sensors-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4352 KiB  
Article
Non-Contact Monitoring and Classification of Breathing Pattern for the Supervision of People Infected by COVID-19
by Ariana Tulus Purnomo, Ding-Bing Lin, Tjahjo Adiprabowo and Willy Fitra Hendria
Sensors 2021, 21(9), 3172; https://doi.org/10.3390/s21093172 - 3 May 2021
Cited by 39 | Viewed by 5959
Abstract
During the pandemic of coronavirus disease-2019 (COVID-19), medical practitioners need non-contact devices to reduce the risk of spreading the virus. People with COVID-19 usually experience fever and have difficulty breathing. Unsupervised care to patients with respiratory problems will be the main reason for [...] Read more.
During the pandemic of coronavirus disease-2019 (COVID-19), medical practitioners need non-contact devices to reduce the risk of spreading the virus. People with COVID-19 usually experience fever and have difficulty breathing. Unsupervised care to patients with respiratory problems will be the main reason for the rising death rate. Periodic linearly increasing frequency chirp, known as frequency-modulated continuous wave (FMCW), is one of the radar technologies with a low-power operation and high-resolution detection which can detect any tiny movement. In this study, we use FMCW to develop a non-contact medical device that monitors and classifies the breathing pattern in real time. Patients with a breathing disorder have an unusual breathing characteristic that cannot be represented using the breathing rate. Thus, we created an Xtreme Gradient Boosting (XGBoost) classification model and adopted Mel-frequency cepstral coefficient (MFCC) feature extraction to classify the breathing pattern behavior. XGBoost is an ensemble machine-learning technique with a fast execution time and good scalability for predictions. In this study, MFCC feature extraction assists machine learning in extracting the features of the breathing signal. Based on the results, the system obtained an acceptable accuracy. Thus, our proposed system could potentially be used to detect and monitor the presence of respiratory problems in patients with COVID-19, asthma, etc. Full article
(This article belongs to the Special Issue Intelligent Sensors for Human Motion Analysis)
Show Figures

Figure 1

34 pages, 12122 KiB  
Review
A Review of RFID Sensors, the New Frontier of Internet of Things
by Filippo Costa, Simone Genovesi, Michele Borgese, Andrea Michel, Francesco Alessio Dicandia and Giuliano Manara
Sensors 2021, 21(9), 3138; https://doi.org/10.3390/s21093138 - 30 Apr 2021
Cited by 122 | Viewed by 20374
Abstract
A review of technological solutions for RFID sensing and their current or envisioned applications is presented. The fundamentals of the wireless sensing technology are summarized in the first part of the work, and the benefits of adopting RFID sensors for replacing standard sensor-equipped [...] Read more.
A review of technological solutions for RFID sensing and their current or envisioned applications is presented. The fundamentals of the wireless sensing technology are summarized in the first part of the work, and the benefits of adopting RFID sensors for replacing standard sensor-equipped Wi-Fi nodes are discussed. Emphasis is put on the absence of batteries and the lower cost of RFID sensors with respect to other sensor solutions available on the market. RFID sensors are critically compared by separating them into chipped and chipless configurations. Both categories are further analyzed with reference to their working mechanism (electronic, electromagnetic, and acoustic). RFID sensing through chip-equipped tags is now a mature technological solution, which is continuously increasing its presence on the market and in several applicative scenarios. On the other hand, chipless RFID sensing represents a relatively new concept, which could become a disruptive solution in the market, but further research in this field is necessary for customizing its employment in specific scenarios. The benefits and limitations of several tag configurations are shown and discussed. A summary of the most suitable applicative scenarios for RFID sensors are finally illustrated. Finally, a look at some sensing solutions available on the market are described and compared. Full article
(This article belongs to the Special Issue RFID and Zero-Power Backscatter Sensors)
Show Figures

Graphical abstract

23 pages, 1506 KiB  
Article
From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning
by Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick and Bjoern M. Eskofier
Sensors 2021, 21(9), 3071; https://doi.org/10.3390/s21093071 - 28 Apr 2021
Cited by 22 | Viewed by 4429
Abstract
The applicability of sensor-based human activity recognition in sports has been repeatedly shown for laboratory settings. However, the transferability to real-world scenarios cannot be granted due to limitations on data and evaluation methods. On the example of football shot and pass detection against [...] Read more.
The applicability of sensor-based human activity recognition in sports has been repeatedly shown for laboratory settings. However, the transferability to real-world scenarios cannot be granted due to limitations on data and evaluation methods. On the example of football shot and pass detection against a null class we explore the influence of those factors for real-world event classification in field sports. For this purpose we compare the performance of an established Support Vector Machine (SVM) for laboratory settings from literature to the performance in three evaluation scenarios gradually evolving from laboratory settings to real-world scenarios. In addition, three different types of neural networks, namely a convolutional neural net (CNN), a long short term memory net (LSTM) and a convolutional LSTM (convLSTM) are compared. Results indicate that the SVM is not able to reliably solve the investigated three-class problem. In contrast, all deep learning models reach high classification scores showing the general feasibility of event detection in real-world sports scenarios using deep learning. The maximum performance with a weighted f1-score of 0.93 was reported by the CNN. The study provides valuable insights for sports assessment under practically relevant conditions. In particular, it shows that (1) the discriminative power of established features needs to be reevaluated when real-world conditions are assessed, (2) the selection of an appropriate dataset and evaluation method are both required to evaluate real-world applicability and (3) deep learning-based methods yield promising results for real-world HAR in sports despite high variations in the execution of activities. Full article
Show Figures

Figure 1

16 pages, 4232 KiB  
Article
Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network
by Shervin Minaee, Mehdi Minaei and Amirali Abdolrashidi
Sensors 2021, 21(9), 3046; https://doi.org/10.3390/s21093046 - 27 Apr 2021
Cited by 298 | Viewed by 17595
Abstract
Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by [...] Read more.
Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a database of images or videos. Most of these works perform reasonably well on datasets of images captured in a controlled condition but fail to perform as well on more challenging datasets with more image variation and partial faces. In recent years, several works proposed an end-to-end framework for facial expression recognition using deep learning models. Despite the better performance of these works, there are still much room for improvement. In this work, we propose a deep learning approach based on attentional convolutional network that is able to focus on important parts of the face and achieves significant improvement over previous models on multiple datasets, including FER-2013, CK+, FERG, and JAFFE. We also use a visualization technique that is able to find important facial regions to detect different emotions based on the classifier’s output. Through experimental results, we show that different emotions are sensitive to different parts of the face. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

26 pages, 5142 KiB  
Technical Note
Localized Bioimpedance Measurements with the MAX3000x Integrated Circuit: Characterization and Demonstration
by Shelby Critcher and Todd J. Freeborn
Sensors 2021, 21(9), 3013; https://doi.org/10.3390/s21093013 - 25 Apr 2021
Cited by 14 | Viewed by 5946
Abstract
The commercial availability of integrated circuits with bioimpedance sensing functionality is advancing the opportunity for practical wearable systems that monitor the electrical impedance properties of tissues to identify physiological features in support of health-focused applications. This technical note characterizes the performance of the [...] Read more.
The commercial availability of integrated circuits with bioimpedance sensing functionality is advancing the opportunity for practical wearable systems that monitor the electrical impedance properties of tissues to identify physiological features in support of health-focused applications. This technical note characterizes the performance of the MAX3000x (resistance/reactance accuracy, power modes, filtering, gains) and is available for on-board processing (electrode detection) for localized bioimpedance measurements. Measurements of discrete impedances that are representative of localized tissue bioimpedance support that this IC has a relative error of <10% for the resistance component of complex impedance measurements, but can also measure relative alterations in the 250 mΩ range. The application of the MAX3000x for monitoring localized bicep tissues during activity is presented to highlight its functionality, as well as its limitations, for multi-frequency measurements. This device is a very-small-form-factor single-chip solution for measuring multi-frequency bioimpedance with significant on-board processing with potential for wearable applications. Full article
(This article belongs to the Special Issue Bioimpedance Sensors: Instrumentation, Models, and Applications)
Show Figures

Figure 1

30 pages, 6342 KiB  
Article
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
by Aamir Khan, Weidong Jin, Amir Haider, MuhibUr Rahman and Desheng Wang
Sensors 2021, 21(9), 2998; https://doi.org/10.3390/s21092998 - 24 Apr 2021
Cited by 13 | Viewed by 3751
Abstract
Image denoising is a challenging task that is essential in numerous computer vision and image processing problems. This study proposes and applies a generative adversarial network-based image denoising training architecture to multiple-level Gaussian image denoising tasks. Convolutional neural network-based denoising approaches come across [...] Read more.
Image denoising is a challenging task that is essential in numerous computer vision and image processing problems. This study proposes and applies a generative adversarial network-based image denoising training architecture to multiple-level Gaussian image denoising tasks. Convolutional neural network-based denoising approaches come across a blurriness issue that produces denoised images blurry on texture details. To resolve the blurriness issue, we first performed a theoretical study of the cause of the problem. Subsequently, we proposed an adversarial Gaussian denoiser network, which uses the generative adversarial network-based adversarial learning process for image denoising tasks. This framework resolves the blurriness problem by encouraging the denoiser network to find the distribution of sharp noise-free images instead of blurry images. Experimental results demonstrate that the proposed framework can effectively resolve the blurriness problem and achieve significant denoising efficiency than the state-of-the-art denoising methods. Full article
Show Figures

Figure 1

32 pages, 755 KiB  
Article
Quantization and Deployment of Deep Neural Networks on Microcontrollers
by Pierre-Emmanuel Novac, Ghouthi Boukli Hacene, Alain Pegatoquet, Benoît Miramond and Vincent Gripon
Sensors 2021, 21(9), 2984; https://doi.org/10.3390/s21092984 - 23 Apr 2021
Cited by 75 | Viewed by 20970
Abstract
Embedding Artificial Intelligence onto low-power devices is a challenging task that has been partly overcome with recent advances in machine learning and hardware design. Presently, deep neural networks can be deployed on embedded targets to perform different tasks such as speech recognition, object [...] Read more.
Embedding Artificial Intelligence onto low-power devices is a challenging task that has been partly overcome with recent advances in machine learning and hardware design. Presently, deep neural networks can be deployed on embedded targets to perform different tasks such as speech recognition, object detection or Human Activity Recognition. However, there is still room for optimization of deep neural networks onto embedded devices. These optimizations mainly address power consumption, memory and real-time constraints, but also an easier deployment at the edge. Moreover, there is still a need for a better understanding of what can be achieved for different use cases. This work focuses on quantization and deployment of deep neural networks onto low-power 32-bit microcontrollers. The quantization methods, relevant in the context of an embedded execution onto a microcontroller, are first outlined. Then, a new framework for end-to-end deep neural networks training, quantization and deployment is presented. This framework, called MicroAI, is designed as an alternative to existing inference engines (TensorFlow Lite for Microcontrollers and STM32Cube.AI). Our framework can indeed be easily adjusted and/or extended for specific use cases. Execution using single precision 32-bit floating-point as well as fixed-point on 8- and 16 bits integers are supported. The proposed quantization method is evaluated with three different datasets (UCI-HAR, Spoken MNIST and GTSRB). Finally, a comparison study between MicroAI and both existing embedded inference engines is provided in terms of memory and power efficiency. On-device evaluation is done using ARM Cortex-M4F-based microcontrollers (Ambiq Apollo3 and STM32L452RE). Full article
Show Figures

Figure 1

17 pages, 2657 KiB  
Article
Study of Low Terahertz Radar Signal Backscattering for Surface Identification
by Shahrzad Minooee Sabery, Aleksandr Bystrov, Miguel Navarro-Cía, Peter Gardner and Marina Gashinova
Sensors 2021, 21(9), 2954; https://doi.org/10.3390/s21092954 - 23 Apr 2021
Cited by 21 | Viewed by 3654
Abstract
This study explores the scattering of signals within the mm and low Terahertz frequency range, represented by frequencies 79 GHz, 150 GHz, 300 GHz, and 670 GHz, from surfaces with different roughness, to demonstrate advantages of low THz radar for surface discrimination for [...] Read more.
This study explores the scattering of signals within the mm and low Terahertz frequency range, represented by frequencies 79 GHz, 150 GHz, 300 GHz, and 670 GHz, from surfaces with different roughness, to demonstrate advantages of low THz radar for surface discrimination for automotive sensing. The responses of four test surfaces of different roughness were measured and their normalized radar cross sections were estimated as a function of grazing angle and polarization. The Fraunhofer criterion was used as a guideline for determining the type of backscattering (specular and diffuse). The proposed experimental technique provides high accuracy of backscattering coefficient measurement depending on the frequency of the signal, polarization, and grazing angle. An empirical scattering model was used to provide a reference. To compare theoretical and experimental results of the signal scattering on test surfaces, the permittivity of sandpaper has been measured using time-domain spectroscopy. It was shown that the empirical methods for diffuse radar signal scattering developed for lower radar frequencies can be extended for the low THz range with sufficient accuracy. The results obtained will provide reference information for creating remote surface identification systems for automotive use, which will be of particular advantage in surface classification, object classification, and path determination in autonomous automotive vehicle operation. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Graphical abstract

20 pages, 4542 KiB  
Review
Sensitivity of Field-Effect Transistor-Based Terahertz Detectors
by Elham Javadi, Dmytro B. But, Kęstutis Ikamas, Justinas Zdanevičius, Wojciech Knap and Alvydas Lisauskas
Sensors 2021, 21(9), 2909; https://doi.org/10.3390/s21092909 - 21 Apr 2021
Cited by 58 | Viewed by 5567
Abstract
This paper presents an overview of the different methods used for sensitivity (i.e., responsivity and noise equivalent power) determination of state-of-the-art field-effect transistor-based THz detectors/sensors. We point out that the reported result may depend very much on the method used to determine the [...] Read more.
This paper presents an overview of the different methods used for sensitivity (i.e., responsivity and noise equivalent power) determination of state-of-the-art field-effect transistor-based THz detectors/sensors. We point out that the reported result may depend very much on the method used to determine the effective area of the sensor, often leading to discrepancies of up to orders of magnitude. The challenges that arise when selecting a proper method for characterisation are demonstrated using the example of a 2×7 detector array. This array utilises field-effect transistors and monolithically integrated patch antennas at 620 GHz. The directivities of the individual antennas were simulated and determined from the measured angle dependence of the rectified voltage, as a function of tilting in the E- and H-planes. Furthermore, this study shows that the experimentally determined directivity and simulations imply that the part of radiation might still propagate in the substrate, resulting in modification of the sensor effective area. Our work summarises the methods for determining sensitivity which are paving the way towards the unified scientific metrology of FET-based THz sensors, which is important for both researchers competing for records, potential users, and system designers. Full article
(This article belongs to the Special Issue Terahertz Imaging and Sensors)
Show Figures

Figure 1

24 pages, 7713 KiB  
Article
Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
by Wenting Qiao, Qiangwei Liu, Xiaoguang Wu, Biao Ma and Gang Li
Sensors 2021, 21(9), 2902; https://doi.org/10.3390/s21092902 - 21 Apr 2021
Cited by 30 | Viewed by 3156
Abstract
Pavement crack detection is essential for safe driving. The traditional manual crack detection method is highly subjective and time-consuming. Hence, an automatic pavement crack detection system is needed to facilitate this progress. However, this is still a challenging task due to the complex [...] Read more.
Pavement crack detection is essential for safe driving. The traditional manual crack detection method is highly subjective and time-consuming. Hence, an automatic pavement crack detection system is needed to facilitate this progress. However, this is still a challenging task due to the complex topology and large noise interference of crack images. Recently, although deep learning-based technologies have achieved breakthrough progress in crack detection, there are still some challenges, such as large parameters and low detection efficiency. Besides, most deep learning-based crack detection algorithms find it difficult to establish good balance between detection accuracy and detection speed. Inspired by the latest deep learning technology in the field of image processing, this paper proposes a novel crack detection algorithm based on the deep feature aggregation network with the spatial-channel squeeze & excitation (scSE) attention mechanism module, which calls CrackDFANet. Firstly, we cut the collected crack images into 512 × 512 pixel image blocks to establish a crack dataset. Then through iterative optimization on the training and validation sets, we obtained a crack detection model with good robustness. Finally, the CrackDFANet model verified on a total of 3516 images in five datasets with different sizes and containing different noise interferences. Experimental results show that the trained CrackDFANet has strong anti-interference ability, and has better robustness and generalization ability under the interference of light interference, parking line, water stains, plant disturbance, oil stains, and shadow conditions. Furthermore, the CrackDFANet is found to be better than other state-of-the-art algorithms with more accurate detection effect and faster detection speed. Meanwhile, our algorithm model parameters and error rates are significantly reduced. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

31 pages, 4662 KiB  
Review
A Review of Corrosion in Aircraft Structures and Graphene-Based Sensors for Advanced Corrosion Monitoring
by Lucy Li, Mounia Chakik and Ravi Prakash
Sensors 2021, 21(9), 2908; https://doi.org/10.3390/s21092908 - 21 Apr 2021
Cited by 30 | Viewed by 7351
Abstract
Corrosion is an ever-present phenomena of material deterioration that affects all metal structures. Timely and accurate detection of corrosion is required for structural maintenance and effective management of structural components during their life cycle. The usage of aircraft materials has been primarily driven [...] Read more.
Corrosion is an ever-present phenomena of material deterioration that affects all metal structures. Timely and accurate detection of corrosion is required for structural maintenance and effective management of structural components during their life cycle. The usage of aircraft materials has been primarily driven by the need for lighter, stronger, and more robust metal alloys, rather than mitigation of corrosion. As such, the overall cost of corrosion management and aircraft downtime remains high. To illustrate, $5.67 billion or 23.6% of total sustainment costs was spent on aircraft corrosion management, as well as 14.1% of total NAD for the US Air Force aviation and missiles in the fiscal year of 2018. The ability to detect and monitor corrosion will allow for a more efficient and cost-effective corrosion management strategy, and will therefore, minimize maintenance costs and downtime, and to avoid unexpected failure associated with corrosion. Conventional and commercial efforts in corrosion detection on aircrafts have focused on visual and other field detection approaches which are time- and usage-based rather than condition-based; they are also less effective in cases where the corroded area is inaccessible (e.g., fuel tank) or hidden (rivets). The ability to target and detect specific corrosion by-products associated with the metals/metal alloys (chloride ions, fluoride ions, iron oxides, aluminum chlorides etc.), corrosion environment (pH, wetness, temperature), along with conventional approaches for physical detection of corrosion can provide early corrosion detection as well as enhanced reliability of corrosion detection. The paper summarizes the state-of-art of corrosion sensing and measurement technologies for schedule-based inspection or continuous monitoring of physical, environmental and chemical presence associated with corrosion. The challenges are reviewed with regards to current gaps of corrosion detection and the complex task of corrosion management of an aircraft, with a focused overview of the corrosion factors and corrosion forms that are pertinent to the aviation industry. A comprehensive overview of thin film sensing techniques for corrosion detection and monitoring on aircrafts are being conducted. Particular attention is paid to innovative new materials, especially graphene-derived thin film sensors which rely on their ability to be configured as a conductor, semiconductor, or a functionally sensitive layer that responds to corrosion factors. Several thin film sensors have been detailed in this review as highly suited candidates for detecting corrosion through direct sensing of corrosion by-products in conjunction with the aforementioned physical and environmental corrosion parameters. The ability to print/pattern these thin film materials directly onto specific aircraft components, or deposit them onto rigid and flexible sensor surfaces and interfaces (fibre optics, microelectrode structures) makes them highly suited for corrosion monitoring applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

31 pages, 11468 KiB  
Article
Application of MEMS Sensors for Evaluation of the Dynamics for Cargo Securing on Road Vehicles
by Jozef Gnap, Juraj Jagelčák, Peter Marienka, Marcel Frančák and Mariusz Kostrzewski
Sensors 2021, 21(8), 2881; https://doi.org/10.3390/s21082881 - 20 Apr 2021
Cited by 26 | Viewed by 3681
Abstract
Safety is one of the key aspects of the successful transport of cargo. In the case of road transport, the dynamics of a vehicle during normal events such as braking, steering, and evasive maneuver are variable in different places in the vehicle. Several [...] Read more.
Safety is one of the key aspects of the successful transport of cargo. In the case of road transport, the dynamics of a vehicle during normal events such as braking, steering, and evasive maneuver are variable in different places in the vehicle. Several manufacturers provide different dataloggers with acceleration sensors, but the results are not comparable due to different sensor parameters, measurement ranges, sampling frequencies, data filtration, and evaluation of different periods of acceleration. The position of the sensor in the loading area is also important. The accelerations are not the same at all points in the vehicle. The article deals with the measurement of these dynamic events with MEMS sensors on selected points of a vehicle loaded with cargo and with changes in dynamics after certain events that could occur during regular road transport of cargo to analyze the possibilities for monitoring accelerations and the related forces acting on the cargo during transport. The article uses evaluation times of 80, 300, and 1000 ms for accelerations. With the measured values, it is possible to determine the places with a higher risk of cargo damage and not only to adjust the packaging and securing of the cargo, but also to modify the transport routes. Concerning the purposes of securing the cargo in relation to EN 12195-1 and the minimum values of forces for securing the cargo, we focused primarily on the places where the acceleration of 0.5 g was exceeded when analyzing the monitored route. There were 32 of these points in total, all of which were measured by a sensor located at the rear of the semi-trailer. In 31 cases, the limit of 0.5 g was exceeded for an 80-ms evaluation time, and in one case, the value of 0.51 g was reached in the transverse direction for a 300-ms evaluation time. Full article
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices
by Kayisan M. Dalmeida and Giovanni L. Masala
Sensors 2021, 21(8), 2873; https://doi.org/10.3390/s21082873 - 19 Apr 2021
Cited by 68 | Viewed by 7456
Abstract
Stress has been identified as one of the major causes of automobile crashes which then lead to high rates of fatalities and injuries each year. Stress can be measured via physiological measurements and in this study the focus will be based on the [...] Read more.
Stress has been identified as one of the major causes of automobile crashes which then lead to high rates of fatalities and injuries each year. Stress can be measured via physiological measurements and in this study the focus will be based on the features that can be extracted by common wearable devices. Hence, the study will be mainly focusing on heart rate variability (HRV). This study is aimed at investigating the role of HRV-derived features as stress markers. This is achieved by developing a good predictive model that can accurately classify stress levels from ECG-derived HRV features, obtained from automobile drivers, by testing different machine learning methodologies such as K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Random Forest (RF) and Gradient Boosting (GB). Moreover, the models obtained with highest predictive power will be used as reference for the development of a machine learning model that would be used to classify stress from HRV features derived from heart rate measurements obtained from wearable devices. We demonstrate that HRV features constitute good markers for stress detection as the best machine learning model developed achieved a Recall of 80%. Furthermore, this study indicates that HRV metrics such as the Average of normal-to-normal (NN) intervals (AVNN), Standard deviation of the average NN intervals (SDNN) and the Root mean square differences of successive NN intervals (RMSSD) were important features for stress detection. The proposed method can be also used on all applications in which is important to monitor the stress levels in a non-invasive manner, e.g., in physical rehabilitation, anxiety relief or mental wellbeing. Full article
Show Figures

Figure 1

27 pages, 6248 KiB  
Article
Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM
by Parvathaneni Naga Srinivasu, Jalluri Gnana SivaSai, Muhammad Fazal Ijaz, Akash Kumar Bhoi, Wonjoon Kim and James Jin Kang
Sensors 2021, 21(8), 2852; https://doi.org/10.3390/s21082852 - 18 Apr 2021
Cited by 386 | Viewed by 24543
Abstract
Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved [...] Read more.
Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity. Full article
Show Figures

Figure 1

16 pages, 6888 KiB  
Article
The Utilization of Artificial Neural Network Equalizer in Optical Camera Communications
by Othman Isam Younus, Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec, Luis Nero Alves and Hoa Le-Minh
Sensors 2021, 21(8), 2826; https://doi.org/10.3390/s21082826 - 16 Apr 2021
Cited by 16 | Viewed by 3128
Abstract
In this paper, we propose and validate an artificial neural network-based equalizer for the constant power 4-level pulse amplitude modulation in an optical camera communications system. We introduce new terminology to measure the quality of the communications link in terms of the number [...] Read more.
In this paper, we propose and validate an artificial neural network-based equalizer for the constant power 4-level pulse amplitude modulation in an optical camera communications system. We introduce new terminology to measure the quality of the communications link in terms of the number of row pixels per symbol Npps, which allows a fair comparison considering the progress made in the development of the current image sensors in terms of the frame rates and the resolutions of each frame. Using the proposed equalizer, we experimentally demonstrate a non-flickering system using a single light-emitting diode (LED) with Npps of 20 and 30 pixels/symbol for the unequalized and equalized systems, respectively. Potential transmission rates of up to 18.6 and 24.4 kbps are achieved with and without the equalization, respectively. The quality of the received signal is assessed using the eye-diagram opening and its linearity and the bit error rate performance. An acceptable bit error rate (below the forward error correction limit) and an improvement of ~66% in the eye linearity are achieved using a single LED and a typical commercial camera with equalization. Full article
(This article belongs to the Special Issue Visible Light Communication, Networking, and Sensing)
Show Figures

Figure 1

25 pages, 5502 KiB  
Article
An Enhanced Indoor Positioning Algorithm Based on Fingerprint Using Fine-Grained CSI and RSSI Measurements of IEEE 802.11n WLAN
by Jingjing Wang and Joongoo Park
Sensors 2021, 21(8), 2769; https://doi.org/10.3390/s21082769 - 14 Apr 2021
Cited by 41 | Viewed by 4962
Abstract
Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer is widely used in range-based and fingerprint location systems due to its low cost and low complexity. However, RSS is affected by noise signals and multi-path, and its positioning performance is [...] Read more.
Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer is widely used in range-based and fingerprint location systems due to its low cost and low complexity. However, RSS is affected by noise signals and multi-path, and its positioning performance is not stable. In recent years, many commercial WiFi devices support the acquisition of physical layer channel state information (CSI). CSI is an index that can characterize the signal characteristics with more fine granularity than RSS. Compared with RSS, CSI can avoid the effects of multi-path and noise by analyzing the characteristics of multi-channel sub-carriers. To improve the indoor location accuracy and algorithm efficiency, this paper proposes a hybrid fingerprint location technology based on RSS and CSI. In the off-line phase, to overcome the problems of low positioning accuracy and fingerprint drift caused by signal instability, a methodology based on the Kalman filter and a Gaussian function is proposed to preprocess the RSSI value and CSI amplitude value, and the improved CSI phase is incorporated after the linear transformation. The mutation and noisy data are then effectively eliminated, and the accurate and smoother outputs of the RSSI and CSI values can be achieved. Then, the accurate hybrid fingerprint database is established after dimensionality reduction of the obtained high-dimensional data values. The weighted k-nearest neighbor (WKNN) algorithm is applied to reduce the complexity of the algorithm during the online positioning stage, and the accurate indoor positioning algorithm is accomplished. Experimental results show that the proposed algorithm exhibits good performance on anti-noise ability, fusion positioning accuracy, and real-time filtering. Compared with CSI-MIMO, FIFS, and RSSI-based methods, the proposed fusion correction method has higher positioning accuracy and smaller positioning error. Full article
(This article belongs to the Special Issue Indoor Positioning and Navigation)
Show Figures

Figure 1

27 pages, 2821 KiB  
Review
Soft Grippers for Automatic Crop Harvesting: A Review
by Eduardo Navas, Roemi Fernández, Delia Sepúlveda, Manuel Armada and Pablo Gonzalez-de-Santos
Sensors 2021, 21(8), 2689; https://doi.org/10.3390/s21082689 - 11 Apr 2021
Cited by 91 | Viewed by 11059
Abstract
Agriculture 4.0 is transforming farming livelihoods thanks to the development and adoption of technologies such as artificial intelligence, the Internet of Things and robotics, traditionally used in other productive sectors. Soft robotics and soft grippers in particular are promising approaches to lead to [...] Read more.
Agriculture 4.0 is transforming farming livelihoods thanks to the development and adoption of technologies such as artificial intelligence, the Internet of Things and robotics, traditionally used in other productive sectors. Soft robotics and soft grippers in particular are promising approaches to lead to new solutions in this field due to the need to meet hygiene and manipulation requirements in unstructured environments and in operation with delicate products. This review aims to provide an in-depth look at soft end-effectors for agricultural applications, with a special emphasis on robotic harvesting. To that end, the current state of automatic picking tasks for several crops is analysed, identifying which of them lack automatic solutions, and which methods are commonly used based on the botanical characteristics of the fruits. The latest advances in the design and implementation of soft grippers are also presented and discussed, studying the properties of their materials, their manufacturing processes, the gripping technologies and the proposed control methods. Finally, the challenges that have to be overcome to boost its definitive implementation in the real world are highlighted. Therefore, this review intends to serve as a guide for those researchers working in the field of soft robotics for Agriculture 4.0, and more specifically, in the design of soft grippers for fruit harvesting robots. Full article
(This article belongs to the Collection Sensors and Robotics for Digital Agriculture)
Show Figures

Figure 1

17 pages, 1189 KiB  
Article
Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic
by Narges Yousefnezhad, Avleen Malhi and Kary Främling
Sensors 2021, 21(8), 2660; https://doi.org/10.3390/s21082660 - 10 Apr 2021
Cited by 23 | Viewed by 6443
Abstract
In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, [...] Read more.
In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, IoT device identification is the primary step toward a secure IoT system. An appropriate device identification approach can counteract malicious activities such as sending false data that trigger irreparable security issues in vital or emergency situations. Recent research indicates that primary identity metrics such as Internet Protocol (IP) or Media Access Control (MAC) addresses are insufficient due to their instability or easy accessibility. Thus, to identify an IoT device, analysis of the header information of packets by the sensors is of imperative consideration. This paper proposes a combination of sensor measurement and statistical feature sets in addition to a header feature set using a classification-based device identification framework. Various machine Learning algorithms have been adopted to identify different combinations of these feature sets to provide enhanced security in IoT devices. The proposed method has been evaluated through normal and under-attack circumstances by collecting real-time data from IoT devices connected in a lab setting to show the system robustness. Full article
(This article belongs to the Special Issue Selected Papers from the Global IoT Summit GIoTS 2020)
Show Figures

Figure 1

23 pages, 4617 KiB  
Article
Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles
by Saeid Safavi, Mohammad Amin Safavi, Hossein Hamid and Saber Fallah
Sensors 2021, 21(7), 2547; https://doi.org/10.3390/s21072547 - 5 Apr 2021
Cited by 44 | Viewed by 8723
Abstract
The primary focus of autonomous driving research is to improve driving accuracy and reliability. While great progress has been made, state-of-the-art algorithms still fail at times and some of these failures are due to the faults in sensors. Such failures may have fatal [...] Read more.
The primary focus of autonomous driving research is to improve driving accuracy and reliability. While great progress has been made, state-of-the-art algorithms still fail at times and some of these failures are due to the faults in sensors. Such failures may have fatal consequences. It therefore is important that automated cars foresee problems ahead as early as possible. By using real-world data and artificial injection of different types of sensor faults to the healthy signals, data models can be trained using machine learning techniques. This paper proposes a novel fault detection, isolation, identification and prediction (based on detection) architecture for multi-fault in multi-sensor systems, such as autonomous vehicles.Our detection, identification and isolation platform uses two distinct and efficient deep neural network architectures and obtained very impressive performance. Utilizing the sensor fault detection system’s output, we then introduce our health index measure and use it to train the health index forecasting network. Full article
(This article belongs to the Special Issue Artificial Intelligence and Internet of Things in Autonomous Vehicles)
Show Figures

Figure 1

25 pages, 2801 KiB  
Review
Smart Wearables for Cardiac Monitoring—Real-World Use beyond Atrial Fibrillation
by David Duncker, Wern Yew Ding, Susan Etheridge, Peter A. Noseworthy, Christian Veltmann, Xiaoxi Yao, T. Jared Bunch and Dhiraj Gupta
Sensors 2021, 21(7), 2539; https://doi.org/10.3390/s21072539 - 5 Apr 2021
Cited by 59 | Viewed by 13936
Abstract
The possibilities and implementation of wearable cardiac monitoring beyond atrial fibrillation are increasing continuously. This review focuses on the real-world use and evolution of these devices for other arrhythmias, cardiovascular diseases and some of their risk factors beyond atrial fibrillation. The management of [...] Read more.
The possibilities and implementation of wearable cardiac monitoring beyond atrial fibrillation are increasing continuously. This review focuses on the real-world use and evolution of these devices for other arrhythmias, cardiovascular diseases and some of their risk factors beyond atrial fibrillation. The management of nonatrial fibrillation arrhythmias represents a broad field of wearable technologies in cardiology using Holter, event recorder, electrocardiogram (ECG) patches, wristbands and textiles. Implementation in other patient cohorts, such as ST-elevation myocardial infarction (STEMI), heart failure or sleep apnea, is feasible and expanding. In addition to appropriate accuracy, clinical studies must address the validation of clinical pathways including the appropriate device and clinical decisions resulting from the surrogate assessed. Full article
(This article belongs to the Special Issue Smart Wearables for Cardiac Monitoring)
Show Figures

Figure 1

14 pages, 4283 KiB  
Article
Ultrasensitive Strain Sensor Based on Pre-Generated Crack Networks Using Ag Nanoparticles/Single-Walled Carbon Nanotube (SWCNT) Hybrid Fillers and a Polyester Woven Elastic Band
by Yelin Ko, Ji-seon Kim, Chi Cuong Vu and Jooyong Kim
Sensors 2021, 21(7), 2531; https://doi.org/10.3390/s21072531 - 4 Apr 2021
Cited by 25 | Viewed by 4712
Abstract
Flexible strain sensors are receiving a great deal of interest owing to their prospective applications in monitoring various human activities. Among various efforts to enhance the sensitivity of strain sensors, pre-crack generation has been well explored for elastic polymers but rarely on textile [...] Read more.
Flexible strain sensors are receiving a great deal of interest owing to their prospective applications in monitoring various human activities. Among various efforts to enhance the sensitivity of strain sensors, pre-crack generation has been well explored for elastic polymers but rarely on textile substrates. Herein, a highly sensitive textile-based strain sensor was fabricated via a dip-coat-stretch approach: a polyester woven elastic band was dipped into ink containing single-walled carbon nanotubes coated with silver paste and pre-stretched to generate prebuilt cracks on the surface. Our sensor demonstrated outstanding sensitivity (a gauge factor of up to 3550 within a strain range of 1.5–5%), high stability and durability, and low hysteresis. The high performance of this sensor is attributable to the excellent elasticity and woven structure of the fabric substrate, effectively generating and propagating the prebuilt cracks. The strain sensor integrated into firefighting gloves detected detailed finger angles and cyclic finger motions, demonstrating its capability for subtle human motion monitoring. It is also noteworthy that this novel strategy is a very quick, straightforward, and scalable method of fabricating strain sensors, which is extremely beneficial for practical applications. Full article
(This article belongs to the Special Issue Textile-Based Sensors: E-textiles, Devices, and Integrated Systems)
Show Figures

Figure 1

23 pages, 1905 KiB  
Review
Molecularly Imprinted Polymer-Based Sensors for Priority Pollutants
by Mashaalah Zarejousheghani, Parvaneh Rahimi, Helko Borsdorf, Stefan Zimmermann and Yvonne Joseph
Sensors 2021, 21(7), 2406; https://doi.org/10.3390/s21072406 - 31 Mar 2021
Cited by 29 | Viewed by 4548
Abstract
Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their [...] Read more.
Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some concentrations of these chemicals can cause severe and irrecoverable health effects, which can be easily prevented by their early identification. Molecularly imprinted polymers (MIPs) offer great potential for selective adsorption of chemicals from water and air samples. These selective artificial bio(mimetic) receptors are promising candidates for modification of sensors, especially disposable sensors, due to their low-cost, long-term stability, ease of engineering, simplicity of production and their applicability for a wide range of targets. Herein, innovative strategies used to develop MIP-based sensors for EPA priority pollutants will be reviewed. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymer Sensing Platforms)
Show Figures

Figure 1

20 pages, 8500 KiB  
Article
Assessment of Vineyard Canopy Characteristics from Vigour Maps Obtained Using UAV and Satellite Imagery
by Javier Campos, Francisco García-Ruíz and Emilio Gil
Sensors 2021, 21(7), 2363; https://doi.org/10.3390/s21072363 - 29 Mar 2021
Cited by 29 | Viewed by 4201
Abstract
Canopy characterisation is a key factor for the success and efficiency of the pesticide application process in vineyards. Canopy measurements to determine the optimal volume rate are currently conducted manually, which is time-consuming and limits the adoption of precise methods for volume rate [...] Read more.
Canopy characterisation is a key factor for the success and efficiency of the pesticide application process in vineyards. Canopy measurements to determine the optimal volume rate are currently conducted manually, which is time-consuming and limits the adoption of precise methods for volume rate selection. Therefore, automated methods for canopy characterisation must be established using a rapid and reliable technology capable of providing precise information about crop structure. This research providedregression models for obtaining canopy characteristics of vineyards from unmanned aerial vehicle (UAV) and satellite images collected in three significant growth stages. Between 2018 and 2019, a total of 1400 vines were characterised manually and remotely using a UAV and a satellite-based technology. The information collected from the sampled vines was analysed by two different procedures. First, a linear relationship between the manual and remote sensing data was investigated considering every single vine as a data point. Second, the vines were clustered based on three vigour levels in the parcel, and regression models were fitted to the average values of the ground-based and remote sensing-estimated canopy parameters. Remote sensing could detect the changes in canopy characteristics associated with vegetation growth. The combination of normalised differential vegetation index (NDVI) and projected area extracted from the UAV images is correlated with the tree row volume (TRV) when raw point data were used. This relationship was improved and extended to canopy height, width, leaf wall area, and TRV when the data were clustered. Similarly, satellite-based NDVI yielded moderate coefficients of determination for canopy width with raw point data, and for canopy width, height, and TRV when the vines were clustered according to the vigour. The proposed approach should facilitate the estimation of canopy characteristics in each area of a field using a cost-effective, simple, and reliable technology, allowing variable rate application in vineyards. Full article
Show Figures

Figure 1

15 pages, 3214 KiB  
Article
A Deep-Learning Framework for the Detection of Oil Spills from SAR Data
by Mohamed Shaban, Reem Salim, Hadil Abu Khalifeh, Adel Khelifi, Ahmed Shalaby, Shady El-Mashad, Ali Mahmoud, Mohammed Ghazal and Ayman El-Baz
Sensors 2021, 21(7), 2351; https://doi.org/10.3390/s21072351 - 28 Mar 2021
Cited by 46 | Viewed by 5753
Abstract
Oil leaks onto water surfaces from big tankers, ships, and pipeline cracks cause considerable damage and harm to the marine environment. Synthetic Aperture Radar (SAR) images provide an approximate representation for target scenes, including sea and land surfaces, ships, oil spills, and look-alikes. [...] Read more.
Oil leaks onto water surfaces from big tankers, ships, and pipeline cracks cause considerable damage and harm to the marine environment. Synthetic Aperture Radar (SAR) images provide an approximate representation for target scenes, including sea and land surfaces, ships, oil spills, and look-alikes. Detection and segmentation of oil spills from SAR images are crucial to aid in leak cleanups and protecting the environment. This paper introduces a two-stage deep-learning framework for the identification of oil spill occurrences based on a highly unbalanced dataset. The first stage classifies patches based on the percentage of oil spill pixels using a novel 23-layer Convolutional Neural Network. In contrast, the second stage performs semantic segmentation using a five-stage U-Net structure. The generalized Dice loss is minimized to account for the reduced oil spill representation in the patches. The results of this study are very promising and provide a comparable improved precision and Dice score compared to related work. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Towards Continuous Camera-Based Respiration Monitoring in Infants
by Ilde Lorato, Sander Stuijk, Mohammed Meftah, Deedee Kommers, Peter Andriessen, Carola van Pul and Gerard de Haan
Sensors 2021, 21(7), 2268; https://doi.org/10.3390/s21072268 - 24 Mar 2021
Cited by 25 | Viewed by 3102
Abstract
Aiming at continuous unobtrusive respiration monitoring, motion robustness is paramount. However, some types of motion can completely hide the respiration information and the detection of these events is required to avoid incorrect rate estimations. Therefore, this work proposes a motion detector optimized to [...] Read more.
Aiming at continuous unobtrusive respiration monitoring, motion robustness is paramount. However, some types of motion can completely hide the respiration information and the detection of these events is required to avoid incorrect rate estimations. Therefore, this work proposes a motion detector optimized to specifically detect severe motion of infants combined with a respiration rate detection strategy based on automatic pixels selection, which proved to be robust to motion of the infants involving head and limbs. A dataset including both thermal and RGB (Red Green Blue) videos was used amounting to a total of 43 h acquired on 17 infants. The method was successfully applied to both RGB and thermal videos and compared to the chest impedance signal. The Mean Absolute Error (MAE) in segments where some motion is present was 1.16 and 1.97 breaths/min higher than the MAE in the ideal moments where the infants were still for testing and validation set, respectively. Overall, the average MAE on the testing and validation set are 3.31 breaths/min and 5.36 breaths/min, using 64.00% and 69.65% of the included video segments (segments containing events such as interventions were excluded based on a manual annotation), respectively. Moreover, we highlight challenges that need to be overcome for continuous camera-based respiration monitoring. The method can be applied to different camera modalities, does not require skin visibility, and is robust to some motion of the infants. Full article
(This article belongs to the Special Issue Contactless Sensors for Healthcare)
Show Figures

Figure 1

26 pages, 4991 KiB  
Review
An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring
by Alishba T. John, Krishnan Murugappan, David R. Nisbet and Antonio Tricoli
Sensors 2021, 21(7), 2271; https://doi.org/10.3390/s21072271 - 24 Mar 2021
Cited by 58 | Viewed by 6953
Abstract
An electronic nose (Enose) relies on the use of an array of partially selective chemical gas sensors for identification of various chemical compounds, including volatile organic compounds in gas mixtures. They have been proposed as a portable low-cost technology to analyse complex odours [...] Read more.
An electronic nose (Enose) relies on the use of an array of partially selective chemical gas sensors for identification of various chemical compounds, including volatile organic compounds in gas mixtures. They have been proposed as a portable low-cost technology to analyse complex odours in the food industry and for environmental monitoring. Recent advances in nanofabrication, sensor and microcircuitry design, neural networks, and system integration have considerably improved the efficacy of Enose devices. Here, we highlight different types of semiconducting metal oxides as well as their sensing mechanism and integration into Enose systems, including different pattern recognition techniques employed for data analysis. We offer a critical perspective of state-of-the-art commercial and custom-made Enoses, identifying current challenges for the broader uptake and use of Enose systems in a variety of applications. Full article
(This article belongs to the Special Issue Metal Oxides Sensors: Innovation and Quality of Life)
Show Figures

Figure 1

22 pages, 6062 KiB  
Article
Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data
by Ángel Encalada-Dávila, Bryan Puruncajas, Christian Tutivén and Yolanda Vidal
Sensors 2021, 21(6), 2228; https://doi.org/10.3390/s21062228 - 23 Mar 2021
Cited by 47 | Viewed by 8887
Abstract
As stated by the European Academy of Wind Energy (EAWE), the wind industry has identified main bearing failures as a critical issue in terms of increasing wind turbine reliability and availability. This is owing to major repairs with high replacement costs and long [...] Read more.
As stated by the European Academy of Wind Energy (EAWE), the wind industry has identified main bearing failures as a critical issue in terms of increasing wind turbine reliability and availability. This is owing to major repairs with high replacement costs and long downtime periods associated with main bearing failures. Thus, the main bearing fault prognosis has become an economically relevant topic and is a technical challenge. In this work, a data-based methodology for fault prognosis is presented. The main contributions of this work are as follows: (i) Prognosis is achieved by using only supervisory control and data acquisition (SCADA) data, which is already available in all industrial-sized wind turbines; thus, no extra sensors that are designed for a specific purpose need to be installed. (ii) The proposed method only requires healthy data to be collected; thus, it can be applied to any wind farm even when no faulty data has been recorded. (iii) The proposed algorithm works under different and varying operating and environmental conditions. (iv) The validity and performance of the established methodology is demonstrated on a real underproduction wind farm consisting of 12 wind turbines. The obtained results show that advanced prognostic systems based solely on SCADA data can predict failures several months prior to their occurrence and allow wind turbine operators to plan their operations. Full article
(This article belongs to the Special Issue Sensors for Wind Turbine Fault Diagnosis and Prognosis)
Show Figures

Figure 1

23 pages, 4666 KiB  
Article
A Smart and Secure Logistics System Based on IoT and Cloud Technologies
by Ilaria Sergi, Teodoro Montanaro, Fabrizio Luca Benvenuto and Luigi Patrono
Sensors 2021, 21(6), 2231; https://doi.org/10.3390/s21062231 - 23 Mar 2021
Cited by 28 | Viewed by 5952
Abstract
Recently, one of the hottest topics in the logistics sector has been the traceability of goods and the monitoring of their condition during transportation. Perishable goods, such as fresh goods, have specifically attracted attention of the researchers that have already proposed different solutions [...] Read more.
Recently, one of the hottest topics in the logistics sector has been the traceability of goods and the monitoring of their condition during transportation. Perishable goods, such as fresh goods, have specifically attracted attention of the researchers that have already proposed different solutions to guarantee quality and freshness of food through the whole cold chain. In this regard, the use of Internet of Things (IoT)-enabling technologies and its specific branch called edge computing is bringing different enhancements thereby achieving easy remote and real-time monitoring of transported goods. Due to the fast changes of the requirements and the difficulties that researchers can encounter in proposing new solutions, the fast prototype approach could contribute to rapidly enhance both the research and the commercial sector. In order to make easy the fast prototyping of solutions, different platforms and tools have been proposed in the last years, however it is difficult to guarantee end-to-end security at all the levels through such platforms. For this reason, based on the experiments reported in literature and aiming at providing support for fast-prototyping, end-to-end security in the logistics sector, the current work presents a solution that demonstrates how the advantages offered by the Azure Sphere platform, a dedicated hardware (i.e., microcontroller unit, the MT3620) device and Azure Sphere Security Service can be used to realize a fast prototype to trace fresh food conditions through its transportation. The proposed solution guarantees end-to-end security and can be exploited by future similar works also in other sectors. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

14 pages, 1156 KiB  
Article
Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data
by Scott Pardoel, Gaurav Shalin, Julie Nantel, Edward D. Lemaire and Jonathan Kofman
Sensors 2021, 21(6), 2246; https://doi.org/10.3390/s21062246 - 23 Mar 2021
Cited by 29 | Viewed by 4209
Abstract
Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would [...] Read more.
Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities. Full article
(This article belongs to the Special Issue Sensors and Sensing Technology Applied in Parkinson Disease)
Show Figures

Figure 1

18 pages, 2185 KiB  
Article
ARETT: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays
by Sebastian Kapp, Michael Barz, Sergey Mukhametov, Daniel Sonntag and Jochen Kuhn
Sensors 2021, 21(6), 2234; https://doi.org/10.3390/s21062234 - 23 Mar 2021
Cited by 56 | Viewed by 8730
Abstract
Currently an increasing number of head mounted displays (HMD) for virtual and augmented reality (VR/AR) are equipped with integrated eye trackers. Use cases of these integrated eye trackers include rendering optimization and gaze-based user interaction. In addition, visual attention in VR and AR [...] Read more.
Currently an increasing number of head mounted displays (HMD) for virtual and augmented reality (VR/AR) are equipped with integrated eye trackers. Use cases of these integrated eye trackers include rendering optimization and gaze-based user interaction. In addition, visual attention in VR and AR is interesting for applied research based on eye tracking in cognitive or educational sciences for example. While some research toolkits for VR already exist, only a few target AR scenarios. In this work, we present an open-source eye tracking toolkit for reliable gaze data acquisition in AR based on Unity 3D and the Microsoft HoloLens 2, as well as an R package for seamless data analysis. Furthermore, we evaluate the spatial accuracy and precision of the integrated eye tracker for fixation targets with different distances and angles to the user (n=21). On average, we found that gaze estimates are reported with an angular accuracy of 0.83 degrees and a precision of 0.27 degrees while the user is resting, which is on par with state-of-the-art mobile eye trackers. Full article
(This article belongs to the Special Issue Wearable Technologies and Applications for Eye Tracking)
Show Figures

Figure 1

21 pages, 10879 KiB  
Article
Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue
by Chang Liu and Tamás Szirányi
Sensors 2021, 21(6), 2180; https://doi.org/10.3390/s21062180 - 20 Mar 2021
Cited by 61 | Viewed by 10536
Abstract
Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric [...] Read more.
Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

35 pages, 1405 KiB  
Review
A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface
by Amardeep Singh, Ali Abdul Hussain, Sunil Lal and Hans W. Guesgen
Sensors 2021, 21(6), 2173; https://doi.org/10.3390/s21062173 - 20 Mar 2021
Cited by 68 | Viewed by 9443
Abstract
Motor imagery (MI) based brain–computer interface (BCI) aims to provide a means of communication through the utilization of neural activity generated due to kinesthetic imagination of limbs. Every year, a significant number of publications that are related to new improvements, challenges, and breakthrough [...] Read more.
Motor imagery (MI) based brain–computer interface (BCI) aims to provide a means of communication through the utilization of neural activity generated due to kinesthetic imagination of limbs. Every year, a significant number of publications that are related to new improvements, challenges, and breakthrough in MI-BCI are made. This paper provides a comprehensive review of the electroencephalogram (EEG) based MI-BCI system. It describes the current state of the art in different stages of the MI-BCI (data acquisition, MI training, preprocessing, feature extraction, channel and feature selection, and classification) pipeline. Although MI-BCI research has been going for many years, this technology is mostly confined to controlled lab environments. We discuss recent developments and critical algorithmic issues in MI-based BCI for commercial deployment. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 12031 KiB  
Article
Experimental Seaborne Passive Radar
by Gustaw Mazurek, Krzysztof Kulpa, Mateusz Malanowski and Aleksander Droszcz
Sensors 2021, 21(6), 2171; https://doi.org/10.3390/s21062171 - 20 Mar 2021
Cited by 15 | Viewed by 3322
Abstract
Passive bistatic radar does not emit energy by itself but relies on the energy emitted by illuminators of opportunity, such as radio or television transmitters. Ground-based passive radars are relatively well-developed, as numerous demonstrators and operational systems are being built. Passive radar on [...] Read more.
Passive bistatic radar does not emit energy by itself but relies on the energy emitted by illuminators of opportunity, such as radio or television transmitters. Ground-based passive radars are relatively well-developed, as numerous demonstrators and operational systems are being built. Passive radar on a moving platform, however, is a relatively new field. In this paper, an experimental seaborne passive radar system is presented. The radar uses digital radio (DAB) and digital television (DVB-T) for target detection. Results of clutter analysis are presented, as well as detections of real-life targets. Full article
(This article belongs to the Special Issue Active and Passive Radars on Mobile Platforms)
Show Figures

Figure 1

20 pages, 1140 KiB  
Article
Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning
by Ohoud Nafea, Wadood Abdul, Ghulam Muhammad and Mansour Alsulaiman
Sensors 2021, 21(6), 2141; https://doi.org/10.3390/s21062141 - 18 Mar 2021
Cited by 89 | Viewed by 8012
Abstract
Human activity recognition (HAR) remains a challenging yet crucial problem to address in computer vision. HAR is primarily intended to be used with other technologies, such as the Internet of Things, to assist in healthcare and eldercare. With the development of deep learning, [...] Read more.
Human activity recognition (HAR) remains a challenging yet crucial problem to address in computer vision. HAR is primarily intended to be used with other technologies, such as the Internet of Things, to assist in healthcare and eldercare. With the development of deep learning, automatic high-level feature extraction has become a possibility and has been used to optimize HAR performance. Furthermore, deep-learning techniques have been applied in various fields for sensor-based HAR. This study introduces a new methodology using convolution neural networks (CNN) with varying kernel dimensions along with bi-directional long short-term memory (BiLSTM) to capture features at various resolutions. The novelty of this research lies in the effective selection of the optimal video representation and in the effective extraction of spatial and temporal features from sensor data using traditional CNN and BiLSTM. Wireless sensor data mining (WISDM) and UCI datasets are used for this proposed methodology in which data are collected through diverse methods, including accelerometers, sensors, and gyroscopes. The results indicate that the proposed scheme is efficient in improving HAR. It was thus found that unlike other available methods, the proposed method improved accuracy, attaining a higher score in the WISDM dataset compared to the UCI dataset (98.53% vs. 97.05%). Full article
(This article belongs to the Special Issue AI-Enabled Advanced Sensing for Human Action and Activity Recognition)
Show Figures

Figure 1

22 pages, 25342 KiB  
Review
Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics
by Ilaria Buja, Erika Sabella, Anna Grazia Monteduro, Maria Serena Chiriacò, Luigi De Bellis, Andrea Luvisi and Giuseppe Maruccio
Sensors 2021, 21(6), 2129; https://doi.org/10.3390/s21062129 - 18 Mar 2021
Cited by 87 | Viewed by 13446
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” [...] Read more.
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

29 pages, 3124 KiB  
Review
Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review
by Manuel Andrés Vélez-Guerrero, Mauro Callejas-Cuervo and Stefano Mazzoleni
Sensors 2021, 21(6), 2146; https://doi.org/10.3390/s21062146 - 18 Mar 2021
Cited by 54 | Viewed by 11558
Abstract
Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, [...] Read more.
Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology. Full article
(This article belongs to the Special Issue Electronics for E-health Sensor Systems)
Show Figures

Figure 1

36 pages, 2258 KiB  
Review
Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges
by Kostas Nizamis, Alkinoos Athanasiou, Sofia Almpani, Christos Dimitrousis and Alexander Astaras
Sensors 2021, 21(6), 2084; https://doi.org/10.3390/s21062084 - 16 Mar 2021
Cited by 40 | Viewed by 8529
Abstract
Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. [...] Read more.
Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions. Full article
(This article belongs to the Special Issue Rehabilitation Robots and Sensors)
Show Figures

Figure 1

20 pages, 1436 KiB  
Review
Leap Motion Controller Video Game-Based Therapy for Upper Extremity Motor Recovery in Patients with Central Nervous System Diseases. A Systematic Review with Meta-Analysis
by Irene Cortés-Pérez, Noelia Zagalaz-Anula, Desirée Montoro-Cárdenas, Rafael Lomas-Vega, Esteban Obrero-Gaitán and María Catalina Osuna-Pérez
Sensors 2021, 21(6), 2065; https://doi.org/10.3390/s21062065 - 15 Mar 2021
Cited by 27 | Viewed by 6148
Abstract
Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity [...] Read more.
Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline, Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs) of patients with CNSD in which LMC was used as experimental therapy compared to conventional therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen’s standardized mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke, LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45). In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility (SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42, 2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson’s disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47; 95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD) (SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD when it was used with CT. Full article
Show Figures

Figure 1

15 pages, 16032 KiB  
Article
Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity
by Claudia Gonzalez Viejo, Eden Tongson and Sigfredo Fuentes
Sensors 2021, 21(6), 2016; https://doi.org/10.3390/s21062016 - 12 Mar 2021
Cited by 58 | Viewed by 5288
Abstract
Aroma is one of the main attributes that consumers consider when appreciating and selecting a coffee; hence it is considered an important quality trait. However, the most common methods to assess aroma are based on expensive equipment or human senses through sensory evaluation, [...] Read more.
Aroma is one of the main attributes that consumers consider when appreciating and selecting a coffee; hence it is considered an important quality trait. However, the most common methods to assess aroma are based on expensive equipment or human senses through sensory evaluation, which is time-consuming and requires highly trained assessors to avoid subjectivity. Therefore, this study aimed to estimate the coffee intensity and aromas using a low-cost and portable electronic nose (e-nose) and machine learning modeling. For this purpose, triplicates of nine commercial coffee samples with different intensity levels were used for this study. Two machine learning models were developed based on artificial neural networks using the data from the e-nose as inputs to (i) classify the samples into low, medium, and high-intensity (Model 1) and (ii) to predict the relative abundance of 45 different aromas (Model 2). Results showed that it is possible to estimate the intensity of coffees with high accuracy (98%; Model 1), as well as to predict the specific aromas obtaining a high correlation coefficient (R = 0.99), and no under- or over-fitting of the models were detected. The proposed contactless, nondestructive, rapid, reliable, and low-cost method showed to be effective in evaluating volatile compounds in coffee, which is a potential technique to be applied within all stages of the production process to detect any undesirable characteristics on–time and ensure high-quality products. Full article
(This article belongs to the Special Issue Novel Contactless Sensors for Food, Beverage and Packaging Evaluation)
Show Figures

Figure 1

11 pages, 2091 KiB  
Article
Low Cost, Easy to Prepare and Disposable Electrochemical Molecularly Imprinted Sensor for Diclofenac Detection
by Isabel Seguro, João G. Pacheco and Cristina Delerue-Matos
Sensors 2021, 21(6), 1975; https://doi.org/10.3390/s21061975 - 11 Mar 2021
Cited by 25 | Viewed by 3663
Abstract
In this work, a disposable electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor for the selective determination of diclofenac (DCF) was constructed. The proposed MIP-sensor permits fast (30 min) analysis, is cheap, easy to prepare and has the potential to be integrated with portable [...] Read more.
In this work, a disposable electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor for the selective determination of diclofenac (DCF) was constructed. The proposed MIP-sensor permits fast (30 min) analysis, is cheap, easy to prepare and has the potential to be integrated with portable devices. Due to its simplicity and efficiency, surface imprinting by electropolymerization was used to prepare a MIP on a screen-printed carbon electrode (SPCE). MIP preparation was achieved by cyclic voltammetry (CV), using dopamine (DA) as a monomer in the presence of DCF. The differential pulse voltammetry (DPV) detection of DCF at MIP/SPCE and non-imprinted control sensors (NIP) showed an imprinting factor of 2.5. Several experimental preparation parameters were studied and optimized. CV and electrochemical impedance spectroscopy (EIS) experiments were performed to evaluate the electrode surface modifications. The MIP sensor showed adequate selectivity (in comparison with other drug molecules), intra-day repeatability of 7.5%, inter-day repeatability of 11.5%, a linear range between 0.1 and 10 μM (r2 = 0.9963) and a limit of detection (LOD) and quantification (LOQ) of 70 and 200 nM, respectively. Its applicability was successfully demonstrated by the determination of DCF in spiked water samples (river and tap water). Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

24 pages, 9930 KiB  
Article
LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching
by David Gualda, María Carmen Pérez-Rubio, Jesús Ureña, Sergio Pérez-Bachiller, José Manuel Villadangos, Álvaro Hernández, Juan Jesús García and Ana Jiménez
Sensors 2021, 21(6), 1950; https://doi.org/10.3390/s21061950 - 10 Mar 2021
Cited by 20 | Viewed by 3668
Abstract
Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity [...] Read more.
Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (U-LPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others. Full article
(This article belongs to the Special Issue Systems, Applications and Services for Smart Cities)
Show Figures

Figure 1

30 pages, 9202 KiB  
Article
Vision-Based Tactile Sensor Mechanism for the Estimation of Contact Position and Force Distribution Using Deep Learning
by Vijay Kakani, Xuenan Cui, Mingjie Ma and Hakil Kim
Sensors 2021, 21(5), 1920; https://doi.org/10.3390/s21051920 - 9 Mar 2021
Cited by 32 | Viewed by 6627
Abstract
This work describes the development of a vision-based tactile sensor system that utilizes the image-based information of the tactile sensor in conjunction with input loads at various motions to train the neural network for the estimation of tactile contact position, area, and force [...] Read more.
This work describes the development of a vision-based tactile sensor system that utilizes the image-based information of the tactile sensor in conjunction with input loads at various motions to train the neural network for the estimation of tactile contact position, area, and force distribution. The current study also addresses pragmatic aspects, such as choice of the thickness and materials for the tactile fingertips and surface tendency, etc. The overall vision-based tactile sensor equipment interacts with an actuating motion controller, force gauge, and control PC (personal computer) with a LabVIEW software on it. The image acquisition was carried out using a compact stereo camera setup mounted inside the elastic body to observe and measure the amount of deformation by the motion and input load. The vision-based tactile sensor test bench was employed to collect the output contact position, angle, and force distribution caused by various randomly considered input loads for motion in X, Y, Z directions and RxRy rotational motion. The retrieved image information, contact position, area, and force distribution from different input loads with specified 3D position and angle are utilized for deep learning. A convolutional neural network VGG-16 classification modelhas been modified to a regression network model and transfer learning was applied to suit the regression task of estimating contact position and force distribution. Several experiments were carried out using thick and thin sized tactile sensors with various shapes, such as circle, square, hexagon, for better validation of the predicted contact position, contact area, and force distribution. Full article
Show Figures

Figure 1

16 pages, 3774 KiB  
Article
Quantifying Physiological Biomarkers of a Microwave Brain Stimulation Device
by Iqram Hussain, Seo Young, Chang Ho Kim, Ho Chee Meng Benjamin and Se Jin Park
Sensors 2021, 21(5), 1896; https://doi.org/10.3390/s21051896 - 8 Mar 2021
Cited by 30 | Viewed by 3387
Abstract
Physiological signals are immediate and sensitive to neural and cardiovascular change resulting from brain stimulation, and are considered as a quantifying tool with which to evaluate the association between brain stimulation and cognitive performance. Brain stimulation outside a highly equipped, clinical setting requires [...] Read more.
Physiological signals are immediate and sensitive to neural and cardiovascular change resulting from brain stimulation, and are considered as a quantifying tool with which to evaluate the association between brain stimulation and cognitive performance. Brain stimulation outside a highly equipped, clinical setting requires the use of a low-cost, ambulatory miniature system. The purpose of this double-blind, randomized, sham-controlled study is to quantify the physiological biomarkers of the neural and cardiovascular systems induced by a microwave brain stimulation (MBS) device. We investigated the effect of an active MBS and a sham device on the cardiovascular and neurological responses of ten volunteers (mean age 26.33 years, 70% male). Electroencephalography (EEG) and electrocardiography (ECG) were recorded in the initial resting-state, intermediate state, and the final state at half-hour intervals using a portable sensing device. During the experiment, the participants were engaged in a cognitive workload. In the active MBS group, the power of high-alpha, high-beta, and low-beta bands in the EEG increased, and the power of low-alpha and theta waves decreased, relative to the sham group. RR Interval and QRS interval showed a significant association with MBS stimulation. Heart rate variability features showed no significant difference between the two groups. A wearable MBS modality may be feasible for use in biomedical research; the MBS can modulate the neurological and cardiovascular responses to cognitive workload. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Graphical abstract

17 pages, 5886 KiB  
Article
An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach
by Tasbiraha Athaya and Sunwoong Choi
Sensors 2021, 21(5), 1867; https://doi.org/10.3390/s21051867 - 7 Mar 2021
Cited by 70 | Viewed by 10048
Abstract
Blood pressure (BP) monitoring has significant importance in the treatment of hypertension and different cardiovascular health diseases. As photoplethysmogram (PPG) signals can be recorded non-invasively, research has been highly conducted to measure BP using PPG recently. In this paper, we propose a U-net [...] Read more.
Blood pressure (BP) monitoring has significant importance in the treatment of hypertension and different cardiovascular health diseases. As photoplethysmogram (PPG) signals can be recorded non-invasively, research has been highly conducted to measure BP using PPG recently. In this paper, we propose a U-net deep learning architecture that uses fingertip PPG signal as input to estimate arterial BP (ABP) waveform non-invasively. From this waveform, we have also measured systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). The proposed method was evaluated on a subset of 100 subjects from two publicly available databases: MIMIC and MIMIC-III. The predicted ABP waveforms correlated highly with the reference waveforms and we have obtained an average Pearson’s correlation coefficient of 0.993. The mean absolute error is 3.68 ± 4.42 mmHg for SBP, 1.97 ± 2.92 mmHg for DBP, and 2.17 ± 3.06 mmHg for MAP which satisfy the requirements of the Association for the Advancement of Medical Instrumentation (AAMI) standard and obtain grade A according to the British Hypertension Society (BHS) standard. The results show that the proposed method is an efficient process to estimate ABP waveform directly using fingertip PPG. Full article
(This article belongs to the Special Issue Machine Learning for Sensing and Healthcare 2020–2021)
Show Figures

Figure 1

83 pages, 38686 KiB  
Review
A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring
by Mattia Francesco Bado and Joan R. Casas
Sensors 2021, 21(5), 1818; https://doi.org/10.3390/s21051818 - 5 Mar 2021
Cited by 168 | Viewed by 12178
Abstract
The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely [...] Read more.
The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.63 mm). This review article intends to introduce, inform and advise the readers on various DOFS deployment methodologies for the assessment of the residual ability of a structure to continue serving its intended purpose. By collecting in a single place these recent efforts, advancements and findings, the authors intend to contribute to the goal of collective growth towards an efficient SHM. The current work is structured in a manner that allows for the single consultation of any specific DOFS application field, i.e., laboratory experimentation, the built environment (bridges, buildings, roads, etc.), geotechnical constructions, tunnels, pipelines and wind turbines. Beforehand, a brief section was constructed around the recent progress on the study of the strain transfer mechanisms occurring in the multi-layered sensing system inherent to any DOFS deployment (different kinds of fiber claddings, coatings and bonding adhesives). Finally, a section is also dedicated to ideas and concepts for those novel DOFS applications which may very well represent the future of SHM. Full article
(This article belongs to the Special Issue Distributed Optical Fiber Sensors for Concrete Structure Monitoring)
Show Figures

Figure 1

33 pages, 35833 KiB  
Review
A Comparative Analysis of Signal Decomposition Techniques for Structural Health Monitoring on an Experimental Benchmark
by Marco Civera and Cecilia Surace
Sensors 2021, 21(5), 1825; https://doi.org/10.3390/s21051825 - 5 Mar 2021
Cited by 57 | Viewed by 6288
Abstract
Signal Processing is, arguably, the fundamental enabling technology for vibration-based Structural Health Monitoring (SHM), which includes damage detection and more advanced tasks. However, the investigation of real-life vibration measurements is quite compelling. For a better understanding of its dynamic behaviour, a multi-degree-of-freedom system [...] Read more.
Signal Processing is, arguably, the fundamental enabling technology for vibration-based Structural Health Monitoring (SHM), which includes damage detection and more advanced tasks. However, the investigation of real-life vibration measurements is quite compelling. For a better understanding of its dynamic behaviour, a multi-degree-of-freedom system should be efficiently decomposed into its independent components. However, the target structure may be affected by (damage-related or not) nonlinearities, which appear as noise-like distortions in its vibrational response. This response can be nonstationary as well and thus requires a time-frequency analysis. Adaptive mode decomposition methods are the most apt strategy under these circumstances. Here, a shortlist of three well-established algorithms has been selected for an in-depth analysis. These signal decomposition approaches—namely, the Empirical Mode Decomposition (EMD), the Hilbert Vibration Decomposition (HVD), and the Variational Mode Decomposition (VMD)—are deemed to be the most representative ones because of their extensive use and favourable reception from the research community. The main aspects and properties of these data-adaptive methods, as well as their advantages, limitations, and drawbacks, are discussed and compared. Then, the potentialities of the three algorithms are assessed firstly on a numerical case study and then on a well-known experimental benchmark, including nonlinear cases and nonstationary signals. Full article
(This article belongs to the Special Issue Data Acquisition and Processing for Fault Diagnosis)
Show Figures

Figure 1

28 pages, 15906 KiB  
Article
Towards Robust Robot Control in Cartesian Space Using an Infrastructureless Head- and Eye-Gaze Interface
by Lukas Wöhle and Marion Gebhard
Sensors 2021, 21(5), 1798; https://doi.org/10.3390/s21051798 - 5 Mar 2021
Cited by 15 | Viewed by 3587
Abstract
This paper presents a lightweight, infrastructureless head-worn interface for robust and real-time robot control in Cartesian space using head- and eye-gaze. The interface comes at a total weight of just 162 g. It combines a state-of-the-art visual simultaneous localization and mapping algorithm (ORB-SLAM [...] Read more.
This paper presents a lightweight, infrastructureless head-worn interface for robust and real-time robot control in Cartesian space using head- and eye-gaze. The interface comes at a total weight of just 162 g. It combines a state-of-the-art visual simultaneous localization and mapping algorithm (ORB-SLAM 2) for RGB-D cameras with a Magnetic Angular rate Gravity (MARG)-sensor filter. The data fusion process is designed to dynamically switch between magnetic, inertial and visual heading sources to enable robust orientation estimation under various disturbances, e.g., magnetic disturbances or degraded visual sensor data. The interface furthermore delivers accurate eye- and head-gaze vectors to enable precise robot end effector (EFF) positioning and employs a head motion mapping technique to effectively control the robots end effector orientation. An experimental proof of concept demonstrates that the proposed interface and its data fusion process generate reliable and robust pose estimation. The three-dimensional head- and eye-gaze position estimation pipeline delivers a mean Euclidean error of 19.0±15.7 mm for head-gaze and 27.4±21.8 mm for eye-gaze at a distance of 0.3–1.1 m to the user. This indicates that the proposed interface offers a precise control mechanism for hands-free and full six degree of freedom (DoF) robot teleoperation in Cartesian space by head- or eye-gaze and head motion. Full article
(This article belongs to the Special Issue Assistance Robotics and Sensors)
Show Figures

Figure 1

20 pages, 6253 KiB  
Article
Sensitivity, Noise and Resolution in a BEOL-Modified Foundry-Made ISFET with Miniaturized Reference Electrode for Wearable Point-of-Care Applications
by Francesco Bellando, Leandro Julian Mele, Pierpaolo Palestri, Junrui Zhang, Adrian Mihai Ionescu and Luca Selmi
Sensors 2021, 21(5), 1779; https://doi.org/10.3390/s21051779 - 4 Mar 2021
Cited by 16 | Viewed by 3424
Abstract
Ion-sensitive field-effect transistors (ISFETs) form a high sensitivity and scalable class of sensors, compatible with advanced complementary metal-oxide semiconductor (CMOS) processes. Despite many previous demonstrations about their merits as low-power integrated sensors, very little is known about their noise characterization when being operated [...] Read more.
Ion-sensitive field-effect transistors (ISFETs) form a high sensitivity and scalable class of sensors, compatible with advanced complementary metal-oxide semiconductor (CMOS) processes. Despite many previous demonstrations about their merits as low-power integrated sensors, very little is known about their noise characterization when being operated in a liquid gate configuration. The noise characteristics in various regimes of their operation are important to select the most suitable conditions for signal-to-noise ratio (SNR) and power consumption. This work reports systematic DC, transient, and noise characterizations and models of a back-end of line (BEOL)-modified foundry-made ISFET used as pH sensor. The aim is to determine the sensor sensitivity and resolution to pH changes and to calibrate numerical and lumped element models, capable of supporting the interpretation of the experimental findings. The experimental sensitivity is approximately 40 mV/pH with a normalized resolution of 5 mpH per µm2, in agreement with the literature state of the art. Differences in the drain current noise spectra between the ISFET and MOSFET configurations of the same device at low currents (weak inversion) suggest that the chemical noise produced by the random binding/unbinding of the H+ ions on the sensor surface is likely the dominant noise contribution in this regime. In contrast, at high currents (strong inversion), the two configurations provide similar drain noise levels suggesting that the noise originates in the underlying FET rather than in the sensing region. Full article
(This article belongs to the Special Issue Wearable/Wireless Body Sensor Networks for Healthcare Applications)
Show Figures

Figure 1

20 pages, 17872 KiB  
Article
COVID-19 Recognition Using Ensemble-CNNs in Two New Chest X-ray Databases
by Edoardo Vantaggiato, Emanuela Paladini, Fares Bougourzi, Cosimo Distante, Abdenour Hadid and Abdelmalik Taleb-Ahmed
Sensors 2021, 21(5), 1742; https://doi.org/10.3390/s21051742 - 3 Mar 2021
Cited by 41 | Viewed by 4981
Abstract
The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. [...] Read more.
The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small. Second, all the works that have been carried out in the field are separate; there are no unified data, classes, and evaluation protocols. In this work, based on public and newly collected data, we propose two X-ray COVID-19 databases, which are three-class COVID-19 and five-class COVID-19 datasets. For both databases, we evaluate different deep learning architectures. Moreover, we propose an Ensemble-CNNs approach which outperforms the deep learning architectures and shows promising results in both databases. In other words, our proposed Ensemble-CNNs achieved a high performance in the recognition of COVID-19 infection, resulting in accuracies of 100% and 98.1% in the three-class and five-class scenarios, respectively. In addition, our approach achieved promising results in the overall recognition accuracy of 75.23% and 81.0% for the three-class and five-class scenarios, respectively. We make our databases of COVID-19 X-ray scans publicly available to encourage other researchers to use it as a benchmark for their studies and comparisons. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

58 pages, 3843 KiB  
Review
6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap
by Agbotiname Lucky Imoize, Oluwadara Adedeji, Nistha Tandiya and Sachin Shetty
Sensors 2021, 21(5), 1709; https://doi.org/10.3390/s21051709 - 2 Mar 2021
Cited by 137 | Viewed by 12150
Abstract
The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the [...] Read more.
The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication. Full article
Show Figures

Figure 1

Back to TopTop