experiments can vary significantly
in the way they are implemented, they are susceptible to potential artefactual sources of
binding heterogeneity [67,68], and their reliability is difficult to assess. In this scenario,
validation of results becomes particularly important, especially in cases where multiple
kon and koff rate constants are reported, and these are attributed to various factors like
multiple binding sites, structural changes during binding, and protein multilayers. On
a broader scale, the field is in urgent need of new powerful yet user-friendly analytical
approaches and characterization techniques that can accurately measure binding affinity
and kinetics [7,133–136].

KD vs. koff—The dissociation rate constant, koff, is as important a parameter to char-
acterize as the binding affinity, KD [137]. Furthermore, it should be pointed out that
determining the precise KD for NP–protein interactions is challenging and highly prone to
error [137–139]. This complexity arises from various factors, including the multisite nature
of interactions, uncertainties in quantifying NP concentrations, the heterogeneity in NPs
size and surface chemistry, and the dependence of KD determination on the assumption of
specific binding models. In contrast, assessing the koff is simpler and more reliable, espe-
cially with the use of solution-based techniques. Determination of the koff does not require
assuming a binding model, and the dissociation reaction follows a first-order process that
is unaffected by NP concentration. Furthermore, the finding of multiple koff values could
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offer valuable insights into the occurrence of distinct protein binding configurations on the
NP surface. Therefore, measuring the koff alongside KD should be established as a standard
procedure in the characterization of NP–protein interactions.

Hard protein corona—Further investigations focusing on the time evolution of protein
corona formation are necessary. It must be emphasized that treating the protein corona
as a ‘single entity’ and evaluating its overall dynamics offers limited predictive insight
into NP biobehavior. Instead, it is imperative to delineate the binding and unbinding
kinetics of individual proteins on the NP surface, with a specific focus on biologically
relevant timescales. Moreover, some studies have suggested that the time evolution of
protein corona formation might extend beyond the predictions of the Vroman model [121].
Thus, further investigations are necessary for a comprehensive understanding of this
phenomenon. Finally, exploring the evolution of corona composition under conditions
of limited NP concentration and excess plasma, which mimics the in vivo situation, is
important [4]. This scenario has been observed to favor the binding of fewer types of
proteins displaying higher NP surface affinity [140].

Soft protein corona—Recent technological advancements have enabled the identification
of the protein composition within the soft corona [70,87,131,132]. Looking ahead, it is
also important to understand the dynamics of soft corona formation and dissociation. For
example, it is conceivable that residence times of 1 s or 1 min, although both characteristic
of soft coronas, could yield significantly distinct biological outcomes.

Linking binding kinetics to biological response—With the availability of more data on
NP–protein association and dissociation kinetics, it becomes essential to delineate the
impact of specific kinetic ranges on biological outcomes. Notably, the current ranges
of determined kon and koff rate constants already span a broad spectrum (Figure 4 and
Supplementary Tables S1–S3), and specific values of these constants hold the potential to
shape subsequent bioresponses. To exemplify, it is conceivable that a sufficiently prolonged
residence time would enable an NP–protein complex to fulfill its intended function (such
as endocytosis or signal transduction), but too long a residence time could induce toxic
effects stemming from protein denaturation or interference with biochemical pathways.
Furthermore, the kinetics of corona formation and evolution need to be systematically
linked to NP biodistribution and therapeutic efficacy studies to gain a comprehensive
understanding of how the dynamic protein corona influences these critical aspects of
nanomedicine [130,141–145].

In conclusion, it is only through a comprehensive understanding of NP–protein in-
teractions, including the kinetics and timescales of protein association and dissociation
events, that NPs can be engineered to function predictably within the complex and dynamic
in vivo environment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/physchem3040026/s1, Table S1. Kinetic parameters of protein interactions
with large NPs; Table S2. Kinetic parameters of protein interactions with ultrasmall NPs; Table S3.
Kinetic parameters of serum and plasma interactions with large NPs.
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