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Definition: Aerial images captured with the camera optical axis deliberately inclined with respect to
the vertical are defined as oblique aerial images. Throughout the evolution of aerial photography,
oblique aerial images have held a prominent place since its inception. While vertical airborne images
dominated in photogrammetric applications for over a century, the advancements in photogrammetry
and computer vision algorithms, coupled with the growing accessibility of oblique images in the
market, have propelled the rise of oblique images in recent times. Their emergence is attributed
to inherent advantages they offer over vertical images. In this entry, basic definitions, geometric
principles and relationships for oblique aerial images, necessary for understanding their underlying
geometry, are presented.

Keywords: oblique aerial images; oblique imagery; photogrammetry; image geometry; image scale;
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1. Introduction

Over the past twenty years, there has been a notable rise in the utilization of datasets
featuring oblique aerial imagery. This surge can be attributed to advancements in pho-
togrammetric and computer vision algorithms, mainly concerning image-based 3D re-
construction methods [1], the growing accessibility of these images in the market and
their inherent advantages over vertical imagery. Specifically, oblique imagery offers the
depiction of both vertical structures, predominantly facades, alongside horizontal elements,
mimicking the human perception of scenes from a ground-level view, thus enhancing the
portrayal of landscapes. Both the scientific community and multiple companies have been
utilizing oblique images for diverse applications, leading to significant advancements in
their automated processing [2,3]. Applications utilizing oblique aerial images include—but
are not limited to—image matching [4–6], georeferencing [3,7–9], orientation and structure
from motion procedures [10–15], multi-view stereo and 3D modeling pipelines [16–20],
texture mapping [21–23], object detection [24,25], building identification [26–28], semantic
segmentation of 3D city models [29] and buildings [30,31], building classification [32], ex-
traction of post-disaster structural damages [33–35], historic building information modeling
(HBIM) [36], reconstruction of LoD-2 building models [37], cadastral mapping [38], 3D
reconstruction of canopy [39] and estimation of canopy height [40], moving car recogni-
tion [41], animal detection [42], and river surface ice quantification [43].

In this entry, basic definitions and geometric relationships for oblique aerial images,
necessary for understanding their underlying geometry, are presented. The entry starts with
the definition of the types of oblique aerial images and the presentation of corresponding
camera setups. Subsequently, terms associated with the geometry of oblique aerial images
are defined, the angular orientation in terms of azimuth, tilt and swing is presented, the
displacement due to tilt is defined, and the combined effect of displacements due to relief
and tilt is presented. Additionally, formulas for estimation of scales (x-scale, y-scale) in
an oblique aerial image are presented, and some basic geometrical relationships among
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characteristic image points and angles of oblique aerial images are defined. The entry
ends with the presentation of mathematical relationships that can be used for determining
vertical as well as horizontal distances from a single oblique aerial image.

2. Types and Camera Setups

Aerial images taken such that the orientation of the optical axis deliberately deviates from
the vertical are called oblique ones. This tilt angle is usually more than five degrees [44–47].
They are categorized as low or high oblique based on whether or not they show the apparent
horizon line—the line where the earth’s surface seems to meet the sky (Section 3.1). If the
apparent horizon line is visible, the image is called high oblique, else low oblique [44,45,48,49].

Besides obtaining individual oblique aerial images from either manned aerial systems
or unmanned aerial vehicles (UAVs), there are multi-camera setups in the market. These
systems capture either solely oblique images or a mix of oblique and vertical imagery. They
employ various numbers and types of cameras, along with different acquisition setups like
Maltese-cross, fan, or block configurations. A comprehensive overview of these systems
and configurations can be found in [2,50–54]. Here, an outline of the most commonly used
camera setups is given.

The most frequently employed setup is the Maltese-cross configuration (Figure 1a),
typically comprising a vertical camera facing downward and four oblique ones angled
towards the cardinal directions. The fan configuration (Figure 1b–d) involves aligning two
or more cameras at varying angles, with their optical axes within the same vertical plane.
This setup might consist of a vertical and an oblique camera or two oblique ones oriented
across or along the track. Another configuration uses three cameras: one capturing vertical
images while the others take oblique ones. Another way to achieve broad across-track
coverage is by using a multi-lens camera with four, six, or eight lenses pointing obliquely to
both sides of the flight line. Lastly, in the block configuration, typically four to six oblique
cameras are arranged in a block. The overlap among these images enables their rectification
and stitching to form a larger composite image.

Encyclopedia 2024, 4, FOR PEER REVIEW 2 
 

 

scale, y-scale) in an oblique aerial image are presented, and some basic geometrical rela-
tionships among characteristic image points and angles of oblique aerial images are de-
fined. The entry ends with the presentation of mathematical relationships that can be used 
for determining vertical as well as horizontal distances from a single oblique aerial image. 

2. Types and Camera Setups 

Aerial images taken such that the orientation of the optical axis deliberately deviates 
from the vertical are called oblique ones. This tilt angle is usually more than five degrees 
[44–47]. They are categorized as low or high oblique based on whether or not they show 
the apparent horizon line—the line where the earth’s surface seems to meet the sky (Sec-
tion 3.1). If the apparent horizon line is visible, the image is called high oblique, else low 
oblique [44,45,48,49]. 

Besides obtaining individual oblique aerial images from either manned aerial sys-
tems or unmanned aerial vehicles (UAVs), there are multi-camera setups in the market. 
These systems capture either solely oblique images or a mix of oblique and vertical im-
agery. They employ various numbers and types of cameras, along with different acquisi-
tion setups like Maltese-cross, fan, or block configurations. A comprehensive overview of 
these systems and configurations can be found in [2,50–54]. Here, an outline of the most 
commonly used camera setups is given. 

The most frequently employed setup is the Maltese-cross configuration (Figure 1a), 
typically comprising a vertical camera facing downward and four oblique ones angled 
towards the cardinal directions. The fan configuration (Figure 1b–d) involves aligning two 
or more cameras at varying angles, with their optical axes within the same vertical plane. 
This setup might consist of a vertical and an oblique camera or two oblique ones oriented 
across or along the track. Another configuration uses three cameras: one capturing vertical 
images while the others take oblique ones. Another way to achieve broad across-track 
coverage is by using a multi-lens camera with four, six, or eight lenses pointing obliquely 
to both sides of the flight line. Lastly, in the block configuration, typically four to six 
oblique cameras are arranged in a block. The overlap among these images enables their 
rectification and stitching to form a larger composite image. 

 

Figure 1. Diagrams showing the Maltese cross ground coverage and the ground coverage of several 
fan configuration scenarios; (a): Maltese cross configuration; (b): fan configuration adopted by two 

Figure 1. Diagrams showing the Maltese cross ground coverage and the ground coverage of several
fan configuration scenarios; (a): Maltese cross configuration; (b): fan configuration adopted by two
oblique cameras oriented across track; (c): fan configuration adopted by two oblique cameras oriented
along track; (d): fan configuration adopted by three cameras.
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3. Geometry of Oblique Imagery

Understanding the geometry of oblique aerial images enables accurate interpretation
of visual data, aiding in the precise analysis of structures depicted in oblique imagery.
Moreover, it facilitates effective surveying and mapping and helps in incorporating addi-
tional geometrical constraints in state-of-the-art workflows using oblique aerial images,
like SfM and MVS. Besides, knowledge of the geometry of oblique images is a prerequisite
across various disciplines besides photogrammetry, from urban planning to environmen-
tal monitoring; keeping abreast of oblique image geometry ensures compatibility with
evolving technologies, such as advanced sensors and drones, optimizing data collection
strategies. In this section, terms associated with oblique aerial images along with their
geometric properties are defined; the angular orientation in terms of azimuth, tilt, and
swing is presented; the displacement due to tilt is defined; the combined effect of relief and
tilt is presented; the relationships for computing the x-scale and y-scale in an oblique aerial
image are presented; and some basic geometrical relationships among characteristic points
and angles in an oblique aerial image are established.

3.1. Terms and Geometric Properties

In this section, terms associated with the geometry of oblique aerial images are defined
and their basic geometric properties are presented [44,45,55–57].

The principal plane of an oblique aerial image is the vertical plane including the
camera optical axis and the vertical line from the projection center; it intersects the oblique
image plane at the principal line. The latter passes through the image nadir point and the
principal point. Both the principal plane and the principal line make sense only in oblique
imagery. The principal line is the line of biggest inclination in an oblique aerial image. All
image points that lie on lines perpendicular to the principal line correspond to the same
scale, assuming horizontal ground.

The isocenter (I′) is the point where the bisector of the angle between the camera
optical axis and the vertical line from the projection center intersects the oblique image
plane (Figures 2 and 3). It is the intersection point of the principal line and the line that
results from the intersection of the oblique image plane and the plane of an assumed truly
vertical image with the same projection center taken by the same camera with the same
focal length (equivalent truly vertical image). The isocenter lies on the principal plane, the
oblique image plane and the plane of the equivalent truly vertical image. The displacement
due to tilt in an oblique image is radial with respect to the isocenter. Similarly, this term
makes sense only in oblique imagery. Its main characteristic is the fact that angles measured
from the isocenter of an oblique aerial image are true, i.e., they are equal to the real angles
measured from the ground isocenter.

The axis of tilt—or equivalently, the isometric parallel, is the line where the oblique
image plane meets the plane of an equivalent truly vertical image (Figure 3) It is perpen-
dicular to the principal line, passing through the isocenter. The axis of tilt, like every
image line perpendicular to the principal line, is a horizontal line and corresponds to zero
displacement due to tilt relative to an equivalent truly vertical image. Along the axis of tilt,
the image scale is constant and equals c/H (where c is the camera constant and H is the
flying height), assuming horizontal ground. The axis of tilt separates the oblique image
into two sides, i.e., the upper side and the lower side (Figure 2). The local scale is larger
than c/H below the axis of tilt (“lower” side of image) and smaller than c/H above the axis
of tilt (“upper” side of the image).
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camera constant; P′: principal point; I′: isocenter; N′: nadir point; P′′: principal point of the equivalent
truly vertical image.

The true horizon line is the line where the horizontal plane including the perspective
center meets the oblique image plane (Figure 4). It is perpendicular to the principal line
and parallel to the axis of tilt. The apparent horizon line is the actual image line in which
the earth’s surface appears to meet the sky. It is a real line depicted in a high oblique aerial
image and appears below the fantastic true horizon line. The horizon point (K′) is the
intersection of the principal line with the horizontal plane through the perspective center
or, equivalently, the intersection of the principal line with the true horizon line (Figure 4).
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Figure 4. Orientation angles azimuth (a), tilt (t) and swing (s), depression angle (θ), true horizon
line, and horizon point (K′). O: perspective center; c: camera constant; xc, yc: axes of the image
coordinate system centered at the principal point; P′: principal point; N′: image nadir point; N:
ground nadir point.

The dip angle (δ) is the angle measured on the principal plane of an oblique aerial
image between the apparent horizon line and the true horizon line. The apparent depression
angle (γ) is the angle measured on the principal plane between the camera optical axis
and the apparent horizon. The depression angle (θ) is the angle measured on the principal
plane between the camera axis and the true horizon. Due to earth curvature and flying
height, the apparent horizon appears below the true horizon; thus, the apparent depression
angle incremented by the dip angle gives the depression angle (Figure 5).
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3.2. Angular Orientation in Azimuth-Tilt-Swing

The azimuth angle (a) is the clockwise horizontal angle measured about the ground
nadir point from a line parallel to the ground Y-axis to the principal plane of the image. The
tilt angle (t) is the angle between the vertical line from the projection center and the camera
axis. The swing angle (s) is the clockwise angle measured at the oblique image plane from
the positive y-axis to the principal line at the side of the image nadir point (Figure 4) [44,58].
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The rotation matrix—R, expressed in angles of azimuth, tilt, and swing—is given by
Equation (1) [59].

R =

− cos s · cos a − sin s · cos t · sin a cos s · sin a − sin s · cos t · cos a − sin s · sin t
sin s · cos a − cos s · cos t · sin a − sin s · sin a − cos s · cos t · cos a − cos s · sin t

− sin t · sin a − sin t · cos a cos t

 (1)

The angles of azimuth, tilt, and swing are computed from the elements rij of the
rotation matrix according to the set of Equation (2).

a = tan−1(−r31/ − r32); t = cos−1(r33); s = tan−1(−r13/ − r23) (2)

3.3. Tilt Displacement

The displacement due to tilt (tilt displacement) for a point is defined as the distance
from the isocenter to the image of the point in an equivalent truly vertical photograph minus
the distance from the isocenter to the image of the point in the oblique photograph [49].
Image points located on the lower side of the oblique image are radially displaced away
from the isocenter, thus corresponding to a larger scale than the scale that they would have
in an equivalent truly vertical image. Points imaged on the upper side of the image are
radially displaced towards the isocenter, thus corresponding to a smaller scale than that in
an equivalent truly vertical image.

The algebraic value of the displacement due to tilt (∆rtilt) for a point of an oblique aerial
image is given by Equation (3) [49,60], where rI is the radial distance from the isocenter to
the point, c is the camera constant, t is the tilt angle, and ξ is the angle measured clockwise
from the positive end of the principal line to the radial line from the isocenter to the point.

∆rtilt =
r2

I · cos2 ξ · sin t
c − rI · cos ξ · sin t

(3)

If the point is located on the lower side of the oblique image, its corrected radial
distance from the isocenter, rc

I , is computed as rc
I = rI − ∆rtilt. If the point is located on the

upper side of the oblique image, its corrected radial distance from the isocenter is computed
as rc

I = rI + ∆rtilt.
On the contrary, the displacement of a point due to its elevation is radial from the

nadir point and always positive—that is, points elevated with respect to the datum are
radially displaced outwards, away from the nadir point. The relief displacement (∆rrelief)
for a point is given by Equation (4), where rN is the radial distance from the isocenter to
the point, h is its elevation, and H is the flying height above the datum.

∆rrelie f =
rN · h

H
(4)

The combined effect of relief displacement and tilt displacement is illustrated in
Figure 6. Each point with subscript 1

(
A′

1, B′
1, C′

1, D′
1, E′

1
)

corresponds to the position that
the point would have without the effects of relief and tilt displacement (corrected position).
Each point with subscript 2 (A′

2, B′
2, C′

2, D′
2, E′

2) represents the position of the point after it
has undergone relief displacement—that is, after it has been radially displaced outwards
from the nadir point. Each point with subscript 3 (A′

3, B′
3, C′

3, D′
3, E′

3) represents the position
of the point after it has undergone tilt displacement (observed position of the image point).
Specifically, point A′

2 lies on the axis of tilt; thus, it is not displaced due to tilt, and point
A′

3 coincides with point A′
2. Point B′

2 is radially displaced away from the isocenter to
be represented in position B′

3, as it is located in the lower side of the image. Point C′
2 is

radially displaced towards the isocenter by the amount (C′
2C′

3), as it lies in the upper side
of the image. Points D′

2 and E′
2 are displaced along the principal line radially inwards

and outwards with respect to the isocenter, respectively; for these points, the relief and tilt
displacement are cumulative.
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A′

1, B′
1, C′

1, D′
1, E′

1
)

corresponds to the position that the point would have without the effects of relief
and tilt displacement (corrected position). Each point with subscript 2

(
A′

2, B′
2, C′

2, D′
2, E′

2
)

represents
the position of the point after it has undergone relief displacement. Each point with subscript 3(

A′
3, B′

3, C′
3, D′

3, E′
3
)

represents the position of the point after it has undergone tilt displacement
(observed position of the image point).

3.4. Scale

The scale at a point on an oblique aerial image is not the same in all directions. The
scale of lines perpendicular to the principal line (x-scale) and the scale of lines parallel to
the principal line (y-scale) are not the same. The scale of an oblique aerial image varies
along the direction of the principal line. The scale of line segments perpendicular to the
principal line is constant, whereas the scale of all the other line segments of an oblique
aerial image varies. In this section, for the sake of completeness, the derivations of the
well-known relationships for the computation of the scale of lines perpendicular to the
principal line and infinitesimal line segments parallel to the principal line are shown. The
reader may also refer to [44,61–63].

3.4.1. Scale of Lines Perpendicular to the Principal Line

In an oblique aerial image, the scale remains constant along each line perpendicular
to the principal line. This scale along a line perpendicular to the principal line is termed
as the x-scale. The x-scale increases along the principal line from the horizon point to the
nadir point. Let T′ be the image of a world point T on the oblique photograph and let
T1

′ be the projection of T′ on the principal line (Figure 7); thus, the line segment T′T1
′ is

perpendicular to the principal line. The point T1 is the projection of the world point T on
the principal plane. Both line segments T′T1

′ and TT1 are horizontal.
Equation (5) determines the x-scale along the line containing points T′ and T1

′, consid-
ering the similarity between triangles OT′T1

′ and OTT1.

sx =
T′T1

′

TT1
=

OT′

OT
=

OT1
′

OT1
(5)
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Figure 7. Oblique aerial image geometry: calculation of the x-scale of a line perpendicular to the
principal line. O: perspective center; c: camera constant; P′: principal point; K′: horizon point; T′: the
image of a world point T on the oblique photograph; T1

′: the projection of T′ on the principal line;
T1: the intersection of the ray that passes through O and T1

′ with the horizontal plane that contains
T; N: ground nadir point; N′: image nadir point; N1: the intersection between the vertical line from
the perspective center with the horizontal plane that contains T; H: flying height: ∆H: difference
in elevation between the point T and the ground nadir point; t: tilt angle; θ: depression angle;
c: camera constant; ζ: the angle formed by the camera axis and the ray to the point T1

′; d: distance
(measured parallel to the principal line) between the true horizon line and a line l perpendicular to
the principal line.

By trigonometric relations on the right triangles OP′T1
′ and ON1T1, Equations (6) and (7)

are derived, where ζ is the angle formed by the camera axis and the ray to the point T′
1, and

∆H is the difference in elevation between the point T and the ground nadir point, being
positive if T is above the ground nadir point N and negative if T is below the ground nadir
point.

OT1
′ =

c
cos ζ

(6)

OT1 = H−∆H
cos(t+ζ)

, if T1
′ lies in the ray

→
P′K′

OT1 = H−∆H
cos(t−ζ)

, if T1
′ lies in the ray

→
P′N′

(7)

Using Equations (6) and (7), Equation (5) takes the following form (Equation (8)) for
computation of the x-scale of a point T′ or T1

′.

sx = c cos(t+ζ)
(H−∆H) cos ζ

, if T1
′ lies in the ray

→
P′K′

sx = c cos(t−ζ)
(H−∆H) cos ζ

, if T1
′ lies in the ray

→
P′N′

(8)

Alternatively, the x-scale along a line l perpendicular to the principal line may be
expressed in terms of the distance d between the true horizon line and the line l (measured
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parallel to the principal line); d is calculated by the set of Equation (9), which is derived
considering trigonometric relations in the right triangles OP′K′ and OP′T1

′.

d = K′P′ − P′T1
′ = c(tan θ − tan ζ), if T1

′ lies in the ray
→

P′K′

d = K′P′ + P′T1
′ = c(tan θ + tan ζ), if T1

′ lies in the ray
→

P′N′
(9)

By trigonometric identity, the set of Equation (9) takes the following form (Equation (10)).

if T1
′ lies in the ray

→
P′K′ :

d = c sin(θ−ζ)
cos θ cos ζ = c sin(90◦−t−ζ)

cos θ cos ζ = c sin(90◦−(t+ζ))
cos θ cos ζ = c cos(t+ζ)

cos θ cos ζ

if T1
′ lies in the ray

→
P′N′ :

d = c sin(θ+ζ)
cos θ cos ζ = c sin(90◦−t+ζ)

cos θ cos ζ = c sin(90◦−(t−ζ))
cos θ cos ζ = c cos(t−ζ)

cos θ cos ζ

(10)

Substituting Equation (10) in Equation (8), the x-scale of a point or line that is perpen-
dicular to the principal line is given by Equation (11) [44,61–63].

sx =
d cos θ

H − ∆H
(11)

3.4.2. Scale of Lines Parallel to the Principal Line

The scale of a line parallel to the principal line, i.e., perpendicular to the lines of
constant scale, varies along this line. The scale in a direction parallel to the principal line is
called y-scale. Since the scale in the direction parallel to the principal line varies from point
to point, the y-scale may be considered to be constant only for an infinitesimal distance.
Let T′ and T2

′ be the images of the real world points T and T2 on the oblique photograph
that lie on the principal plane such that the line segment T′T2

′ lies on the principal line and
the line segments T′T2

′ and TT2 are of infinitesimal length (Figure 8). The y-scale of the
infinitesimal line segment T′T2

′ is computed by Equation (12).

sy =
T′T2

′

TT2
(12)

Equation (13) is derived by the law of sines in the triangle T2TW (Figure 8).

TT2

sin(T2WT)
=

TW
sin(TT2W)

→ TT2 = TW
sin(T2WT)
sin(TT2W)

(13)

The line segments OT and OT2 may be considered to be parallel, as the line segment
TT2 is infinitesimal. Thus, the angle PT2O may be considered to be equal to the angle
PTO. Hence, the angle TT2W, which is equal to the angle PT2O, is computed as follows
(Equation (14)).

angle TT2W = θ − ζ, if T′ and T2
′ lie in the ray

→
P′K′

angle TT2W = θ + ζ, if T′ and T2
′ lie in the ray

→
P′N′

(14)

In this way, the angle T2WT is computed as follows (Equation (15)).

angle T2WT = 90◦ + ζ, if T′ and T2
′ lie in the ray

→
P′K′

angle T2WT = 90◦ − ζ, if T′ and T2
′ lie in the ray

→
P′N′

(15)
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Hence, Equation (13) takes the following form (Equation (16)). 
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Figure 8. Oblique aerial image geometry: calculation of the y-scale of an infinitesimal line segment
perpendicular to the true horizon line. O: perspective center; c: camera constant; P′: principal point;
K′: horizon point; T′ and T2

′: the images of the real world points T and T2 on the oblique photograph
that lie on the principal plane, such that the line segment T′T2

′ lies on the principal line and the line
segments T′T2

′ and TT2 are of infinitesimal length; N: ground nadir point; N′: image nadir point; N1:
the intersection between the vertical line from the perspective center with the horizontal plane that
contains T; H: flying height: ∆H: difference in elevation between the point T and the ground nadir
point; t: tilt angle; θ: depression angle; ζ: the angle formed by the camera axis and the ray to the point
T′; P, Q and W: auxiliary points used for derivation of equations.

Hence, Equation (13) takes the following form (Equation (16)).

TT2 = TW sin(90◦+ζ)
sin(θ−ζ)

, if T′ and T2
′ lie in the ray

→
P′K′

TT2 = TW sin(90◦−ζ)
sin(θ+ζ)

, if T′ and T2
′ lie in the ray

→
P′N′

(16)

Substituting the set of Equation (16) in Equation (12), Equation (17) are derived.

sy = T′T2
′ sin(θ−ζ)

TW sin(90◦+ζ)
, if T′ and T2

′ lie in the ray
→

P′K′

sy = T′T2
′ sin(θ+ζ)

TW sin(90◦−ζ)
, if T′ and T2

′ lie in the ray
→

P′N′
(17)

From the similar triangles OT′T2
′ and OTW and Equation (5), Equation (18) is derived.

T′T2
′

TW
=

OT′

OT
= sx (18)
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Substituting the set of Equation (8) in Equation (18) and substituting the result in the
set of Equation (17), the set of Equation (19) is derived.

if T′ and T2
′ lie in the ray

→
P′K′ :

sy = c cos(t+ζ) sin(θ−ζ)
(H−∆H) cos ζ sin(90◦+ζ)

= c sin(θ−ζ) sin(θ−ζ)
(H−∆H) cos ζ cos ζ

= c
(H−∆H)

(
sin(θ−ζ)

cos ζ

)2

if T′ and T2
′ lie in the ray

→
P′N′ :

sy = c cos(t−ζ) sin(θ+ζ)
(H−∆H) cos ζ sin(90◦−ζ)

= c sin(θ+ζ) sin(θ+ζ)
(H−∆H) cos ζ cos ζ

= c
(H−∆H)

(
sin(θ+ζ)

cos ζ

)2

(19)

From Equation (10), Equation (20) are derived.

sin(θ−ζ)
cos ζ = d cos θ

c , if T′ lies in the ray
→

P′K′

sin(θ+ζ)
cos ζ = d cos θ

c , if T′ lies in the ray
→

P′N′
(20)

Substituting Equation (2) in Equation (19), the y-scale of the infinitesimal line segment
T′T2

′ (or a point T′) is computed by Equation (21).

sy =
d2 · cos2 θ

c(H − ∆H)
(21)

Whereas the x-scale represents the scale of a point in a direction perpendicular to
the principal line, the y-scale represents its scale in the direction parallel to the principal
line. In the case of line segments, the x-scale represents the scale of a line segment that
is perpendicular to the principal line, whereas the y-scale represents the scale of a line
segment that is parallel to the principal line, provided that the latter is of infinitesimal
length, as the y-scale can be considered constant only for an infinitesimal distance. These
scales can be used in order to compute ground distances. The x-scale and the y-scale differ
by the factor dcosθ/c (i.e., sy/sx = dcosθ/c), and the angle θ is positive and smaller than 90◦,
sy < sx if d < c, whereas sy > sx if d > c. Thus, for a specific image, the smaller the distance
d between a point and the true horizon line is, the smaller the y-scale is compared to the
x-scale, assuming that d < c. In the case that d > c for a specific image, the bigger d is, the
bigger the y-scale is compared to the x-scale. The length of a line segment that is neither
perpendicular nor parallel to the principal line can be roughly computed by obtaining the
lengths of its components, perpendicular and parallel to the principal line, using the x-scale
and the y-scale, respectively. However, it should be noted that since the scale is constant
only along lines perpendicular to the principal line and the y-scale assumes an infinitesimal
distance, ground distances of line segments that are not perpendicular to the principal line
may be only approximately computed using the scales given by Equations (11) and (21).

3.5. Basic Geometrical Relationships

In this section, basic mathematical relationships among the principal point, the horizon
point, the nadir point, the isocenter, the tilt angle, the depression angle, the apparent
depression angle and the swing angle as well as between the flying height and the dip angle
are presented, and their derivations are shown in this section for the sake of completeness.
These mathematical relationships are particularly useful for determining the geometry of
a single oblique aerial image. For instance, if the nadir point is automatically estimated
from an oblique aerial image of known interior orientation (e.g., via the method presented
in [3,64]), the tilt angle, the depression angle, the swing angle, the horizon point, and the
isocenter may also be calculated using the relationships presented in this section.
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3.5.1. Tilt and Depression Angles, Nadir Point, and Horizon Point

The depression angle is the complement of the tilt angle (Figure 8); thus, it is calculated
by Equation (22).

θ = 90◦ − t (22)

The depression angle may be calculated as a function of the distance between the
principal point and the horizon point (Figure 8) according to Equation (23).

K′P′ = c tan θ → θ = arctan
(

K′P′

c

)
(23)

The tilt angle may be calculated using the distance between the principal point and
the image of the nadir point (Figure 8) using Equation (24).

P′N′ = c tan t → t = arctan
(

P′N′

c

)
(24)

Taking into account the fact that the tilt angle is the complement of the depression
angle, the distance between the principal point and the image of the nadir point may,
alternatively, be expressed as a function of the depression angle, according to Equation (25).

P′N′ = c tan(90◦ − θ) → P′N′ = c cot θ (25)

The distance between the horizon point and the nadir point is calculated by Equation (26)
as a function of the depression angle or by Equation (27) as a function of the tilt angle
(Figure 8).

K′N′ = K′P′ + P′N′ → K′N′ = c tan θ + c cot θ → K′N′ = c(tan θ + cot θ) (26)

K′N′ = c(cot t + tan t) (27)

3.5.2. Isocenter

The distance between the isocenter and the principal point is calculated using Equation (28)
as a function of the tilt angle (Figure 5) or by Equation (29) as a function of the depres-
sion angle.

P′ I′ = c tan
(

t
2

)
(28)

P′ I′ = c tan
(

90◦ − θ

2

)
→ P′ I′ = c tan

(
45◦ − θ

2

)
(29)

The distance between the horizon point and the isocenter is computed by Equation (30),
as a function of the depression angle (Figure 5), using Equations (23) and (29).

K′ I′ = K′P′ + P′ I′ → K′ I′ = c
(

tan θ + tan
(

45◦ − θ

2

))
(30)

Equation (31) is derived by mathematical operations and trigonometric identities.

tan
(

45◦ − θ

2

)
=

1 − sin θ

cos θ
(31)

By substituting Equation (31) in Equation (30), Equation (32) is finally derived for the
calculation of the distance between the horizon point and the isocenter as a function of the
depression angle.

K′ I′ = c
(

sin θ

cos θ
+

1 − sin θ

cos θ

)
→ K′I′ = c

cos θ
(32)
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The distance between the horizon point and the isocenter may also be calculated by
Equation (33) as a function of the tilt angle using Equation (32) and taking into account the
fact that the tilt angle is the complement of the depression angle.

K′ I′ =
c

sin t
(33)

3.5.3. Swing Angle

The swing angle may be calculated according to the set of Equation (34) using the
coordinates of the nadir point in the image coordinate system centered at the principal
point (xc, yc) (Figure 9).

s =


90◦ + arctan

∣∣∣∣ xc
N′

yc
N′

∣∣∣∣ if xc
N′ ≤ 0

90◦ − arctan
∣∣∣∣ xc

N′
yc

N′

∣∣∣∣ if xc
N′ > 0

 (34)

Encyclopedia 2024, 4, FOR PEER REVIEW 13 
 

 

The distance between the horizon point and the isocenter is computed by Equation 
(30), as a function of the depression angle (Figure 5), using Equations (23) and (29). 

' ' ' ' ' ' ' ' tan tan 45
2

K K P P I K c
θΙ Ι θ  = + → = + ° −  

    
(30)

Equation (31) is derived by mathematical operations and trigonometric identities. 

1 sin
tan 45

2 cos

θ θ
θ

− ° − = 
   

(31)

By substituting Equation (31) in Equation (30), Equation (32) is finally derived for the 
calculation of the distance between the horizon point and the isocenter as a function of the 
depression angle. 

sin 1 sin
' ' ' '

cos cos cos

c
K c K

θ θΙ Ι
θ θ θ

− = + → = 
   

(32)

The distance between the horizon point and the isocenter may also be calculated by 
Equation (33) as a function of the tilt angle using Equation (32) and taking into account 
the fact that the tilt angle is the complement of the depression angle. 

' '
sin

c
K

t
Ι =

 
(33)

3.5.3. Swing Angle 

The swing angle may be calculated according to the set of Equation (34) using the 
coordinates of the nadir point in the image coordinate system centered at the principal 
point (xc, yc) (Figure 9). 

'

'

'

'

'

'

90 arctan  if 0

90 arctan  if 0

c

cN

Nc

N

c

cN

Nc

N

x
x

y
s

x
x

y

 
° + ≤ 

 =  
 ° − > 
   

(34)

 
Figure 9. Calculation of the swing angle of an oblique aerial image. P′: principal point; N′: image 
nadir point; s: swing angle; φ: a function of the swing angle: φ = s − 180°; (xc, yc): axes of the image 
coordinate system centered at the principal point; (x, y): axes of the image coordinate system cen-
tered at the top-left pixel of the image; (!��
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of the image.  

Figure 9. Calculation of the swing angle of an oblique aerial image. P′: principal point; N′: image
nadir point; s: swing angle; φ: a function of the swing angle: φ = s − 180◦; (xc, yc): axes of the image
coordinate system centered at the principal point; (x, y): axes of the image coordinate system centered
at the top-left pixel of the image; (xc

N′ yc
N′ ): coordinates of the nadir point in the image coordinate

system centered at the principal point; (xN′ , yN′ ) and (xP′ , yP′ ): coordinates of the nadir point and
the principal point, respectively, in the image coordinate system centered at the top-left pixel of
the image.

The coordinates of the nadir point in the image coordinate system centered at the
principal point (xc, yc) are computed bases on its pixel coordinates and those of the principal
point. Assuming that the image coordinate system in pixels (x, y) has its origin at the top-left
pixel, the swing angle is computed by the set of Equation (35) as a function of the pixel
coordinates of the principal point and the nadir point (Figure 9).

s =

 90◦ + arctan
∣∣∣ xN′−xP′

yP′−yN′

∣∣∣ if xN′ ≤ xP′

90◦ − arctan
∣∣∣ xN′−xP′

yP′−yN′

∣∣∣ if xN′ > xP′

 (35)

3.5.4. Dip Angle

The dip angle is geometrically calculated using the right triangle OCK1 (Figure 10),
according to Equation (36), where OK1 is the trace of the apparent horizon in the principal
plane and Rearth is the radius of the earth, assuming that the earth is approximated by
a sphere.

tan δ =
OK1

Rearth
→ δ = arctan

(
OK1

Rearth

)
(36)
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Figure 10. Section at the principal plane of an oblique aerial image illustrating the calculation of the 
dip angle (δ). OK1: the trace of the apparent horizon in the principal plane; Rearth: the radius of the 
earth, assuming that the earth is approximated by a sphere; C: the center of the earth; O: perspective 
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In the right triangle OCK1, Equation (37) is derived. 
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Substituting Equation (37) in Equation (36), Equation (38) is derived for the calcula-
tion of the dip angle. 
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Figure 10. Section at the principal plane of an oblique aerial image illustrating the calculation of the
dip angle (δ). OK1: the trace of the apparent horizon in the principal plane; Rearth: the radius of the
earth, assuming that the earth is approximated by a sphere; C: the center of the earth; O: perspective
center; P′: principal point; N′: image nadir point; H: flying height.

In the right triangle OCK1, Equation (37) is derived.

OK1 =

√
(Rearth + H)2 − Rearth

2 → OK1 =
√

2RearthH + H2 (37)

Substituting Equation (37) in Equation (36), Equation (38) is derived for the calculation
of the dip angle.

δ = arctan

(√
2RearthH + H2

Rearth

)
(38)

Considering that the radius of earth is constant, the dip angle is a function of the flying
height and increases with it. By ignoring the term H2 of Equation (38), as it is very small
compared to the quantity 2RearthH, and substituting the average value of the radius of the
earth, the dip angle is approximated by Equation (39) [44].

δ = 106.5
√

H, δ in seconds, H in meters (39)

3.5.5. Apparent Depression Angle

The apparent depression angle is calculated by Equation (40), where K1
′ is the point

of intersection of the apparent horizon line and the principal line (Figure 5).

tan γ =
P′K1

′

c
→ γ = arctan

(
P′K1

′

c

)
(40)

Equation (41) expresses the relationship between the apparent depression angle, the
depression angle, and the dip angle (Figure 5).

θ = γ + δ (41)

4. Determination of Distances

In this section, the mathematical relationships for estimating vertical and horizontal
distances from a single oblique aerial image are outlined. The prerequisite for the monocular
derivation of such metric information from an oblique image is the knowledge of the
following: (i) the nadir point of the image; (ii) the camera interior orientation; and (iii) the
flying height measured from the bottom point of the vertical object in the case of measuring
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a vertical distance or the flying height measured from the two points of same elevation
in the case of measuring a horizontal distance. The nadir point can be automatically
determined via the method presented in [3,64].

4.1. Vertical Distances

In [65], the height of a vertical object is computed from a single undistorted image
using knowledge of the vanishing line of the horizontal direction, as well as the nadir point
and image measurements of the top and bottom point of the vertical object, along with one
object of known height for which the top and base are imaged. This is a well-established
relationship that is mainly adopted for the case of terrestrial images, for which knowledge of
the height of a reference small object depicted in such images is generally available. In [66],
measurements of vertical distances from a single oblique image are made using knowledge
of all camera settings, flight parameters as well as detailed digital terrain models (DTMs)
and digital surface models (DSMs). In this section, a mathematical model for measuring
vertical distances from a single oblique image is proved anew. The main motivation for
proving anew such a relationship is the computation of the height of objects from a single
oblique aerial image for which neither the exterior orientation parameters are available
nor for which the height of a reference object is known. The external reference information
required by the relationship presented in this section is the flying height measured from
the bottom point of the vertical object, which, in the case of an oblique aerial image, is
generally more easily available than the height of a reference object depicted in the image.

Specifically, the relationship presented in this section differs from the one proved
in [66] on the grounds that it does not require knowledge of the camera exterior orientation
parameters and availability of detailed DTMs/DSMs. Hence, it may also be applied in cases
in which such data are not available. Similarly to the relationship presented in this section,
the one derived in [65] does not require any camera exterior orientation information. The
relationship presented in this section differs from the one derived in [65] in the initial data.
The relationship used in [65] assumes knowledge of the height of a vertical object for which
the top and base are imaged, whereas the relationship derived in this section assumes
knowledge of the flying height measured from the bottom point of the vertical object. In
addition to the image nadir point (which is also a prerequisite of the relationship presented
in this section), the relationship presented in [65] assumes knowledge of the vanishing line
of the horizontal direction. However, this is not a major difference, as knowledge of the
image nadir point permits the determination of the true horizon line assuming known
camera interior orientation parameters. This is achieved through estimation of the tilt angle,
computation of the distance between the horizon point and the nadir point, computation
of the coordinates of the horizon point, and estimation of the equation of the horizon line.

The mathematical model that can be used for computing the height of a vertical object
from a single oblique aerial image is presented in the following, based on detailed proof in
the doctoral dissertation of [3]. In Figure 11, B′ and T′ are the projections of the bottom point
B and the top point T, respectively, of an edge of a vertical object in an oblique aerial image
taken at a flying height H above a specific datum. ∆H is the elevation difference between
the datum plane and the bottom point of the vertical object (point B), being positive if
B is above the datum plane and negative if B is below the datum plane. In Figure 11, it
is assumed that the flying height is measured from the surface directly below the aerial
platform, i.e., the datum plane is the horizontal plane that contains the ground nadir point
N. H − ∆H is the flying height measured from the bottom point of the vertical object,
i.e., the vertical distance between the camera projection center and the horizontal plane
containing the bottom point of the vertical object to be measured. This is the quantity that
is required by the formula which calculates the height of a vertical object. In the case that H
is the flying height above a typical datum and practically refers to the Z coordinate of the
camera projection center (e.g., orthometric height in the World Geodetic System 1984—WGS
84 datum), ∆H refers to the Z coordinate of the bottom point of the vertical object to be
measured, which may be obtained by an online earth observation application, like Google
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Earth, and then H − ∆H may be calculated. In the case that H has been measured from
the surface directly below the aerial platform and, as a result, ∆H refers to the elevation
difference between the ground nadir point and the bottom point of the vertical object that is
being measured, the difference H − ∆H may also be obtained by an online application like
Google Earth, provided that the region vertically under the aerial platform can be located
in the map.
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Figure 11. Oblique aerial image geometry: calculation of the height of a vertical object. O: perspective
center; c: camera constant; P′: principal point; N′: image nadir point; H: flying height. B′ and T′: the
projections of the bottom point B and the top point T, respectively, of an edge of a vertical object in
an oblique aerial image taken at a flying height H above a specific datum; ∆H: elevation difference
between the datum plane and the bottom point of the vertical object; h: height of the vertical object;
N1: intersection of the horizontal plane containing the bottom point B with the vertical line from
the perspective center; T1: intersection of the horizontal plane containing the bottom point B with
the optical ray to the top point T; βB: the angle between the optical ray to the bottom point B of the
vertical object and the vertical line from the projection center; βT: the angle between the optical ray to
the top point T of the vertical object and the vertical line from the projection center.

The height (h) of the vertical object of interest is calculated according to Equation (42),
using the similar triangles ON1T1 and TBT1 (Figure 11), where N1 is the intersection of the
horizontal plane containing the bottom point B with the vertical line from the perspective
center and T1 is the intersection of the horizontal plane containing the bottom point B with
the optical ray to the top point T.

h = (H − ∆H)
BT1

N1T1
(42)

The distance BT1 is calculated by Equation (43), where βB is the angle between the
optical ray to the bottom point B of the vertical object and the vertical line from the
projection center and βT is the angle between the optical ray to the top point T of the
vertical object and the vertical line from the projection center.

BT1 = N1T1 − N1B → BT1 = (H − ∆H)(tan βT − tan βB) (43)
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By substituting Equation (43) into Equation (42), Equation (44) is derived, and it
computes the height of the vertical object.

h = (H − ∆H)

(
1 − tan βB

tan βT

)
(44)

The cosine of the angle βB is computed via Equation (45) using the law of cosines in
the triangle OB′N′.

cos βB =
(OB′)2 + (ON′)2 − (B′N′)2

2(OB′)(ON′)
(45)

The tangent of the aforementioned angle is estimated using Equation (46).

tan βB =

√
1 − cos2 βB

cos βB
→ tan βB =

√
4(OB′)2(ON′)2 −

[
(OB′)2 + (ON′)2 − (B′N′)2

]2

(OB′)2 + (ON′)2 − (B′N′)2 (46)

The tangent of the angle βT is calculated in a similar way according to Equation (47).

tan βT =

√
4(OT′)2(ON′)2 −

[
(OT′)2 + (ON′)2 − (T′N′)2

]2

(OT′)2 + (ON′)2 − (T′N′)2 (47)

Equations (48)–(50) are derived using the right triangles OP′B′, OP′T′, and OP′N.

ON′ =
√

c2 + (P′N′)2 (48)

OB′ =
√

c2 + (P′B′)2 (49)

OT′ =
√

c2 + (P′T′)2 (50)

By substituting Equations (46)–(50) in Equation (44), the height of a vertical object
is estimated using Equation (51). The image coordinates used in Equation (51) are those
corrected from systematic errors (e.g., radial and tangential distortion).

h = (H − ∆H)

1 −

√
4(c2+(P′B′)2)(c2+(P′N′)2)−[2c2+(P′B′)2

+(P′N′)2−(B′N′)2]
2

2c2+(P′B′)2
+(P′N′)2−(B′N′)2√

4(c2+(P′T′)2)(c2+(P′N′)2)−[2c2+(P′T′)2
+(P′N′)2−(T′N′)2]

2

2c2+(P′T′)2
+(P′N′)2−(T′N′)2



(P′B′)2 = (xB′ − xP′)2 + (yB′ − yP′)2

(P′N′)2 = (xN′ − xP′)2 + (yN′ − yP′)2

(B′N′)2 = (xN′ − xB′)2 + (yN′ − yB′)2

(P′T′)2 = (xT′ − xP′)2 + (yT′ − yP′)2

(T′N′)2 = (xN′ − xT′)2 + (xN′ − yT′)2

where



xB′ , yB′ , xT′ , yT′ :
the image coordinates of the bottom
and the top point of the vertical object
xN′ , yN′ :
the image coordinates of the
nadir point
xP′ , yP′ :
the image coordinates of the
principal point


∆H > 0 if the datum plane is lower in elevation than the bottom of the vertical object
∆H < 0 if the datum plane is higher in elevation than the bottom of the vertical object

(51)

4.2. Horizontal Distances

The estimation of horizontal distances from a single oblique aerial image is based on
the computation of ground coordinates in a local coordinate system. The computation of
ground coordinates in such a local ground coordinate system (hereinafter referred to as
auxiliary ground coordinate system) has been presented and proved by the photogram-
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metric community [44,49]. In this section, for the scope of completeness, the derivation of
the formulas that compute horizontal coordinates in the local auxiliary ground coordinates
system is also presented.

The calculation of horizontal coordinates in the auxiliary ground coordinate system
requires the use of an auxiliary image coordinate system. For defining the latter, it is
assumed that the image has been corrected from systematic errors (e.g., lens distortion) or
that systematic errors are insignificant and can be ignored. The auxiliary image coordinate
system has its origin at the nadir point. The y axis coincides with the principal line, while
the x-axis is perpendicular to the principal line, hence forming a horizontal line (Figure 12).
It has been proven that the coordinates of an image point A′ in the aforementioned auxiliary
image coordinate system are computed using Equation (52) [49], where the angle φ is a
function of the swing angle s: φ = s − 180◦ and assuming that the origin of the image
coordinate system in pixels (x, y) is located at the top left pixel.

x′A′ = (xA′ − xP′) cos φ − (yP′ − yA′) sin φ
y′A′ = (xA′ − xP′) sin φ + (yP′ − yA′) cos φ + c tan t

(52)
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Figure 12. Auxiliary coordinate system of an oblique aerial image (x′, y′). P′: principal point; N′:
image nadir point; s: swing angle; φ: a function of the swing angle: φ = s − 180◦; (xc, yc): axes of the
image coordinate system centered at the principal point; (x, y): axes of the image coordinate system
centered at the top-left pixel of the image; (xP′ , yP′ ) and (xA′, yA′ ): coordinates of the principal point
and of an image point A′, respectively, in the image coordinate system centered at the top-left pixel of
the image; (xc

A′ yc
A′ ): coordinates of the image point A′ in the image coordinate system centered at the

principal point.

The origin of the auxiliary ground coordinate system is located at the ground nadir
point, while the X′ and Y′ axes are on the same vertical planes with those of the auxiliary
image coordinate system, maintaining the same positive directions as them [3,44,49]. The X′

and Y′ coordinates of Point A in this system are calculated through the set of Equation (53)
and have the same signs as its auxiliary image coordinates x′ and y′, respectively.

X′
A =


∣∣∣∣ (H−∆H)x′A′ cos t

c−y′
A′ sin t cos t

∣∣∣∣ if x′A′ ≥ 0

−
∣∣∣∣ (H−∆H)x′A′ cos t

c−y′
A′ sin t cos t

∣∣∣∣ if x′A′ < 0

 Y′
A =


∣∣∣∣ (H−∆H)y′A′ cos2 t

c−y′
A′ sin t cos t

∣∣∣∣ if y′A′ ≥ 0

−
∣∣∣∣ (H−∆H)y′A′ cos2 t

c−y′
A′ sin t cos t

∣∣∣∣ if y′A′ < 0

 (53)

If the camera tilt angle t, used in the set of Equation (53) is not known a priori, it
may be calculated through Equation (24), provided that the principal point and camera
constant are known and the image nadir point has been determined (e.g., through the
method presented in [3,64]).
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The distance between two points A and C is calculated by Equation (54) after the
determination of the coordinates of A and C in the auxiliary ground coordinate system, i.e.,
(X′

A, Y′
A) and (X′

C, Y′
C), respectively.

d =

√(
X′

C − X′
A
)2

+
(
Y′

C − Y′
A
)2 (54)

5. Conclusions

In this entry, basic definitions and geometric relationships for oblique aerial images
have been presented. Specifically, the well-established classification of oblique aerial
images into low and high oblique ones has been presented, the camera configurations
for capturing datasets containing oblique aerial images have been summarized, and basic
terms associated with oblique aerial images along with their geometric properties and
relationships have been outlined. Furthermore, mathematical relationships for computing
vertical and horizontal distances from a single oblique aerial image have been established.
While the measurement of horizontal distances by a method similar to the one presented
in this entry has already been outlined by the photogrammetric community since the
20th century, the mathematical model presented in this entry for the determination of
vertical distances has been proven anew and may be used instead of other well-established
relationships for measuring the height of a vertical object. The mathematical models for
determining vertical and horizontal distances may be used in combination with a nadir
point detection technique, for the establishment of an automated framework for measuring
vertical and horizontal distances from a single oblique image with unknown exterior
orientation parameters and unavailable GCP measurements.
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