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Abstract: We have kinetically estimated the enzymatic redox reaction at the horseradish perox-
idase (HRP)-modified electrode combined with ionic liquids by adding N-(2-methoxythethyl)-
N-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MEMPTFSI) to HRP/carbon paste
(CP)/Ketjenblack EC600JC (EC). The fluctuation of the steady-state reduction current of HRP at the
HRP/CP-modified electrode progressively increased as the applied potential was lowered. The enzy-
matic redox reaction with hydrogen peroxide as a substrate at the HRP/CP/EC/MEMPTFSI-modified
electrode and the HRP/CP-modified electrode could be correlated by the Michaelis–Menten equation.
The Michaelis constant of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified
electrode was the same as that at the HRP/CP-modified electrode. On the other hand, the turnover
number of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was six
times larger than that at the HRP/CP-modified electrode. Consequently, the specificity constant of
the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was much higher
than that at the HRP/CP-modified electrode.

Keywords: horseradish peroxidase; ionic liquid; enzyme-modified electrode; kinetic parameter

1. Introduction

To reduce emissions of greenhouse gases such as CO2, bioprocesses have received
attention as a potential alternative to conventional chemical processes, which require large
amounts of energy and non-renewable resources such as oil [1]. Bioprocesses generally
include enzymes, which are biocatalysts that exhibit high biological activity and specificity
under mild conditions, and they have been widely used in applications such as synthesis,
sensing, and fuel cells [1–5]. Specifically, the oxidoreductase family of enzymes is useful
for designing biotransformations and biosensors [6–15]. Oxidoreductases can be used to
catalyze polymerization, coupling, hydroxylation, and oxygen-transfer reactions, as well as
to convert CO2 into fuel. Moreover, by detecting hydrogen peroxide or other peroxides,
oxidoreductases can be used as molecular-recognition elements in biosensors for diagnosis,
analysis, environmental protection, and security surveillance.

Enzymes, used as catalysts and recognition elements in biotransformations and biosen-
sors, are typically immobilized by attaching themselves to various insoluble carriers. This
stabilizes the enzymes and allows for their recycling [16–18]. Various immobilization
methods can be used to fabricate biocatalyst electrodes [19]. Carbon-paste (CP) electrodes
have been widely investigated because of their ease of fabrication. Enzymes are generally
incorporated into CP by mixing them with a CP oil consisting of uniformly sized graphite
particles and paraffin oil [20–22]. We have reported that the electrochemical activity of
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enzymes tends to be inhibited by the impeded electron transfer and low accessibility of
mediators because enzymes are embedded within electrodes by insulating paraffin oil [21].
On the other hand, enzyme-modified electrodes receiving the electrons from electrode di-
rectly for the redox reaction of enzymes usually belong to the direct electron transfer (DET).
A significant challenge with direct electron transfer (DET) enzyme-modified electrodes is
the difficulty in transferring electrons from the electrode to the enzyme’s redox sites, as
these sites are typically deeply embedded within the enzyme’s core [23].

Ionic liquids, which are salts in the liquid state at room temperature, have increas-
ingly attracted attention as an innovative non-aqueous medium for chemical processes,
because of their lack of vapor pressure, high thermal and chemical stability, excellent ionic
conductivity, wide potential window, and high polarity [24,25]. In addition, the activity
of enzymes is highly accelerated in water-immiscible ionic liquids, and the thermal stabil-
ity of enzymes is dramatically enhanced by adding ionic liquids to an aqueous solution
containing enzymes [26–30]. We discovered that incorporating enzymes into CP with ionic
liquids effectively promotes the redox reaction of mediators at the horseradish peroxidase
(HRP)-modified electrode under irreversible electrochemical reaction conditions [31]. Fur-
thermore, to apply the property of oxidoreductase-modified electrodes composed with
ionic liquids to biotransformations and biosensors, it is important to kinetically investigate
the enzymatic redox reaction at the oxidoreductase-modified electrode combined with ionic
liquids [32].

In this study, we have kinetically estimated the enzymatic redox reaction with oxi-
doreductases immobilized on the electrode consisting of carbon paste (CP), Ketjenblack
EC600JC (EC), and ionic liquid. We have used HRP as an oxidoreductase because its
structure, functions, and properties have been well known [33]. As an ionic liquid, we have
used N-(2-methoxythethyl)-N-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide
(MEMPTFSI), which is hydrophobic and has a high ionic conductivity [24]. Moreover, since
MEMPTFSI has (CF3SO2)2N− as an anion instead of a carboxylate anion that binds to the
sixth coordination position of Fe(III) in HRP, a substrate such as hydrogen peroxide is
considered to be easily accessible to the active site of HRP [34,35].

2. Materials and Methods
2.1. Materials

Horseradish peroxidase (HRP) (100 units/mg) and 67 mM phosphate-buffered
solution (pH 7.0) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka,
Japan). Room-temperature ionic liquid N-(2-methoxythethyl)-N-methylpyrrolidinium
bis(trifluoromethane sulfonyl)imide (MEMPTFSI) was purchased from Kanto Chemical
Co., Inc. (Tokyo, Japan). Ketjenblack (EC600JC: EC) was purchased from Lion Specialty
Chemicals Co., Ltd. (Tokyo, Japan). Carbon-paste oil (CPO: CP) prepared by mixing
uniformly sized graphite powder and paraffin oil was purchased from BAS (Tokyo, Japan).
Hydrogen peroxide (H2O2) (27% w/w aq. Soln., stab.) was purchased from Alfa Aesar
(Heysham, UK). All other reagents were of an analytical grade and were used as received
without further purification.

2.2. Preparation of HRP-Modified Electrode

The HRP/CP/EC/MEMPTFSI-modified electrode and the HRP/CP-modified elec-
trode were prepared as follows. First, HRP/CP/EC/MEMPTFSI and HRP/CP mixtures
were prepared by thoroughly mixing each component in a mortar at weight ratios of
1.00:9.45:1.23:8.32 and 1.00:19, respectively. The mixtures were then packed into a carbon-
paste electrode hole (1.6 mm inner diameter, 3 mm outer diameter, 3 mm depth) to prepare
the HRP/CP/EC/MEMPTFSI-modified electrode and the HRP/CP-modified electrode.
After packing, electrode surfaces were smoothed with a piece of copy paper before electro-
chemical measurements were performed.

All prepared electrodes were stored at 4 ◦C in a refrigerator when not in use. All
enzyme-modified electrodes were also soaked in a phosphate-buffered solution (67 mM,
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pH 7.0) for 3 h before electrochemical measurements. The storage stability of enzyme-
modified electrodes was perfectly maintained after one month.

2.3. Instruments

Electrochemical experiments were performed using a three-electrode system com-
prising an HRP-modified electrode as a working electrode, a platinum wire as a counter
electrode, and a saturated Ag/AgCl electrode (sat. KCl) as a reference electrode. Unless
stated otherwise, a phosphate-buffered solution (67 mM, pH 7.0) was used as an aqueous
electrolytic solution. All phosphate-buffered solutions were purged with nitrogen gas for
at least 30 min prior to recording chronoamperograms, and a nitrogen atmosphere was
maintained throughout the experiment.

All measurements were carried out in an 8 mL electrochemical cell (model VB3;
EC Frontier, Kyoto, Japan) at room temperature (25 ◦C) under a constant stirring con-
dition within an electrically shielded box. The electrochemical cell was connected to a
potentiostat/galvanostat (Princeton Applied Research model 263A; EG&G Instruments,
Princeton, NJ, USA). To investigate the chronoamperometric response performance, the
HRP-modified electrode was polarized toward the negative direction at a difference poten-
tial (vs. Ag/AgCl). After the procedures, both the HRP/CP-modified electrode and the
HRP/CP/EC/MEMPTFSI-modified electrode were polarized at −0.4 V (vs. Ag/AgCl) for
the enzymatic redox reaction with H2O2 as a substrate.

3. Results
3.1. Chronoamperometric Response Performance at the HRP/CP-Modified Electrode under Applied
Potential Control

Most enzymes are easily denatured and inactivated under various physical and chem-
ical stresses due to the disruption of weak interactions, including ionic bonds, hydrogen
bonds, and hydrophobic interactions, which are prime determinants of enzyme tertiary
structures [32]. Enzymes tend to be denatured and inactivated under external stress such
as an electric field [36]. Accordingly, to prevent HRP denaturation and deactivation, it is
preferable to use HRP when the applied reduction potential is applied toward the more
positive potential direction.

In order to investigate the influence of the applied potential on the stability of HRP
at the HRP/CP-modified electrode, the chronoamperometric experiment was carried
out at the HRP/CP-modified electrode under the applied potential control. After soak-
ing the HRP/CP-modified electrode in a 67 mM phosphate-buffered solution (pH 7.0)
for about 3 h, the chronoamperometry was carried out at different applied potentials
(vs. Ag/AgCl) in 2 mL of 67 mM phosphate-buffered solution (pH 7.0) saturated by
nitrogen gas under a constant stirring condition. The time-dependence of steady-state
currents was examined at regular voltage intervals, with the applied potential ranging
from 0.15 V to −0.8 V (vs. Ag/AgCl). Figure 1a shows the chronoamperograms of the
HRP/CP-modified electrode under different applied potentials from 0.15 V to −0.8 V
(vs. Ag/AgCl) at regular voltage intervals of 0.05 V. Figure 1b shows a plot of the average
steady-state currents obtained from 80 to 100 s in each chronoamperogram (Figure 1a)
against the applied potential (E).

As shown in Figure 1a, the fluctuation of the steady-state reduction current became
progressively greater as the applied potential became lower. The steady-state reduction
currents almost remained at invariance with a decrease in the applied potential until around
0 V vs. Ag/AgCl, and gradually increased with decreasing the applied potential, as shown
in Figure 1b.
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Figure 1. (a) The chronoamperograms of the HRP/CP-modified electrode under different applied
potentials from 0.15 V to −0.8 V (vs. Ag/AgCl) at regular voltage intervals of 0.05 V. (b) A plot
of average steady-state currents obtained from 80 to 100 s in each chronoamperogram versus the
applied potential.

HRP belongs to an oxidoreductase that catalyzes enzymatic redox reactions with
coenzymes and/or mediators [21,23,31]. Furthermore, HRP as an oxidoreductase can
carry out the redox reactions without coenzymes and/or mediators via DET from the
electrodes [21,23]. Consequently, the redox reaction of HRP at the HRP/CP-modified
electrode can be carried out via the DET, as follows [21,23,37].

[HRP(FeIII)]Ferric enzyme + e− + H+ ↔ [HRP(FeII) − H+]Ferrous enzyme (1)

The immobilization of enzymes on the surface of carriers strongly affects the perfor-
mance of enzymes [18]. For instance, when HRP molecules are arranged on the electrode
surface in either a side-on or end-on orientation (as depicted in Scheme 1), the distance
between the iron heme group of HRP (the active site) and the electrode surface is shorter in
a side-on orientation than in an end-on orientation. Since the iron heme group of HRP is
encapsulated by a thick shell of insulating protein, which impedes the smooth transfer of
electrons [21,35], the DET between the surface of electrodes and the iron heme groups of
HRP is facilitated in a side-on orientation compared to an end-on orientation. The reduc-
tion reaction of HRP on the HRP/CP-modified electrode occurs via the DET between the
surface of electrodes and the iron heme groups of HRP (Equation (1)). Hence, the reduction
reaction of HRP in a side-on orientation is more efficient than that in an end-on orientation.
Additionally, these variations in distance could also influence the applied potential needed
for electron movement.
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When the applied potential was applied toward the more negative potential direction,
the lower the applied potential, the greater the reduction overpotential, which is the
additional potential needed to drive a reaction at a certain rate beyond the thermodynamic
requirement [38]. Generally, when the overpotential is small, the diffusion of the reactants
becomes the rate-determining step, so the current increases as the overpotential increases.
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On the other hand, when the overpotential is large, the movement of electrons becomes
the rate-determining step, so the current is limited by the applied potential. Therefore,
this implies that the greater reduction overpotential may enhance the reduction reaction of
oxidant [HRP(FeIII)]Ferric enzyme in the forward-reaction process of Equation (1). However,
as shown in Figure 1a, the exposure of HRP under the greater reduction overpotential
resulted in the fluctuation of the steady-state redaction current. These results indicate that
the destabilization of HRP may occur under greater reduction overpotential. Furthermore,
the reduction peak in cyclic voltammograms of HRP on the HRP/CP-modified electrode
were about −0.3 ~ −0.5 V (vs. Ag/AgCl) dependent on the scan rates in an irreversible
electrochemical system [21]. Accordingly, the applied potential on the HRP-modified
electrode was set at −0.4 V vs. Ag/AgCl for the enzymatic redox reaction with H2O2 as a
substrate in the following chronoamperometric experiment.

3.2. Current Behavior of the HRP/CP/EC/MEMPTFSI-Modified Electrode by Injecting H2O2

Figure 2a,b show the typical plots of current versus time for the HRP/CP-modified
electrode and the HRP/CP/EC/MEMPTFSI-modified electrode upon successive injections
of 100 µL H2O2 (0.01 M) at regular time intervals (about 100 s). After soaking the HRP/CP-
modified electrode and the HRP/CP/EC/MEMPTFSI-modified electrode in a 67 mM
phosphate-buffered solution (pH 7.0) for about 3 h, the chronoamperometry was carried
out on the two enzyme-modified electrodes separately at a constant applied potential
(−0.4 V vs. Ag/AgCl) in a 2 mL of 67 mM phosphate-buffered solution (pH 7.0) saturated by
nitrogen gas under a constant stirring condition. The HRP/CP-modified electrode and the
HRP/CP/EC/MEMPTFSI-modified electrode rapidly responded to successive increments
of substrate (H2O2) at an applied potential of −0.4 V (vs. Ag/AgCl), approaching steady-
state current responses within 10 to 20 s. On the other hand, as shown in Figure 2a,b, the
addition of hydrogen peroxide to a CP electrode or a CP/EC/MEMPTFSI electrode without
an enzyme did not result in any changes in the reduction current. Accordingly, the result
indicates that the immobilized HRP generates the electrode response.
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Figure 2. The typical current–time recording with successive additions of H2O2 at regular time
intervals. (a) Current–time recording lines for the CP electrode (black line) and the HRP/CP-modified
electrode (blue line). (b) Current–time recording lines for) the CP/EC/MEMPTFSI electrode (green
line) and the HRP/CP/EC/MEMPTFSI-modified electrode (red lined).

The reaction rate (v) of redox reaction is given by [38]

v =
I

nF
(2)

where I is the steady-state current, F is the Faraday constant, and n is the stoichiometric
number of electrons consumed in the electrode reaction.
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A baseline correction was applied to the steady-state current used in Equation (2), which
was correlated with the H2O2 reduction reaction at both the HRP/CP/EC/MEMPTFSI-
modified electrode and HRP/CP-modified electrode. Furthermore, the n value equals
two in Equation (2), as explained below. In the case of the HRP-modified electrode, by
adding H2O2 to an aqueous electrolytic solution, [HRP(FeIII)]Ferric enzyme of HRP-modified
electrodes soaked in the aqueous electrolytic solution was firstly oxidated into compound I,
accompanied by the reduction of H2O2 in the following way [16,23,39].

HRP[FeIII]Ferric enzyme + H2O2 → compound I + H2O (3)

compound I + e− + H+ → compound II (fast) (4)

compound II + e− + H+ → HRP[FeIII]Ferric enzyme (5)

Compound I is reduced by receiving an electron provided directly through the elec-
trode and produces compound II. Reaction (4) is a fast electrochemical reaction process,
then compound II further receives an electron from the electrode and a proton ion to return
to an original form of [HRP(FeIII)]Ferric enzyme. Therefore, the total electrons consumed in
reactions (4) to (5) on the HRP-modified electrode for the reduction reactions of compound
I and compound II to [HRP(FeIII)]Ferric enzyme are two electrons.

According to reactions (3) to (5), when the chronoamperometry carried out at an appropri-
ated reduction overpotential as the applied potential, HRP at the HRP/CP/EC/MEMPTFSI-
modified electrode and the HRP/CP-modified electrode can be regenerated sufficiently.
According to the relationship between the stability of the steady-state current and the
applied potential mentioned above, the applied potential was set at −0.4 V (vs. Ag/AgCl),
which could supply sufficient electrons to make HRP carry out the enzymatic reduction
reaction steadily.

3.3. Kinetic Behavior of the HRP/CP/EC/MEMPTFSI-Modified Electrode

Figure 3a,b show the Lineweaver–Burk plot of the enzymatic redox reaction using
H2O2 at the HRP/CP-modified electrode and the HRP/CP/EC/MEMPTFSI-modified
electrode, respectively. The Lineweaver–Burk plot exhibits the relationship between 1/v
and 1/[S], as shown in the following equation [32,40]:

1
v
=

1
Vmax

+
KM

Vmax[S]
(6)

where v is the reaction rate, Vmax is the apparent maximum reaction rate, [S] is the con-
centration of substrate, and KM is the apparent Michaelis constant. Additionally, Vmax is
as follows:

Vmax = kcat[E]0 (7)

where kcat represents the turnover number and [E]0 is the overall enzyme concentration.
Since the lines of the HRP/CP-modified electrode and the HRP/CP/EC/MEMPTFSI-
modified electrode had the correlation constants (r2) of 0.99 and 0.95, respectively, a satisfac-
tory linearity was shown. Therefore, it is concluded that the enzymatic redox reaction using
H2O2 in the present study obeys the following Michaelis–Menten-type kinetics. Firstly,
KM and Vmax are obtained from Figure 3a,b using Equation (6). Then, by substituting the
obtained Vmax value into Equation (7), the value of kcat can be obtained.

Table 1 shows the kinetic parameters of the enzymatic redox reaction using H2O2 as a
substrate. The KM value of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-
modified electrode was the same as that at the HRP/CP-modified electrode. The KM value
represents the substrate concentration at which the enzymatic reaction rate is half of its
maximum rate [32,40]. The smaller the KM value, the higher the affinity between the
enzyme and the substrate. Accordingly, it is suggested that the affinity between the HRP
and the H2O2 in the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified
electrode is the same as that at the HRP/CP-modified electrode. On the other hand, the kcat
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value of the enzymatic redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode
was six times larger than that at the HRP/CP-modified electrode. Since kcat is moles of
substrates that can be converted by one mole of enzymes per second, the larger the kcat
value, the higher the activity [32]. Consequently, the kcat/KM value for the enzymatic redox
reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was six times higher than that
at the HRP/CP-modified electrode. kcat/KM is the specificity constant and corresponds on
the catalytic efficiency. This implies that HRP at the HRP/CP/EC/MEMPTFSI-modified
electrode is able to more effectively accelerate the reaction and acts as a superior catalyst
compared to that at the HRP/CP-modified electrode. This could be attributed to various
factors, such as the materials used in the HRP/CP/EC/MEMPTFSI-modified electrode,
which could provide more active sites for the reaction, enhance the electron transfer,
or lower the energy barrier of the reaction. When enzymes come into contact with an
immobilizing surface by adsorption, enzymes may change their conformation and become
denatured [18]. Ionic liquids tend to enhance the stability of enzymes [26–30]. Moreover,
since ionic liquids have high ionic conductivity, the addition of ionic liquids to enzyme-
modified electrodes can greatly improve the electron transfer and the electroactive surface
area [31]. These results indicate that the HRP/CP/EC/MEMPTFSI-modified electrode
is much more favorable for use in biotransformation and biosensors because of the high
catalytic efficiency.
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Table 1. Kinetic parameters of enzymatic redox reaction at HRP-modified electrode with or without
ionic liquids.

Enzyme-Modified Electrode KM (M) Vmax (µM−1s−1) kcat (s−1) kcat/KM (M−1s−1)

HRP/CP-modified electrode 0.09 0.50 0.06 0.67
HRP/CP/EC/MEMPTFSI-modified electrode 0.09 2.84 0.36 4.00

4. Conclusions

We have demonstrated that the enzymatic redox reaction using H2O2 as a substrate
at the HRP-modified electrode with ionic liquids is efficiently enhanced, compared to
that at the HRP-modified electrode without ionic liquids. The destabilization of HRP
occurred under a higher reduction overpotential. The enzymatic redox reaction at the
HRP/CP/EC/MEMPTFSI-modified electrode and the HRP/CP-modified electrode could
be correlated by the Michaelis–Menten equation. The affinity of HRP for H2O2 in the
enzymatic redox reaction was similar at both the HRP/CP/EC/MEMPTFSI-modified and
HRP/CP-modified electrodes. On the other hand, the turnover number of the enzymatic
redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was superior to that at
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the HRP/CP-modified electrode. Accordingly, since the catalytic efficiency of the enzymatic
redox reaction at the HRP/CP/EC/MEMPTFSI-modified electrode was much higher than
that at the HRP/CP-modified electrode, it is suggested that the HRP/CP/EC/MEMPTFSI-
modified electrode is more suitable for biotransformations such as polymerization, cou-
pling, hydroxylation, oxygen-transfer reactions, and biosensors for diagnosis, analysis,
environmental protection, and security surveillance.
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