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Simple Summary: Stress in beef cattle occurs throughout all management practices. The goal of a
cow–calf producer is to produce one calf per cow a year; thus, stressors in these management systems
can disrupt this desire. When homeostasis is disturbed, the efficiency of a beef cow decreases, which
may lead to reproductive deficiencies, reduced daily intake, and a decreased body condition score.
Therefore, this decline in production efficiency may cause a loss in the profitability of the operation.
The goal of this review is to address the stressors inherent in beef cattle management systems to
provide producers with insight into the best ways to mitigate beef cattle stress.

Abstract: Stressors are directly related to major events throughout the beef cattle production cy-
cle. Understanding the impact stressors have on productive outcomes is critical for the efficient
implementation of management strategies. Such stressors include environmental extremes, nutri-
tional deprivation, and common management procedures. Environmental extremes such as thermal
stress can disturb gestating cows’ normal physiological responses, hindering reproductive efficiency.
Thermal stress during the breeding season can affect embryo development causing a decrease in
conception rates, although adjusting the scheduling of breeding activities can minimize losses. Ad-
ditionally, suboptimal nutrition may negatively impact reproductive performance if management
strategies including modifying seasonal grazing practices are not implemented. As gestation pro-
gresses, nutrient requirements increase; thus, without appropriate dietary management, poor calf
performance, the loss of the body condition score, and reduced reproductive performance may
result. While weaning is a common management procedure, this event is another major stress within
the production system. Applying efficient strategies such as creep feeding or two-step weaning
to mitigate weaning stress can maximize production efficiency. This review will explore in-depth
the stressors associated with production events in the beef cattle industry and give insight into
researched management strategies targeting these stressors that will improve the sustainability of the
production system.
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1. Introduction

The factors associated with stress and productive efficiency in the beef cattle industry
are well documented. Stress in cattle is defined as the adverse effect in the management
system (internal) or environment (external) that elicits a biological response when there is
a threat to the homeostasis of the organism, which forces change in animal behavior and
physiology [1–3]. Homeostasis is the state in which an organism maintains a stable state
in its environment [2]. Both these definitions have evolved to recognize that the response
to stress differs among individuals and that physiological stress responses change over
time [4].
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The challenge for beef cattle producers is to accurately assess individual animal stress
responses and determine whether homeostasis has been disturbed. There are three main
ways to measure stress, behavioral indicators (such as temperament, pen score, and feed
intake), animal-based indicators (including heart rate, morbidity, and mortality), and
biomarkers (such as cortisol and prolactin) [5]. A delay in detecting and/or addressing
stress can lead to prolonged and/or repeated stress within the animal. This can impact
animal wellbeing as well as the economic sustainability of the operation [5].

Throughout a beef animal’s life, stress can arise physically or physiologically through
weather, the nutritional regimen, routine management, and handling or social interactions.
When stress occurs, the animal will respond by activating the hypothalamic–pituitary–
adrenal (HPA) axis and the sympathetic nervous system [5–7]. This activation results
in a cascade of physiological responses designed to re-establish homeostasis including
an increased heart rate, respiration rate, carbohydrate metabolism, and stimulation of
the immune system [8–10]. There are two classifications of stress, acute and chronic
stress. Acute stress is considered a physiological response that lasts from a few min-
utes to a few days and elicits the flight or fight response [11], whereas chronic stress is
long-term or repeated and may be a sign of distress leading to health and reproductive
disorders [5].

As for the cause of stress within a beef cattle production system, the primary stres-
sors are environmental extremes such as thermal stress (heat, cold, wind, rain, and ice),
nutritional stress (undernutrition and nutritional imbalance), and stressors associated with
common management procedures (transportation and weaning) [5]. Environmental ex-
tremes associated with thermal stress are common in regions with high and low ambient
temperatures and may lead to hypo- and hyperthermia, which may have lasting impacts
on cattle productivity. Another stressor is nutritional stress, and while this stress may be
avoided by simply choosing the right calving season or breeding season for the climate, the
stress of poor nutritional management can occur during any period of the beef production
cycle. Management stress, on the other hand, commonly occurs in cow–calf operations dur-
ing weaning, although this type of stress can be frequently observed during transportation
and feedlot entry. This paper will discuss these stressors experienced by beef cattle during
their productive lives and how they can affect the economic sustainability of an operation.
Using published research related to beef cattle production, this review will provide insight
into stressors inherent to beef cattle production, the resulting potential impacts of stressors,
and management strategies for stress mitigation. The following stressors will be ad-
dressed within this review utilizing the undermentioned order: (1) environmental extremes,
(2) nutrient deprivation, and (3) management procedures. The proceeding three sections
will detail each stressor and the respective impacts on the production system along with
common mitigation practices associated with the stressor.

2. Environmental Extremes

During times of climatic extremes, the normal maintenance requirements of the cow
are disturbed, thus affecting feed intake, the rate of gain, mortality, and fertility [12].
Extreme effective ambient temperatures can directly and indirectly affect productive pa-
rameters [13]. More specifically, when extreme increases or decreases in environmental tem-
perature occur, normal maintenance requirements are disrupted, and energy is redirected
from growth and development or healthy weight gain and reproduction to re-establishing
homeostasis [14–16]. Environmental conditions such as drought, extreme weather, heat
stress, and ambient temperatures create additional stress on both the cow and calf [13].
Thus, in extreme-weathered regions, producers will avoid these high-risked conditions to
protect against potential losses [17]. This mitigation strategy, however, is limited as more
than 40% of beef cows and 50% of the United States’ cow–calf producers are located in trop-
ical/subtropical climates of the south and southeast [18,19], where production must adapt
to a warming climate. As such, due to the prevalence of beef cattle production systems com-
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monly located within these regions encountering thermal stress, this review will primarily
focus on the impacts of increased heat load in beef cattle on productive parameters.

2.1. Heat Stress

The normal regulation of body temperature in cattle may be disrupted in hot, humid
environments [20]; thus, the adoption of certain behavioral mechanisms to decrease animal
exposure to heat is vital for maintaining productive efficiency [21]. When normal physio-
logical responses are disturbed in these extreme environments, heat stress occurs forcing
the cattle to become hyperthermic, and the heat exchange of metabolic functions including
growth, maintenance, and lactation is reduced [22]. During times of heat stress, cattle will
hyperventilate causing respiratory alkalosis. An extreme event causing abnormally hot
and humid weather lasting at least one day, called a heat wave, has been a reoccurring
phenomenon in regions around the United States [23,24]. In 1999, north-central Nebraska
experienced a heat wave which killed 5000 head of cattle on feed [25]. Further, cattle enter-
ing the feedlot are the most vulnerable to heat stress reducing feed intake, thus affecting
efficiency and growth [26].

The breeding season is another period of the beef production cycle which may be
negatively impacted by thermal stress; thus, adequate planning is crucial to enhance the
conception rates and reproductive efficiency of the herd [27]. Elevated temperatures and
humidity result in a state of heat stress in the cow, during which the redistribution of
blood flow occurs. More specifically, blood flow to internal organs, such as the uterus,
is reduced, whereas blood flow to the skin and extremities is elevated. The result is an
increase in uterine temperature and reduction in the perfusion of hormones to uterine
tissues [28–30]. Additionally, the resulting endocrine disruption of processes controlling
gonadal development and function [31] may delay the development of ovarian follicles,
increase fetal and embryo loss, and reduce the ovulation rate [3,32]. Ultimately, these en-
docrine changes may reduce the degree of dominance of the selected follicle, thus altering
the ovulatory mechanism and reducing oocyte quality [17,33]. The potential for embry-
onic loss is increased when the cow conceives in a time of heat stress due to disruption
in the physiological regulation of oviductal and uterine function [34], which are critical
for reproductive success. The root of this embryonic loss is a decrease in the synthesis
of specific proteins by the embryo, causing heat shock from prolonged exposure to ele-
vated temperatures [35–37]. In some cases, the embryo is able to adjust to the maternal
environment either by self-adjustment or by acting on the dam, but this is dependent on
the timing of the heat stress on the mother [34]. However, when heat stress is induced
later in embryonic development, during the preimplantation period, embryo survival is
increased [22,35]. These results can be attributed to the acquisition of resistance to mater-
nal heat stress by the embryo during the four- to eight-cell stage of development called
the morula stage [35,38]. Within the heat stress transcription factor system, a cellular
response occurs to minimize the effects of heat stress [39,40]. Heat stress factor 1 binds to
the promoter of the heat shock protein (HSP) gene, which rapidly increases expression in
heat-stressed cells inducing protective mechanisms [40,41]. More specifically, the produc-
tion of HSP70 increases as gestation progresses, which serves to stabilize protein structure
and thereby inhibit the translation of factors inducing apoptosis [42,43]. As reported by
Silva et al. [40], as maternal heat stress continues into the later stages of embryo devel-
opment, the ability of resistance to elevated temperatures becomes more apparent in the
embryo, indicating adaptability.

Additionally, the species of cattle, B. indicus or B. taurus, can influence cattle resistance
to elevated temperatures. In a recent study, B. indicus embryos were less affected by
heat stress compared to their B. taurus counterparts which had lower rates of embryonic
development and reduced embryo quality [40]. It could be that B. indicus cattle, such as
Nellore, are more adapted to environments with elevated temperatures. More specifically,
reports by Hernández-Cerón et al. [44] and Paula-Lopes et al. [45] reported that Brahman
embryos were more resistant to heat stress compared to Angus, as demonstrated by reduced
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embryonic loss. Elevated HSP gene expression is less common in B. taurus cattle as they
perform better in cooler climates, compared to their B. indicus counterparts, which perform
better in warmer climates [46]. Incorporating B. indicus genetics into a herd located in
a hot, humid climate can increase herd productivity. This species of cattle has reduced
metabolic rates, thus decreasing the amount of heat produced [47]. Inter- and intramuscular
fat deposits insulate the animal causing the heat produced from metabolic processes to
dissipate [19]. Additionally, B. indicus cattle have smoother hair coats that are lighter in
color preventing heat absorption and reflecting solar radiation [47]. Although there has
been some evidence showing that some B. taurus cattle varieties, such as Senepol and
Romosinuano, display the genes for embryo resistance to heat stress, it is not as common
compared to B. indicus cattle [40].

2.2. Climate

Climate change is considered a long-term change in natural events causing varia-
tion [48]. The health of rangeland ecosystems has been greatly affected by climate change
in the United States through the increased incidence of drought, decreased aquifer levels,
and the overgrowth of invasive plant species [48,49]. Rangelands consist of diverse species
of shrubs, forbs, and grasses used for many different services for cattle production [49].
Weather extremes such as heat waves and heavy precipitation have significantly increased
east of the Mississippi River [48,50,51]. These weather extremes can decrease productivity
and cause economic loss in the beef cattle industry.

In the U.S., when drought occurs, producers using a late-spring calving season have
less time to react due to the presence of late-term cows and infant calves [17]. Some drought
management strategies include early weaning, a modified stocking rate, creep feeding,
supplementation, and culling [52,53]. Choosing calving seasons around extreme weather
such as freezing rain, flooding, or blizzards is important as it can affect calving, breeding,
and the nurturing of young calves [17]. For example, in a study conducted in the northern
Great Plains, Kruse et al. [54] reported a 2% increase in calf morbidity during late-winter
calving compared to early- or late-spring demonstrating the value of selecting the right
calving season specific to regional environmental factors.

Globally, the increase in carbon dioxide (CO2) in the atmosphere has been affecting
forage availability and quality [55,56]. Grasses are categorized into warm-season (C4)
and cool-season (C3) [57]. While both these grass types are nutritionally different, in-
creased CO2 levels affect both plants. With the combination of warming and elevated
CO2 levels, Augustine et al. [58] reported that forage production, on average, increased
38% with both C3 and C4 grasses. These authors evaluated grasses present in a north-
ern mixed grass prairie in Wyoming, USA, which consisted primarily of the C3 grasses
Western Wheat Grass (P. smithii) and needle-and-thread grass (H. comata) and C4 grass
Blue grama (B. gracilis) [58]. While the productivity of these grasses is important, looking
at the nutritional value of forage is crucial for optimal beef cattle efficiency. Accordingly,
Augustine et al. [58] reported cattle grazing on the previously C3 and C4 grass species
experienced a reduction in weight gain due to the decrease in total digestible nutrients.
Corroborating these results, Barbehenn et al. [59] reported a decline in the protein lev-
els of six different C3 grass species when exposed to increased CO2 levels compared to
six C4 species found in the same region. Conversely, McGranahan and Yurkonis [56]
documented an increase in forage quality and protein levels when elevated CO2 was
present. Management strategies such as protein supplementation and modifying the sea-
sonality of grazing can be implemented for the maximum efficiency and productivity of
an operation [58]. Collectively, these results demonstrate the need for research investi-
gating the impact of climate on forage quantity and quality and subsequent impacts on
animal productivity.



Ruminants 2024, 4 231

3. Nutrient Deprivation

Nutrients consumed by the cow are considered the “fire of life” for reproduction and
all other biological functions [60]. Nutrition influences reproduction in beef cattle [61];
thus, the body condition score (BCS), an indirect measurement of body nutritional status,
influences overall productivity and reproductive performance [62]. During breeding season
and before parturition, the BCS is an important factor positively impacting pregnancy rates
in beef cattle [63]; thus, providing adequate nutrient intake is crucial for reproductive
efficiency. Within the cow–calf production cycle, nutrient requirements change based
on the physiological status of the animal and should be monitored and matched to the
environment [62]. During important production cycles such as calving and breeding,
successful producers will choose a season that is the least stressful and when supplemental
feed resources and grazing opportunities are abundant [64].

3.1. Reproductive Performance

Many husbandry practices and environmental variables/conditions such as nutritional
status and feed intake can greatly affect productivity [65–68]. Ultimately, the reproductive
system is mediated by metabolic hormones and energy metabolites and body tempera-
ture, thus affecting oocyte quality, uterine health, ovarian function, and the development
compacity of the conceptus [69]. Adequate nutrient intake is important before and after
calving as this impacts the calving-to-conception interval of the cow [65]. The acquire-
ment of an adequate pulse frequency (4-5 pulses/10-h period) of luteinizing hormone
(LH)/gonadotropin hormone-releasing hormone (GnRH) allows for the resumption of
cyclicity about 60 days after calving [68], whereas the BCS at calving impacts LH pulse
frequency [70]. According to Rutter and Randel, 1984 [66], there has been a general
agreement that a postpartum cow with a good BCS score will return to estrus earlier,
whereas obese cows with a high BCS may experience suboptimal reproductive perfor-
mance. A low BCS is a reliable indicator of poor nutrient intake, which may prolong
the length of the postpartum interval and return to estrus [65,67], negatively impacting
the productive efficiency and economic sustainability of the operation [66]. In a report
by Richards et al. [71], it was documented that the resumption of estrous cyclicity was
delayed, and a greater percentage of cows conceived later in the breeding season when
cows had an inadequate BCS (<4; scale from 1–10) at calving. Reproductive performance
such as postpartum rebreeding is negatively affected by undernutrition due to low-quality
feed or a feed shortage; thus, adequate BCSs are important throughout a beef cow’s
production cycles.

Choosing a breeding season that matches high forage quality with production re-
quirements is important for not only the cow but also the calf. Environmental factors
including annual rainfall and weather extremes vary among regions, thus preventing a
universal breeding season [17]. For instance, in the western United States, forage quality
and availability are determined by general topography, the geographic area, elevation, and
amount of precipitation [72]. Additionally, the opportunity to achieve greater efficiency
from the forage available is through a short breeding season [72]. An ongoing University
of Nebraska study reported a decrease in pregnancy rates when cattle are bred to calve
during May, which was attributed to the low forage availability and quality and the time
of breeding in late summer [73]. As such, undernutrition is considered a main deficiency
that influences reproduction in cattle [74,75]. Conversely, others have reported that early-
summer calving resulted in adequate forage availability due to the higher crude protein
concentrations that met nutritional requirements for the female with minimal supplementa-
tion [76,77]. During times of drought, the potential for aflatoxins is increased due to the
growth of some species of mold [78–80]. This poisonous by-product can lower reproductive
efficiency through abnormal estrous cycles and abortions, a reduced growth rate, and
decreased feed efficiency [80]. The quality of the forage determines cattle forage intake,
forage protein content, and mineral content, so when only low-quality forage is available,
supplementation is often required [61,81–83].
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Protein supplementation increases cattle’s total daily energy intake, permitting greater
forage consumption and digestibility [84]. When forage quality is low or around aver-
age, forage intake with protein supplementation increases, but energy supplementation
does not. When forage quality is high, forage intake is constant with protein and energy
supplementation. However, energy supplementation increases production cost, and as
such, this may not be economically appropriate for all producers [82]. In a report by
Cooke et al. [85], it was documented that performance and reproductive development were
impacted detrimentally when cows on low-quality forage had a reduced supplementation
frequency. Nevertheless, Kanuya et al. [86] lay out multiple management strategies avail-
able that include a component of strategic feeding supplementation when the forage quality
is low to even out the feed supply over the year. Overall, it is important and sometimes
necessary to meet a cow’s high nutrient demand with supplementation during lactation
and breeding when forage conditions and quality are not optimal [64,82]. These findings
further reinforce supplementation when the forage quality is low for the optimal ruminal
digestion of protein.

3.2. Gestation and Calving

Stress during gestation impacts both offspring and cow performance. Nutrient re-
quirements increase as gestation progresses; therefore, if nutrients are restricted during
the last third of gestation, reproductive performance is often negatively affected by the
decreasing weight and condition of the dam [61,81,87]. Hough et al. [61] reported that cows
during the last 90 days of gestation lost 22 kg of body weight and decreased in the weight–
height ratio when there was a reduction in protein and energy intake by 43%. In contrast,
Izquierdo et al. [88] stated that the decrease in the frequency of protein and energy sup-
plementation during the third trimester of gestation did not affect the reproductive perfor-
mance or BCS of the cow pre- or postpartum. However, decreasing those supplementations
during the third trimester did reduce preweaning growth performance. This suggests
supplementation during this trimester does not improve maternal performance but is
required for the optimal preweaning calf growth performance.

Calf performance is related to the maternal nutrition of the beef cow [89]. During
the fetal period, the nutrient deficiency of the cow can reduce the progression of skeletal
muscle development because the growth of new muscle fibers only occurs during this
period [89–94]. Additionally, pre-calving nutrition influences the mammary gland and
colostrum yield of the cow, thus affecting the disease susceptibility of the calf [89,95]. In
a study by Corah et al. [96], 19% of calves from mature cows fed a low-energy diet were
treated for scours. The level of gamma globulin in the cows’ colostrum may have been
altered resulting in the calves not being able to absorb enough immunoglobulin to sup-
port their immune system. Nutrient deficiencies during early pregnancy have a potential
long-term effect on offspring as vital organs and tissues are being developed; therefore,
later gestation deficiencies impact carcass weight and fetal growth [93,97]. Deficiencies of
trace minerals during gestation can negatively impact the fetus’s immunological, growth,
and morphological development [81,98]; thus, the fetus relies on the maternal–fetal inter-
face to meet trace mineral requirements [99]. Trace minerals such as Cu, Zn, I, Mn, Se,
and Fe are commonly supplemented in a beef cow diet. Marques et al. [100] reported
that gestating cows fed trace mineral supplementation (Co, Cu, Mn, and Zn) had less
trace mineral concentrations in the liver when compared to the offspring. This suggests
that trace mineral supplementation is directed towards fetal requirement over maternal
requirement [81].

4. Management Procedures

Necessary management procedures such as routine handling and transportation
in a cattle operation may induce a stress reaction in the animal and pose an economic
burden to the livestock industry reflected for both the consumer and producer [101].
Normal procedures such as weaning, transportation, and commingling can increase the
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production and secretion of stress-related hormones. This, in turn, can adversely affect
the immune function, growth, and reproduction of the cattle, particularly if the stress is
chronic [101–105].

4.1. Transportation

Transportation is a necessary part of beef cattle production as it is linked to significant
bovine life events such as weaning, sorting, slaughter, and processing [106–108]. However,
this management practice elicits a stress response in the beef animal, which may negatively
impact productive outcomes including reproductive performance and health status. Even
pre- and post-transportation management such as social regrouping, noise, vibration, and
crowding may elicit a stress response. Long-distance transportation is particularly detri-
mental to cattle’s productive outcomes as it results in prolonged feed and water deprivation,
causing slow recovery upon arrival [3]. A report by Marques et al. [109] compared the
effects on 24-h road transportation to 24-h food and water deprivation and found that the
major factor in performance loss is food deprivation during transportation. Nonetheless,
performance loss during transportation can further be exacerbated due to tissue damage,
discomfort, and added stress associated with the truck environment and truck-associated
parameters. In addition, if cattle are shipped for long distances without food, water, or rest,
an unavoidable loss of body weight, called shrink, occurs. Overall, shrink is a measure
of performance, but it can also dictate the health status of the animal. The duration of
the journey has a greater impact on the cow than the distance [3]. Consequently, as the
duration of the journey increases, so does the mortality rate of beef cows due to factors
associated with transportation. This should be a consideration for producers in planning
transporting events within cattle management.

Additionally, it is important to consider the age of the cow when determining the
management of transporting-related stress and its effect on immunosuppression as younger
cows are more affected than older cows. Furthermore, once the cow has arrived at the
destination, the cow’s behavior is altered, and metabolic changes occur as the cow tries
to adjust to its new environment [106]. Some of these metabolic changes include altered
metabolism, immune competence, and failure in reproduction [3]. The close management of
nutrition before and after transportation can play a vital role in how animals will respond to
transportation stress [108]. In fact, the supplementation of zinc has been shown to improve
animal welfare in response to transportation by increasing dry matter intake and reducing
muscle fatigue post-transit [110]. Along with age and nutritional considerations, there
are additional factors a producer should consider when transporting cattle to minimize
stress such as driver training, routes of travel, truck design, and cattle behavior [107,111].
Furthermore, preweaning or preconditioning calves before transportation improves overall
calf performance and decreases the incidence of bovine respiratory disease (BRD) [112,113].
Overall, while research on beef cattle and welfare during transportation in the U.S. is limited,
previous work suggests the value of management strategies that minimize transportation
stress and the potential for future research to explore this topic in order to manage stress
more effectively within the production system.

4.2. Weaning

In modern cattle production systems, weaning entails the separation of calves from
their dams, thus allowing the dam to improve in body condition and prepare for the next
lactation [114]. There are multiple husbandry factors that occur during weaning, which may
include mixing with unfamiliar cattle, novel diets and environments, frequent handling
involving contact with humans, transportation, and marketing [115]. In addition, the calf
undergoes sudden change during the weaning process associated with socialization as
there is a loss of social contact with the dam and the milk she provides. Consequently,
weaning results in behavioral and physiological alterations in the calves [114]. Therefore,
the calf’s immune system is altered resulting in an increase susceptibility to BRD along with
an overall disruption in the homeostasis of the internal functions of the calf [115,116]. This
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occurs because of the number of psychological and physical stressors the animal endures
during this time frame, and thus, considerations of these events associated with weaning
are necessary for the proper growth and development of the calf.

Among the many behavioral changes, the most characteristic indicator of weaning
stress is the change in the vocalization and activity of the calf [105]. An increase in high-
frequency vocalization has been observed to provoke maternal care, reuniting with the dam,
and hunger [114,117]. This is a sign of frustration from being able to receive food and care.
This, however, can be detrimental to the calf as increased vocalization is energy-costly and
increases the risk of attracting predators [114]. Additionally, immediately after weaning,
calves have been known to increase the frequency in other stress responses associated with
locomotive behaviors including walking and pacing. The number of hours a calf will spend
standing compared to resting is substantially higher, which disrupts the feeding behaviors
including the grazing time and consumption of solids reducing rumination time. The age at
weaning can also affect production factors such as feed intake, growth, and the overall stress
response [118]. In a study by Arthington et al. [119], early-weaned calves (89 days of age)
had a similar feed intake as the normal-weaned calves (300 days of age) during a 28-day re-
ceiving period, but early-weaned calves gained twice the body weight than normal-weaned.
Additionally, during the growing period, the dry matter intake did not differ between
the two groups, but early-weaned calves were still more efficient with average daily gain
compared to the normal-weaned calves. Overall, Arthington et al. [119] reported that early-
weaned calves were more tolerant to stressors throughout the production periods than
their normal-weaned counterparts. During weaning, according to O’Loughlin et al. [115], a
percentage of the caloric nutrient intake will be used for stabilizing physiological processes
associated with the immune response, depriving nutrients from processes such as growth
and muscle deposition. As such, the earlier the weaning process occurs, the quicker the
animal can recover from the experience to allow for proper development. For example,
O’Loughlin et al. [115] examined leukocytes (neutrophils, lymphocytes, eosinophils, and
monocytes) in circulation and the correlation with weaning stress. These authors reported
an increase in the neutrophil count 3 days after weaning, whereas calves housed with
their mother exhibited a delay in increased neutrophils [115]. Consistent with these find-
ings, other studies have reported significant increases in circulating neutrophils following
weaning [120–123]. Collectively, these results demonstrate that neutrophils are a viable
biomarker to detect weaning stress and that physical separation and weaning from the
dam is the most stressful to the calf. Furthermore, O’Loughlin et al. [115] report on day 14
an increase in the concentrations of plasma chemokine (CXCL8), which is an inflammatory
mediator. Throughout the study, calves did not display any clinical infections or respiratory
diseases, but this could be associated with husbandry management procedures performed
during the study. Therefore, studies like this suggest neutrophils and plasma CXCL8 are ro-
bust biomarker indicators of weaning stress, giving light to production events that can bring
about stress.

There are many different weaning methods used across beef cattle operations all with
the same goal of reducing the negative consequences of weaning. The most common
method of weaning is abrupt separation which has been reported to have a negative effect
on cattle welfare [112,113,124]. One method used is to enable calves to cope with the
changes in diet by using a practice called creep feeding [114]. Creep feeding allows the
calf to have access to high-quality feed before weaning, which stimulates the calf to eat
solid food and reduces its social and nutritional dependence on the dam. Studies found
that calves conditioned on creep feed ate longer and had reduced behavioral stress after
weaning [114,125]. Another method utilized for reducing weaning stress is mimicking the
natural weaning process [114]. This can be conducted through a method that separates
the cow and calf through fence-line weaning, which allows for partial physical contact
without suckling [126,127]. It was found that fence-line-weaned calves had a higher daily
weight gain [113], decreased vocalization, increased time eating, and less time walking
during the final separation [125]. Two-step weaning or nose-flaps is a device worn by the
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calf for 14 days and acts as a physical barrier to nursing [127]. This two-stage method
has been reported to decrease vocalization and reduce the time spent walking compared
to abrupt weaning [124]. Lower-stress weaning methods may require more land, labor,
and costs, thus the evaluation of these management practices needs to be addressed [127].
Understanding the physiological mechanisms associated with weaning and the result-
ing behaviors, beef cattle producers can adapt to reduce the weaning stress that might
hinder production.

5. Conclusions

Once the stressors of a production system are understood, producers can find manage-
ment strategies to help mitigate these stress effects. If stress during certain management
strategies is not addressed, the mortality and morbidity of the herd will increase resulting in
a decrease in the profitability of the production system. Overall, if decreasing the incidence
of disease, implementing the optimum feeding programs, and minimizing the stress of
an animal are accomplished, then reproductive efficiency will be optimized, increasing
profits for the producer. Therefore, the minimization of stress is necessary for successful
production management. As reported by the reviewed literature, this can be accomplished
by implementing specific control strategies associated with addressing stress related to
environmental extremes, nutrition, and common management procedures. This can in-
clude adaptations to the schedule associated with breeding practices, seasonal grazing,
and transportation along with changes in diet and weaning practices. Minimized stress
through these control strategies can result in the maximum profitability of the herd. As a
producer, being able to identify indicators of stress during each stage of production and
effectively addressing these stressors once they are identified ensure the effective economic
sustainability of the farm and overall herd health.
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