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Abstract: The purpose of this work is to present a three-species harvesting food web model that takes
into account the interactions of susceptible prey, infected prey, and predator species. Prey species
are assumed to expand logistically in the absence of predator species. The Crowley–Martin and
Beddington–DeAngelis functional responses are used by predators to consume both susceptible and
infected prey. Additionally, susceptible prey is consumed by infected prey in the formation of a
Holling type II response. Both prey species are considered when prey harvesting is taken into account.
Boundedness, positivity, and positive invariance are considered in this study. The investigation covers
all the equilibrium points that are biologically feasible. Local stability is evaluated by analyzing the
distribution of eigen values, while global stability is evaluated using suitable Lyapunov functions.
Also, Hopf bifurcation is analyzed at the harvesting rate H1. At the end, we evaluate the numerical
solutions based on our findings.

Keywords: prey–predator; Crowley–Martin type; Beddington–DeAngelis form; equilibrium; stability;
bifurcation

1. Introduction

In the natural environment, a variety of diseases may arise and spread among species
when they interact with other organisms. Mathematical models have evolved into impor-
tant tools for evaluating disease propagation and control. An eco-epidemiological model of
diseased three-species food webs includes infectious prey, susceptible prey, and predators.
At the beginning of the 20th century, several strategies were established in mathematical
ecology to predict the presence of organisms and species of growth. The first significant
attempt in this field was the well-known traditional Lotka–Volterra model [1] in 1927.

The investigation of predator–prey relationships is a crucial field of ecological research.
The mathematical modeling of epidemics has become a prominent field of research. In this
field, a substantial quantity of research has been performed [2–4]. Furthermore, mining and
harvesting are practiced on a large number of the species found in the natural environment.
Harvesting of the species is required for coexistence, and hence, the researchers were quite
interested in the proposed ecological models. Different methods of harvesting have been
proposed and explored, including constant harvesting, density-dependent proportional
harvesting, and nonlinear harvesting [5,6]. By considering the above, in this work, we
propose and study an eco-epidemiological prey–predator model involving different func-
tional responses of harvesting. The majority of functional responses, like Holling types, are
classified as “prey-dependent” because they depend on either the predator or the prey [7].
Both the prey and the predator are taken into account in Crowley–Martin reactions. In the
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Beddington–DeAngelis form, handling prey and hunting prey are viewed as two separate
and independent actions. The response function of Beddington–DeAngelis, Holling type
II, and Crowley–Martin forms are considered in this work. The main goal of this study
is to analyze how disease and prey harvesting affect the predator–prey relationship. To
the best of our knowledge, no studies have looked at an eco-epidemiological model of the
three-species food web of harvesting with varying functional responses.

Section 2 addresses the mathematical expression. Some preliminary observations
are presented in Section 3. The boundary equilibrium points and stability are shown
in Section 4. In Section 5.1, the coexistence condition of the interior equilibrium point
E∗(a∗, i∗, r∗) is determined by examining its local stability. The global stability analysis
for E∗ is verified in Section 5.2. Furthermore, Section 6, investigates the Hopf bifurcation
based on the harvesting rate H1. The MATLAB software tool (https://www.mathworks.
com/products/matlab.html accessed on 1 March 2024) is used quantitatively to validate
all the key results in Section 7. The conclusion of this research, as well as the environmental
impacts of our results, are shown in Section 8, which ends our research.

2. Formation and Flowchart of the Equation

Prey harvesting is incorporated into the models for a predator–prey system.

dA
dT = x1A(1 − A+I

K )− πAI
s1+A − α1AR

(1+ηA)(1+µR)
−H1E1A,

dI
dT = πAI

s1+A − d1I − g1IR
(1+βI+γR)

−H2E2I ,
dR
dT = −d2R+ mα1AR

(1+ηA)(1+µR)
+ mg1IR

(1+βI+γR)
,

 (1)

by the positive conditions A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, and R(0) = R0 ≥ 0. The
detailed environmental illustrations of the parameters are given in Table 1.

Table 1. Ecological description of the model.

Parameters Ecological Description

R,A, I predator species, susceptible prey, infected prey
π, x infectious and growth rate of prey

K, η, E carrying capacity, handling time of predators, harvesting effort
s1 and β infected prey and predators half-saturation constant

m, α1 conversion of prey to predators, of susceptible prey’s predation rate
γ, µ magnitude of interference by predators of Beddington and Crowley
g1 consuming rate of susceptible prey by predator

d1 and d2 mortality rate infectious prey and predators
H1, H2 susceptible and infected prey’s catchability coefficient

To minimize the parameters in model (1), we modify the variables as follows:
a = A

K , i = I
K , r = R

K The transformations can be utilized to formulate the
Equation (1) in a dimensionless form (t = πT K). Figure 1 displays the the model’s
flowchart with the harvesting of various functional responses.

da
dt = xa(1 − a − i)− πai

s+a −
αar

(1+ηa)(1+µr) − h1a,
di
dt = πai

s+a − di − θir
(1+βi+γr) − h2i,

dr
dt = −δr + mαar

(1+ηa)(1+µr) +
mθir

(1+βi+γr)

 (2)

where x = x1
πK , α = α1

πK , s = s1
K , θ = g1

ρK , d = d1
πK , δ = d2

πK . Now, the model’s conditions
are a(0) = a0 ≥ 0, i(0) = i0 ≥ 0, and r(0) = r0 ≥ 0.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Figure 1. Flowchart of the model with different functional responses.

3. Positivity and Boundedness

Let F ≡ (a(t), i(t), r(t))T and V(F) = (V1(F),V2(F),V3(F))T , where

V1(F) = xa(1 − a − i)− πai
s + a

− αar
(1 + ηa)(1 + µr)

− h1a,

V2(F) =
πai

s + a
− di − θai

(1 + βi + γa)
− h2i,

V3(F) = −δr +
mαar

(1 + ηa)(1 + µr)
+

mθir
(1 + βi + γr)

.

The Equation can be denoted as dF
dt = V(F) where V : C+→R3

+ with F(0) = F0∈R3
+. Thus,

Vm∈C∞(R) for m = 1, 2, 3. V is continuous and a Lipschitzian function on R3
+. It contains

non-negative conditions. So, the region R3
+ is under an invariant condition.

Theorem 1. The model’s (2) potential responses are bounded, and it is in R3
+.

Proof. Let (a(t), i(t), r(t)) be the prescribed response for model (2).
Let da

dt ≤ a(1 − a).
lim supt→∞ a(t) ≤ 1. Let ψ = a + i + r.

dψ

dt
=xa(1 − a)− ai(x +

π

s + a
)− αar(1 − m)

(1 + ηa)(1 + µr)
− h1a +

ai
s + a

− di

− θir
(1 + βi + γr)

(1 − m)− h2i − δr,

≤xa(1 − a)− h1a − air − i(d + h2)− δr, (since m < 1)),

≤ x
4
− h1a − i(d + h2)− δr (since Max {xa(1 − a)} =

x
4
),

≤ x
4
− βψ. where, β = min {h1, d + h2, δ}.

Thus, dψ
dt + βψ ≤ x

4 . We have 0 < ψ≤ x
4β (1− exp−βt

) + ψ(a0, i0, r0)exp−βt. If t→∞, because
0 < ψ ≤ x

4β . Hence, the solutions of model (2) are confined to a positive around Ω,

where Ω = {(a, i, r) ∈ R3
+ : a + i + r ≤ x

4β+ ∈}.

4. Presence of Boundary Equilibrium Points

• E0 is the equilibria of a trivial point. Here, E0 (0, 0, 0) exists.
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• E1 is no infection and predator-free equilibria; E1 (
x−h1

x , 0, 0) exists for h1 < x.

• E2 is the equilibria of without a predator; E2 (ā, ī, 0) where ā = s(d+h2)
(1−d−h2)

and

ī = (x(1−a)−h1)(s+a)
x . E2 exists for s(d + h2) < (1 − d − h2) and h1 < x(1 − a).

• E3 is the no diseases of the equilibria; E3 (ā, 0, r̄) where ā = δ(1+µr)
mα−ηδ(1+µr) and

r̄ = (x(1−a)−h1)(1+ηa)(1+µ)
α . E3 exists for ηδ(1 + µr) < mα and h1 < x(1 − a).

• E∗ is the equilibria of the coexistent state; E∗ (a∗, i∗, r∗). It exists for δ > mα,
(1 + βi∗ + γr∗) > 0, x(1 − a∗ − i∗) > h1 − i∗, αs > 0, where
a∗ = s+((d+h2)+(1+βi∗+γr∗)+θr∗)

(1+βi∗+γr∗) , i∗ = (1+β+γr∗)(δ(1+ηa∗)(1+µr∗)−mαa∗)
(1+ηa∗)(1+µr∗)mθ

, and

r∗ = ((1+ηa∗)(1+µ))(s+a∗(x(1−a∗−i∗)−h1)−i∗)
α(s+a∗) .

5. Stability Analysis
5.1. Local Analysis

The matrix of Jacobian equations is used to investigate the local stability at a point in
(a, i, r), which is

n11 =x(1 − 2a − i)− si
(s + a)2 − αr

(1 + ηa)2(1 + µr)
− h1, n12 = −ax − a

a + s
,

n13 =− αa
(1 + µr)2(1 + ηa)2 , n21 =

si
(s + a)2 , n31 =

αxm
(1 + ηa)2(1 + µr)

,

n22 =
a

a + s
− d − xθ(1 + γr)

(1 + βi + γr)2 − h2, n23 = − iθ(1 + βi)
(1 + βi + γr)2 ,

n32 =
θxm(1 + γr)
(1 + βi + γr)2 , n33 = −δ +

αam
(1 + µr)2(1 + ηa)

+
θim(1 + βi)

(1 + βi + γr)2 .

Theorem 2. The following are the points to verify the stability condition of model (2). They are
as follows:

1. The trivial point of equilibria E0(0, 0, 0) is LAS if x < h1.
2. The infectious and predator-free points E1(

x−h1
x , 0, 0) are LAS if x < h1, −d − h2 > x−h1

x−h1+s ,

and δ < (x−h1)mα
1+η(x−h1)

.

3. The equilibria with no predator (ā, ī, 0) is LAS if Y11 > 0, Y12 > 0, and

δ > mαā
1+η ā +

īmθ(1+βī)
(βī+1)2 .

Proof.

1. The trivial point of equilibria E0(0, 0, 0) of the eigen values are x − h1, −d − h2, and
−δ. Hence, it is LAS when x < h1; if not, it is unstable.

2. The eigen values of E1(
x−h1

x , 0, 0) are h1 − x, (x−h1)
(x−h1)+s − d − h2, and δ + (x−h1)mα

1+η(x−h1)
.

Hence, it is LAS if x < h1, −d − h2 > (x−h1)
(x−h1)+s , and δ < (x−h1)mα

1+η(x−h1)
; if not, it is unstable.

3. The matrix in its Jacobian form is

n11 =x(1 − 2ā − ī)− sī
(s + ā)2 − h1, n12 = −āx − ā

ā + s
, n13 = − αā

1 + η ā
,

n21 =
sī

(s + ā)2 , n22 =
ā

ā + s
− d − h2, n23 = − īθ(1 + βi)

(βī + 1)2 , n31 = 0, n32 = 0,

n33 =− δ +
āmα

1 + η ā
+

imθ(1 + βi)
(βi + 1)2 .
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The characteristic form of J(E2) is (n33 − λ)(λ2 + S11λ+ S12) = 0, where S11 = −(n11 + n22)
and S12 = n11n22 − n12n21. As a result, one of the eigenvalues of the equation is n33, i.e.,
negative. Hence, the other two must likewise be negative. So, E2 is LAS if S11 > 0, S12 > 0,
and δ > āmα

1+η ā +
imθ(1+βi)
(βi+1)2 .

Theorem 3. The infectious-free point of equilibrium (ā, 0, r̄) is LAS if D11 > 0, D12 > 0, and
−(d + rθ(1+γr)

(βb+γr+1)2 + h2) >
a

a+s .
(This demonstration is equivalent to Theorem 2, condition (3).)

Theorem 4. The equilibrium point E∗ is LAS if G1 > 0, G3 > 0, and G1G2 − G3 > 0.

Proof. As for model (2), its Jacobian matrix is at E∗(a∗, i∗, r∗).

g11 =x(1 − 2a∗ − i∗)− si∗

(s + a∗)2 − αr∗

(1 + ηa∗)2(1 + µr∗)
− h1,

g12 =− a∗x − a∗

a∗ + p
, g13 = − αa∗

(1 + µr∗)2(1 + ηa∗)2 , g21 =
si∗

(s + a∗)2 ,

g31 =
αr∗m

(1 + ηa∗)2(1 + µr∗)
, g22 =

a∗

a∗ + s
− d − r∗θ(1 + γr∗)

(1 + βi∗ + γr∗)2 − h2,

g23 =− i∗θ(1 + βi∗)
(1 + βi∗ + γr∗)2 , g32 =

θr∗m(1 + γr∗)
(1 + βi∗ + γr∗)2 , g33 = 0

The cubic characteristic equation J(E∗) is

λ3 + G1λ2 + G2λ + Y3 = 0. (3)

G1 = −(g11 + g22), G2 = −(g12g21 + g13g31 + g23g32 − g11g22 − g11g33);
G3 = −(g12g23g31 + g13g21g32 − g13g31g22 − g11g23g32).
G1 > 0, G3 > 0, and G1G2 − G3 > 0. The root of the characteristic equation is negative real
parts if and only if G1, G3, and G1G2 −G3 > 0. According to Routh–Hurwitz, E∗ is LAS.

5.2. Global Analysis

Theorem 5. The point E∗ is GAS in W = {(a, i, r) : a > a∗, i > i∗ and r > r∗ or a < a∗, i < i∗

and r < r∗}.

Proof. A suitable Lyapunov function is expressed as

N1(a, i, r) = N2(a − a∗ − a∗ln
a
a∗

) + (i − i∗ − i∗ln
i
i∗
) +N3(r − r∗ − r∗ln

r
r∗
),

where N2,N3 are positive constant.
Differentiating N1 with regard to t,
dN1
dt = ( a−a∗

a ) da
dt +N2(

i−i∗
i ) di

dt +N3(
r−r∗

r ) dr
dt

= [x(1 − a − i)− πi
s+a −

αr
(1+ηa)(1+µr) − h1](a − a∗) +N2[

πa
s+a − d − θr

(1+βi+γr) − h2](i − i∗)

+N3[−δ + mαa
(1+ηa)(1+µr) +

mθi
(1+βi+γr ](r − r∗).

dN1
dt = −(a − a∗)[x(a + i)− (a∗ + i∗)]− π( i

s+a −
i∗

s+a∗ )− α( r
(1+ηa)(1+µr) −

r∗
(1+ηa∗)(1+µr∗) )]

−N2(i − i∗)[( a
(s+a) −

a∗
(s+a∗) )− θ( r

a+(1+βi+γr) −
r∗

1+βi∗+γr∗ ]

−N3(r − r∗)m[( α(a−a∗)+rµ∗(a−a∗)
(1+ηa)(1+µr)(1+ηa∗)(1+µr∗) )− θ( (i−i∗)+γ(ir∗−i∗r)

(1+βi+γr)(1+βi∗+γr∗) )].

The region area N and dN1
dt is negative:

W = {(a, i, r) : a > a∗, i > i∗ and r > r∗)or a < a∗, i < i∗ and r < r∗} and it shows that N
is a suitable Lyapunov function for all the solutions in W.
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6. Analysis of the Hopf Bifurcation

Theorem 6. If the bifurcating parameter H1 exceeds a substantial value, then Hopf bifurcation
occurs in the system (2). The presence of the Hopf bifurcation requirements listed below is H1 = H∗

1

1. X (H∗
1)R(H∗

1)−D(H∗
1) = 0;

2. d
dH1

(Re(γ(H1)))|H1=H∗
1
̸= 0, where γ represents the positive value of the equilibrium point

and is the zero of the characteristic equation.

Proof. For H1 = H∗
1 , let (3) denote

(γ2(H∗
1) +R(H∗

1))(γ(H∗
1) +X (H∗

1)) = 0. (i.e) ±i
√
R(H∗

1) and −X (H∗
1) are the roots of

the Equation (6). To establish that the Hopf bifurcation exists at the point, we must fulfill
the transversality requirement. H∗

1 = H1. d
dH1

(Re(γ(H1)))|H1=H∗
1
̸= 0. For all H1, the

roots of the form γ1,2 (H1) = r(H1)± is(H1), and γ3(H1) = −X (H1). Now, we check the
condition d

dH1
(Re(γj(H1)))|H1=H∗

1
̸= 0, j = 1, 2. Let γ1(H1)= r(H1) + is(H1) in (6), and

we obtain γ1(H1) + iγ2(H1) = 0, where
γ1(H1) = r3(H1) + r2(H1)X (H1)− 3r(H1)s2(H1)− s2(H1)X (H1) + r(H1)R(H1)
+X (H1)R(H1), and γ2(H1) = 3r2(H1)s(H1) + 2r(H1)s(H1)X (H1)− s3(H1)
+ s(H1)R(H1). To complete the Equation (6), we need γ1(H1) = 0 and γ2(H1) = 0, and
then we differentiate γ1 and γ2 with respect to H1. Because

dγ1
dH1

= N1(H1)r
′
(H1)−N2(H1)s

′
(H1) +N3(H1) = 0, (4)

dγ2
dH1

= N2(H1)r
′
(H1) +N1(H1)s

′
(H1) +N4(H1) = 0, (5)

N1(H1) = 3r2(H1) + 2r(H1)X (H1)− 3s2(H1) +R(H1),

N2(H1) = 6r(H1)s(H1) + 2s(H1)X (H1),

N3(H1) = r2(H1)X
′
(H1)− s2(H1)X

′
(H1) +D′

(H1) +R′
(H1)r(H1),

N4(H1) = 2r(H1)s(H1)X
′
(H1) + s(H1)R

′
(H1).

r
′
(H1) = −N1(H1)N3(H1) +N2(H1)N4(H1)

N 2
1 (H1) +N 2

2 (H1)
. (6)

r(H1) = 0 and s(H1) =
√
R(H1) at H1 = H∗

1 on N1(H1),N2(H1),N3(H1) and N4(H1).

So, N1(H∗
1) = −2R(H∗

1),N2(H∗
1) = 2

√
R(H∗

1)X (H∗
1),

N3(H∗
1) = −R(H∗

1)X
′
(H∗

1) +D′
(H∗

1), N4(H∗
1) =

√
R(H∗

1)R
′
(H∗

1).

r
′
(H∗

1) =
D′

(H∗
1 )−(X (H∗

1 )R
′
(H∗

1 )+R(H∗
1 )X

′
(H∗

1 ))

2(R2(H∗
1 )+X 2(v∗)) , (7)

D′
(H∗

1)− (X (H∗
1)R

′
(H∗

1) +R(H∗
1)X

′H∗
1)) ̸= 0,

(i.e) d
dH1

(Re(γj(H1)))|H1=H∗
1
= r

′
(H∗

1) ̸= 0. j = 1, 2, and γ3(H∗
1) = −X (H∗

1) ̸= 0.

Thus, the condition J ′
(H∗

1) − (X (H∗
1)R

′
(H∗

1) +R(H∗
1)X

′
(H∗

1)) ̸= 0. It has been con-
firmed that the transversality criteria apply to system (2), and the Hopf bifurcation occurs
at H1 = H∗

1 .

7. Numerical Calculations of the Model

To verify the theoretical conclusions, this part performs a calculation on system
(2). Here, the harvesting rate H1 is employed as an adjustable element. The simula-
tion is accomplished by utilizing MATLAB software tools for the fixed parameter. Here,
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x = 0.2, δ = 0.1, d = 0.2, θ = 0.21, π = (variable), η = 0.13, α = 0.3, and µ = 0.11. If H1 is 0.21,
when bifurcation occurs, the model (2) for the non-negative equilibrium is LAS E∗(0.52764,
0.0916818, and 0.203662) and the rest of the adjustable elements have identical values. The
model’s (2) stability is lost by increasing the bifurcation adjustable element to H1 = 0.47,
leading to being LAU at E∗(0.53824, 0.0917748, and 0.320178). Model (2) is able to pass the
transversality conditions for (Re(γ(H1)))|H1=H∗

1
= 0.002195 ̸= 0. Hence, Figure 2 displays

how the model’s behavior changes at a harvesting rate of H1 = 0.47.

Figure 2. Dynamical changes in Model (2) at harvesting rate H1 = 0.47.

8. Conclusions and Discussion

Our investigation involved examining an eco-epidemiological model where sick prey
are harvested from the prey species, and the predator eats both sick and healthy prey. The
developed system (2) has been shown to be biologically well behaved by the boundedness
and positivity results. In the event that if the growing rate of uninfected prey is lower than
the harvest rate, then the population tends to be extinct. It has been demonstrated that both
the local stability at every ecologically possible point and the coexistence (2) are stable. The
analytical and numerical outcomes of the Hopf bifurcation for the harvesting rate H1 have
been analyzed and evaluated in the above. The dynamic of prey harvesting is powerful
due to the complex behavior demonstrated in this study. Thus, we believe that ordinary
differential equations will be utilized to solve many future technological equations.
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