
Citation: Ohtani, T.; Yamamoto, R.;

Ohzahata, S. IDAC: Federated

Learning-Based Intrusion Detection

Using Autonomously Extracted

Anomalies in IoT. Sensors 2024, 24,

3218. https://doi.org/10.3390/

s24103218

Received: 19 March 2024

Revised: 13 May 2024

Accepted: 15 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

IDAC: Federated Learning-Based Intrusion Detection Using
Autonomously Extracted Anomalies in IoT
Takahiro Ohtani, Ryo Yamamoto * and Satoshi Ohzahata

Graduate School of Informatics and Engineering, The University of Electro-Communications,
Chofu 182-8585, Japan; t.ohtani@net.lab.uec.ac.jp (T.O.); ohzahata@uec.ac.jp (S.O.)
* Correspondence: ryo-yamamoto@uec.ac.jp

Abstract: The recent rapid growth in Internet of Things (IoT) technologies is enriching our daily
lives but significant information security risks in IoT fields have become apparent. In fact, there have
been large-scale botnet attacks that exploit undiscovered vulnerabilities, known as zero-day attacks.
Several intrusion detection methods based on network traffic monitoring have been proposed to
address this issue. These methods employ federated learning to share learned attack information
among multiple IoT networks, aiming to improve collective detection capabilities against attacks
including zero-day attacks. Although their ability to detect zero-day attacks with high precision
has been confirmed, challenges such as autonomous labeling of attacks from traffic information
and attack information sharing between different device types still remain. To resolve the issues,
this paper proposes IDAC, a novel intrusion detection method with autonomous attack candidate
labeling and federated learning-based attack candidate sharing. The labeling of attack candidates
in IDAC is executed using information autonomously extracted from traffic information, and the
labeling can also be applied to zero-day attacks. The federated learning-based attack candidate
sharing enables candidate aggregation from multiple networks, and it executes attack determination
based on the aggregated similar candidates. Performance evaluations demonstrated that IDS with
IDAC within networks based on attack candidates is feasible and achieved comparable detection
performance against multiple attacks including zero-day attacks compared to the existing methods
while suppressing false positives in the extraction of attack candidates. In addition, the sharing
of autonomously extracted attack candidates from multiple networks improves both detection
performance and the required time for attack detection.

Keywords: IoT; intrusion detection system; machine learning; anomaly detection

1. Introduction

In recent years, the Internet of Things (IoT) has expanded rapidly in various fields
such as healthcare, industry, and smart appliances, and has also become indispensable
in our daily lives. However, information security challenges for devices deployed in IoT
environments have become apparent due to their limited available resources derived from
operational power and deployment cost constraints, that is, they are not equipped with
sufficient resources to apply advanced security measures within the devices [1]. In fact,
in 2016, there was an attack by the Mirai Botnet that targeted vulnerable IoT devices [2].
The Mirai Botnet launches attacks against specific IoT devices and initiates malware that
communicates with a Command and Control (C2) server to form a botnet that is used
to conduct large-scale Distributed Denial-of-Service (DDoS) attacks against its targets.
Subsequently, Satori, a variant of the Mirai Botnet, emerged and formed a botnet by
conducting zero-day attacks that mainly target unpatched vulnerabilities [3].

Zero-day attacks are attacks that exploit undiscovered vulnerabilities in software
before vendors or others take measures. One of the countermeasures against zero-day
attacks on IoT devices is the installation of a Network Intrusion Detection System (NIDS)

Sensors 2024, 24, 3218. https://doi.org/10.3390/s24103218 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103218
https://doi.org/10.3390/s24103218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24103218
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103218?type=check_update&version=3


Sensors 2024, 24, 3218 2 of 16

on the IoT devices’ network to monitor network traffic and notify network administrators
when signs of an intrusion are detected. NIDS is generally installed on a network and
detection is based on the traffic captured on the network. Therefore, this eliminated the
need to execute intrusion detection on resource-constrained IoT devices.

IDS detection methods can be broadly classified into two types: signature-based
IDS and anomaly-based IDS. Signature-based IDSs predefine the communication patterns
of known attacks as attack signatures and execute intrusion detection by examining the
similarity of captured traffic to the predefined attack signatures. However, signature-based
IDSs cannot detect unknown attacks until IDS vendors release new attack signatures,
namely, it is impossible to handle zero-day attacks since no signature represents the zero-
day attacks. Anomaly-based IDSs, on the other hand, predefine the normal state of a
monitored network and compare the traffic to this predefined normal state at the time of
detection to determine whether there is a deviation from the normal state, usually caused by
attacks. Therefore, an anomaly-based IDS can detect unknown attacks, whereas a signature-
based IDS requires a signature update for the detection. However, there is a concern that
anomaly-based IDSs may increase the false positive rate because normal observations may
exceed the predefined normal range [4]. Considering that IoT networks generally consist
of heterogeneous devices with different hardware and operating systems that lead to a
diverse attacks compared with non-IoT networks [5], the use of anomaly-based IDS that
can detect unknown attacks without updating signatures in IoT networks is more suitable.

A unique characteristic exists in that the amount of traffic data per network is limited
even though a large number of devices generally exist in IoT networks. This results in a
limited sample size for training intrusion detection models for IDS systems. Therefore,
there are methods that utilize distributed learning for building and improving intrusion
detection models in IDS. Combining distributed learning allows an anomaly-based IDS
to collect attack-related samples from numerous networks, which enables the learning of
intrusion detection models that can detect a variety of attacks, even with a small number
of samples per network. However, distributed learning involves the direct exchange of
learning data between the participating devices and the aggregation server, which raises
privacy concerns. Another concern is that the direct exchange of learning data may consume
significant communication resources in IoT networks and aggregation servers, which can
potentially result in a considerable communication overhead.

Federated Learning (FL) [6] is an algorithm that builds a global model by aggregating
model update information from clients while keeping the learning data distributed on the
client side to address the aforementioned privacy and overhead concerns. In IoT networks,
the combination of anomaly-based IDS and FL has a high affinity in terms of resource
limitations, device quantity, device diversity, zero-day attack countermeasures, and privacy
protection, and some integrated IDSs have been proposed [7,8]. These proposals leverage
the characteristics of IoT networks and FL to address zero-day attacks. However, there
remain challenges, e.g., it is unable to share attack information obtained from different
device types, and there is no discussion on how to extract and label zero-day attacks.

In this paper, we introduce IDAC, a novel method that aggregates attack candidates
extracted based on communication traffic from each IoT network using FL to address the
issue of sharing attack information obtained from different device types. Attack candidate
extraction is executed by applying outlier detection, which is an unsupervised learning
method, to the entire network traffic. Subsequently, by training the extracted candidate
attacks using novelty detection, the proposed method builds an intrusion detection model
to classify whether another new input candidate is included in the learned candidate
attacks. This approach allows it to realize an autonomous detection of zero-day attacks in
environments with multiple device types.

The main contributions of this paper are as follows.

• Proposal of IDAC, an intrusion detection method that can be applied to zero-day
attacks by sharing attack candidate information through FL to address the issues of
the conventional methods that cannot label attack candidates autonomously.



Sensors 2024, 24, 3218 3 of 16

• Confirmation that the proposed IDS with IDAC can achieve comparable detection
performance against various attacks including zero-day attacks by suppressing false
positives and missed detection in the extraction of attack candidates through a com-
puter simulation-based evaluations using the BoTIoT dataset [9].

• Verification that sharing attack candidates can improve both attack detection perfor-
mance and attack detection time.

• Confirmation that IDAC has the capability for real-time processing of incoming traffic
by resolving the issue in the flow conversion process.

2. Related Work

This section describes related research on Intrusion Detection Systems (IDS) for zero-
day attack detection and IDS using Federated Learning (FL).

2.1. IDS for Zero-Day Attack Detection

To address the issue that anomaly-based IDSs have a high FP rate, an intrusion
detection method using an autoencoder is proposed to detect zero-day attacks with a high
TP rate and a low FP rate [10]. In this method, the autoencoder is first trained by normal
traffic data to build an intrusion detection model for IDS. Then, the learned intrusion
detection model is applied to traffic data containing zero-day attacks to detect intrusion
by novelty detection, which is a kind of anomaly detection algorithm. Novelty detection
pre-learns the state of one class and examines whether new input data belongs to the
learned class. Detection performance was evaluated using the CICIDS2017 and NSL-
KDD datasets, and the method achieved high accuracy in detecting zero-day attacks.
Furthermore, the method achieves a higher detection performance than the one using
novelty detection executed by Online OC-SVM. However, the detection performance
of the method against zero-day attacks relies on pre-learning the normal state, and the
heterogeneity of devices in IoT networks prevents it from defining a normal state for each
device in a real-world environment.

To address the above issue, an anomaly-based IDS that does not require defining
normal states has been proposed for zero-day attacks. This method combines Subspace
Clustering (SSC) and OC-SVM to execute highly accurate anomaly detection without prior
knowledge [11]. SSC is an unsupervised clustering technique that uses SSC to form multi-
ple subspace clusters using the feature spaces composed of network traffic converted into
features. Clustering with SSC aggregates data points with similar features into a single sub-
space. Then, outlier detection is applied to each subspace using OC-SVM to extract zero-day
attacks. Outlier detection is an anomaly detection algorithm that extracts outliers of input
data. This enables highly accurate detection of complex zero-day attacks without defining
normal states. The NSL-KDD dataset was used to evaluate the detection performance and
the evaluation demonstrates higher performance than existing clustering methods.

A reinforcement learning-based method to improve detection performance under
environments that are difficult to aggregate sufficient amount of traffic samples by gener-
ating traffic samples inside networks was also proposed in [12]. This method generates
traffic samples based on captured traffic and improves the performance of the intrusion
detection model for attacks including zero-day attacks based on samples manually labeled
by professionals. The performance evaluations show that the F1 scores of zero-day attacks
that are not included in the learning data exceed 0.7.

However, in IoT networks there is a concern that it may take time to generate clusters
capable of extracting zero-day attacks with high accuracy since there are generally insuffi-
cient amounts of data to form clusters. Moreover, traffic sample generation cannot always
generate appropriate data for learning since the generation is based on the past records.
Namely, the number of data points in a single subspace may be too small, and this could
be a cause of FP increase when applying OC-SVM. In addition, there are diverse attacks
in IoT networks and manual labeling is not appropriate to cope with them due to its low



Sensors 2024, 24, 3218 4 of 16

adaptability. Therefore, FL-based distributed learning methods have been proposed to
solve the issues.

2.2. IDS with Federated Learning

Anomaly-based IDSs face a high FP rate, and that becomes even more severe in IoT
networks due to their traffic diversity [7]. This also means that it is difficult to build an
anomaly-based detection model that can be applied to all behaviors in IoT networks with
heterogeneous devices due to the high FP rate. To address the issue, intrusion detection
models for individual device types using Gated Recurrent Units (GRUs) have been pro-
posed. In addition, the model combines FL to efficiently utilize the small amount of data
collected from each IoT network. The detection performance evaluation revealed that
the method could achieve high detection performance under an environment including
Mirai-infected IoT devices. The detection performance evaluation used traffic collected in
an experimental environment with Mirai-infected IoT devices and demonstrated that the
method has high detection performance. However, the method requires multiple devices
for a single device type to improve detection performance, and the attack information
cannot be shared among different device types. This limitation in attack information shar-
ing may be an obstacle to anomaly detection since the case that different types of devices
use common software exists, that is, individual detection model building is required even
though there is a similarity in attack information.

The fact that the estimated total amount of data generated by IoT networks in the
entire world is about 79.4 ZB makes it difficult to collect training data and build an intrusion
detection model on a central server after installing IDSs on each IoT network due to network
resource constraints [8]. Therefore, the paper pointed out that it is difficult to build an
intrusion detection model by installing IDSs on each IoT network as well as collecting
learning data centrally on a central server due to network resource constraints. Therefore, a
method that learns zero-day attacks detected by each IoT edge device using a Deep Neural
Network (DNN) and shares the learned models among devices using FL has been proposed.
This method solves the aforementioned issue by gathering locally built intrusion model
information at the central server and distributing updated model information to edge
devices. N-BaIoT and Bot-IoT datasets were used to evaluate the detection performance.
The detection performance evaluation demonstrated that an attack unknown to one device
could be detected by other devices that learn similar attacks by sharing various types of
attacks through FL. However, there is no discussion about internal traffic data labeling,
which is required to label traffic data with zero-day attacks as attacks inside devices.

FL can efficiently share zero-day attack information and enable attack detection in each
network. However, autonomous detection and sharing of attack information among devices
in a shared environment with FL is impossible as explained. Therefore, this paper proposes
a method to build an intrusion detection model by aggregating attack candidates using
Online OC-SVM and shares the intrusion detection model by FL to realize autonomous
detection of zero-day attacks in IoT networks regardless of device type.

3. IDAC: Intrusion Detection Based on Attack Candidate
3.1. System Overview

To address the aforementioned issues that conventional intrusion detection methods
fail to label captured traffic data autonomously and to share attack information among var-
ious kinds of devices, this paper proposes Intrusion Detection based on Attack Candidate
(IDAC). IDAC is a novel approach for building intrusion detection models by aggregating
attack candidates accepting a certain level of false positives (FP) with One-Class Support
Vector Machine (Online OC-SVM) and sharing the intrusion detection models through
Federated Learning (FL). This paper assumes an intrusion detection system based on IDAC
is installed on each IoT network as shown in Figure 1a, and a central server is connected
to facilitate FL among the networks. Network traffic is mirrored at the IoT Gateway (IoT



Sensors 2024, 24, 3218 5 of 16

GW), and IDS with IDAC receives the network traffic for intrusion detection within each
IoT network as shown in Figure 1b.

Central FL
Aggregation

Server

The Internet
IoT

Area Network
GW

IoT
Area Network

GW

IoT
Area Network

GW

(a)

GW

Proposed
Intrusion Detection System

Mirroring

IoT
Area Network

(b)
Figure 1. Assumed network environment. (a) Example of network configuration; (b) Installation
example of IDS with IDAC.

Figure 2 depicts the intrusion detection process of IDAC installed on each network.
IDS with IDAC executes intrusion detection sequentially each time the latest network traffic
is inputted. The process from the input of network traffic to the detection of intrusions is
carried out through the following phases:

1. Conversion phase: Convert traffic to flow;
2. Extraction phase: Extract attack candidates from flow;
3. Build and execution phase: Build detection model and execute intrusion detection;
4. Improvement phase: Improve detection models using FL.

The following subsections describe detailed procedures in each phase.

Flow summarized in
windows

Traffic Conversion phase
Packet data

Reference,
Target
window

Extraction phase
Unsupervised

Anomaly
Detection

Attack Candidates

Detection
Model

Intrusion detection and
local model learning

Central FL
Aggregation

Server

Send/Receive parameters

Build and execution phase

Proposed
Intrusion Detection System

Figure 2. Intrusion detection process in IDS with IDAC.

3.2. Conversion Phase

In this phase, time windows are created at a fixed interval for mirrored continuous
real-time traffic. The set of packets existing within each time window is then converted
into flow information, which is subsequently transformed into feature vectors. Based on
the feature vectors of the flows, IDS with IDAC executes intrusion detection for each flow.

Since network traffic is continuously inputted into a conversion mechanism in real-
time, detection target time windows of length wX , denoted as Xt, are sequentially created
as shown in Figure 3. This mechanism adopts a similar concept of a sliding window. The
mechanism invokes flow conversion within a time window once the window is fully
occupied and generates a new time window afterward. However, flow conversion con-
cluded within Xt may fail to capture the unique characteristics of long-term attacks that
have more duration than Xt. Therefore, the mechanism simultaneously generates a ref-
erence time window Yt of length wY (wY ≥ wX) to refer to long-term characteristics. Yt
is continuously updated to maintain a time series yt−wX+1, · · · , yt−1, yt, and is referenced
at the point of flow conversion in Xt. Although it can achieve high detection accuracy
with wX = wY, processing real-time traffic under this condition leads to substantial re-
source consumption for intrusion detection. Reducing wX and wY can minimize resource
consumption but raises concerns about the inability to capture long-term characteristics.



Sensors 2024, 24, 3218 6 of 16

Therefore, setting wY > wX is essential to strike a balance between detection effectiveness
and resource efficiency.

t

Reference window

Sliding→

tt-WX

Target window

tt-WY

t-2WX

Next target window

Figure 3. Creation of target window and reference window.

IDAC utilizes Argus [13], a tool designed for auditing network activity, to convert
network traffic to flow information. Argus can transform traffic from network interfaces
or files in the Packet Capture (pcap) format into network flow information. In the flow
conversion process using Argus, packet data contained within the reference time window
is transmitted to Argus, and Argus retrieves flow information for the packet data within
the detection target time window. Subsequently, ten critical features that can be used for
intrusion detection are extracted from the flow information. The selected features are
listed in Table 1. The features to be extracted are based on those used in the creation of
the BoTIoT [9] dataset as it identifies ten features that enable the most accurate detection
through statistical methods.

Table 1. Features extracted from the flow in Argus.

Feature Description

srate Source packets per second
drate Destination packets per second
rate Packets per second
max Maximum duration of aggregated records
state Transaction state
mean Average duration of aggregated records
min Minimum duration of aggregated records

stddev Standard deviation of aggregated duration times
flgs Flow state flags seen in transaction
seq Sequence number

After extracting the features, min–max normalization is applied to them. This process
aims to enhance the classification performance in the Support Vector Machine (SVM) used
for candidate extraction and intrusion detection by scaling the feature values to a fixed
range. Given the need to process traffic in real-time in IDS with IDAC, normalization
is executed by setting the maximum and minimum values for each feature based on the
ordinal value ranges that they generally take. In this study, the definitions of the values for
normalization are provided in Table 2.



Sensors 2024, 24, 3218 7 of 16

Table 2. Definition of generally assumable values used for normalization.

Feature Minimum Value Maximum Value

srate 0 7500
drate 0 7500
rate 0 100,000
max 0 5
state 0 1
mean 0 5
min 0 5

stddev 0 2
seq 0 800

3.3. Extraction Phase

In the extraction phase, unsupervised anomaly detection is executed on time series
flow data converted in the previous phase. Anomaly detection is conducted by applying
Outlier Detection within the latest preprocessed time series data Xt, thereby extracting
outliers that are considered anomalies. One-class SVM is utilized for anomaly detection
with parameters in Table 3. IDS with IDAC regards these outliers as autonomously extracted
anomalous information and treats them as attack candidates.

However, to prevent attack flows from being continuously identified as attack can-
didates when the number of attack flows exceeds the number of normal flows in the
targeted time series data, flows identified as outliers are recorded for a certain period and
excluded from the detection target time series data. This approach helps in suppressing
false positives. The exclusion applies to flows that the tuples (Protocol, Source Address,
Destination Address, Source Port, Destination Port) are completely matched.

Table 3. Parameters for OC-SVM used in anomaly detection.

Parameter Value

Common Random State 42

OC-SVM γ 1.0 × 10−4

ν 0.01
Threshold –3.0 × 10−4

3.4. Build and Execution Phase

The attack candidate data require further transformation to build an intrusion detec-
tion model by aggregating the attack candidates extracted in the previous process. The
outline of the data transformation process in this stage is shown in Figure 4. Intrusion
detection is executed by determining whether new traffic is included in the learned at-
tack candidates. Moreover, developing a model that supports attack information sharing
among networks and online learning via FL is crucial. For the requirements to achieve the
aforementioned objectives, algorithms that satisfy the following conditions are required.

Requirement 1: A one-class classification algorithm that can determine whether the infer-
ence data represent an attack based on the learned attack candidates.

Requirement 2: A parametric model whose form is predetermined and can be explained
by its parameters.

Requirement 3: Support online learning that allows for updates based solely on new data
rather than batch learning to facilitate real-time traffic processing.

Requirement 4: Capable of prioritizing intrusion detection processing on the most recent
learning data to adapt to changes in attack characteristics.



Sensors 2024, 24, 3218 8 of 16

In IDAC, a linear Online OC-SVM based on Stochastic Gradient Descent (SGD), which
fulfills the aforementioned requirements, is employed to execute learning using attack
candidates. Online OC-SVM, a machine learning technique derived from OC-SVM, is
a parametric model, and thereby meets conditions Requirements 1 and 2. Moreover, its
capability for online learning satisfies Requirement 3, and it also meets Requirement 4 by
virtue of its online learning nature. Furthermore, being an online learning model allows
faster learning and inference processing compared to traditional OC-SVM.

In Online OC-SVM, γ and ν are the primary hyperparameters, and the classification
performance of models significantly varies based on the parameters. This approach ensures
that the model is not only adaptable and efficient in real-time environments but also capable
of continuous improvement and adjustment to emerging threat patterns.

However, since linear models cannot classify linearly inseparable data, it is challenging
to build a high-accuracy classifier using Online OC-SVM alone after learning from attack
candidates. Therefore, kernel approximation techniques are employed to map data that
are linearly inseparable into a higher-dimensional feature space where linear classification
is executed. Various approximation methods such as Nyström approximation and Ran-
dom Fourier Features (RFF) have been proposed with their unique advantages. In this
paper, IDAC uses RFF because it has compatibility with FL and does not require initial
parameter sharing.

Detection 
Model

Dimension 
reduction by PCA

R
B
F

2. Scanning of score distribution

3. Determine threshold from distribution

2 dimensions 1. Learn from candidates

4. Determine whether the 
candidate constitutes an attack

Figure 4. The conversion process of attack candidate prior to model building.

The threshold for anomaly scores varies depending on the learned attack candidates.
Therefore, identifying the anomaly score distribution and determining a threshold that
marks outliers in this distribution are essential steps after generating the model. How-
ever, comprehending the distribution in a feature space of three dimensions or more is
challenging due to resource consumption. Thus, Principal Component Analysis (PCA) is
used to reduce the information of each flow to a lower-dimensional space. IDAC reduces
the feature space to two dimensions using PCA after extracting features listed in Table 1.
The parameters for PCA are predetermined as IDAC executes real-time traffic processing.
Although the dimensionality is arbitrary, the dimensionality of the reduced feature space is
set to two to facilitate swift scanning of the anomaly score distribution.

The search for anomaly scores is conducted after the dimensionality reduction and
kernel approximation processes, followed by the intrusion detection model building using
Online OC-SVM. The search for anomaly scores initially sets a grid of 50 × 50 points
within the possible value range on the two-dimensional feature space X × Y. Then, a set of
anomaly scores S represented by Equation (1) is created by inputting the score S(xi, yi) at
(xi, yi) into the built intrusion detection model.

S = {S(xi, yi) | (xi, yi) ∈ X × Y}. (1)

Subsequently, the z-score zi for each anomaly score is computed according to
Equation (2) assuming that S follows a normal distribution.



Sensors 2024, 24, 3218 9 of 16

zi =
S(xi, yi)− µ

σ
, (2)

where µ is the mean of S and σ is the standard deviation of S . Finally, θ is determined
according to Equation (3).

θ = min{S(xi, yi) | zi > 2, S(xi, yi) ∈ S}. (3)

After conducting the intrusion detection based on the threshold θ, the local intrusion
detection model is refined through online learning with the identified attack candidates.
This update process is referred to as local aggregation. This step is required to update θ
to reflect the altered anomaly scores distribution of the model after the model update. In
the context of enhancing the intrusion detection model with FL, a phase of retraining the
local model with the gathered attack candidates is required. This retraining occurs after
the last enhancement and before the commencement of the next enhancement, and thus
preserving the attack candidates collected during this interval becomes essential for the
next model updates.

3.5. Improvement Phase

In IDS with IDAC, the central server receives the model parameters of local intrusion
detection models from each local node to aggregate them and then redistributes the ag-
gregated model parameters back to each local not for model update every time a certain
local model update occurs. This update process is referred to as global aggregation. Upon
receiving the aggregated new model parameters, clients overwrite their model parameters
with the received ones to synchronize with the parameters of the global model and then re-
sume online learning. The aggregation is based on the FedAvg algorithm that incorporates
a momentum strategy into FedAvgM [14].

The global aggregation is executed in a synchronous manner that temporarily pauses
the local aggregation with a certain number of attack candidates within each network
participating in the intrusion detection model improvement and resumes the intrusion
detection process after the global aggregation using FL is completed. Initially, the afore-
mentioned detection and learning processes are repeated on each network after initializing
the local intrusion detection models in the central server and each network. Subsequently,
a request for aggregation is sent to the central server once learning with a certain number
of attack candidates has been conducted. Upon receiving the request, the central server
collects the current parameters of the local models from each network to aggregate them
and conducts a process that receives the aggregated parameters and applies them to the
local models for n rounds.

4. Performance Evaluation
4.1. Simulation Setups

In this subsection, detection and processing performance evaluations based on existing
datasets are conducted to confirm the effectiveness and feasibility of IDAC. Both local and
global aggregation of attack candidates by IDAC is confirmed to work as designed for
the feasibility evaluation. Moreover, we implement IDAC on low-power single-board
computers that are commonly used in practical IoT networks and measure the real-time
traffic processing performance.

We used the BoTIoT dataset [9] to evaluate the detection and processing performance.
IDS with IDAC is implemented using Python (version 3.10.12) using the Scikit-learn [15],
and Flower [16] libraries. Table 4 shows the required parameters for IDAC.

4.1.1. Detection Performance Evaluation

In the detection performance evaluation, we set up the following two scenarios to
assess detection performance:



Sensors 2024, 24, 3218 10 of 16

1. Scenario 1
Scenario 1 assumes that a single IoT device exists in a network and measures detection
performance after the device executes local aggregation for each attack type. The
evaluation is conducted using grid search by varying γ2, ν2, WX , and WY based on the
combinations shown in Table 5. The data ranges of BoTIoT used for this evaluation
are shown in Table 6.

2. Scenario 2
Scenario 2 assumes that multiple IoT networks exist in the environment, and we
measure the detection performance when each IoT network detects the same type of
attack and executes global aggregation. This scenario also evaluates the performance
of the proposed method with FL and without FL (non-FL) as in Scenario 1. In the
evaluation of non-FL, Network1 is used for the dataset whereas the proposed method
with FL uses both Network1 and Network2. Scenario 2 also varies the parameters as
in Scenario 1, and the date ranges are shown in Tables 6 and 7.

Table 4. Parameters required for IDAC.

Parameter Description

Common Random State Seed value

RFF Dimension Dimensionality in RFF

Window WX Length of the target window
WY Length of reference window

OC-SVM
γ1 RBF kernel parameter
ν1 Fraction of training error
θ1 Threshold for anomaly scores

Online OC-SVM
γ2 RBF kernel parameter via RFF
ν2 Fraction of training error
θ2 Threshold for anomaly score

Federated Learning
Round Number of rounds

Momentum Parameter of FedAvgMLearning Rate

Table 5. Parameters to be modified in Scenario 1 and Scenario 2.

γ2 ν2 WX WY

0.1 0.001 1 30
1 0.01 5 60
5 0.1 10 120

10 0.2
20 0.5
25

Table 6. Overview of the dataset used for evaluation in Scenario 1 and Scenario 2 (Network1).

Attack Type Time Range Number of Normal Flows Number of Attack Flows

DDoS 04-06-2018 09:01:04–09:04:55 8 4136
Data exfiltration 18-06-2018 01:09:22–01:11:01 10 113

OSScan 05-21-2018 04:05:05–04:21:16 213,147 651
ServiceScan 05-15-2018 00:27:11–00:58:15 310,286 1377
Keylogging 06-19-2018 03:59:03–04:07:18 121 687



Sensors 2024, 24, 3218 11 of 16

Table 7. Overview of the dataset used for evaluation in Scenario 2 (Network2).

Attack Type Time Range Number of Normal Flows Number of Attack Flows

DDoS 04-06-2018 09:04:55–09:08:17 9 7013
Data exfiltration 06-18-2018 01:11:01–01:12:33 8 2

OSScan 05-21-2018 04:20:46–04:32:28 785,185 2671
ServiceScan 05-15-2018 00:58:15–01:31:32 71,610 1430
Keylogging 06-19-2018 04:07:18–04:15:24 52 713

The calculation of evaluation metrics is based on the confusion matrix obtained from
the classification results of intrusion detection. The components of the confusion matrix are
defined as follows:

True Negative (TN) The number of flows that are not classified as a single attack when the
flows are not attacks.
False Positive (FP) The number of flows that are classified as attacks at least once by the
intrusion detection process when the flows are attacks.
False Negative (FN) The number of flows that are not classified as a single attack when the
flows are attacks.
True Positive (TP) The number of flows that are classified as attacks at least once by the
intrusion detection process when the flows are attacks.

In this evaluation, we use the following three items as evaluation metrics.

True Positive Rate (TPR, Recall) The Recall R represents the proportion of flows that are
actually attacks and are correctly distinguished as such by the intrusion detection results.
Here, FN denotes the number of flows classified as FN and the equation to calculate FN is
shown in Equation (4).

R =
TP

TP + FN
(4)

True Negative Rate (TNR, Specificity) The Specificity S represents the proportion of flows
that are actually normal and are correctly distinguished as such by the intrusion detection
results. Here, TN denotes the number of flows classified as TN and the equation to calculate
TN is shown in Equation (5).

S =
TN

TN + FP
(5)

F1 Score: The F1 Score is is the harmonic mean of Precision P and Recall R, which ranges 0
to 1.0. The equation to calculate F1 is shown in Equation (6).

F1 =
2PR

P + R
(6)

The equation to calculate P is shown in Equation (7), where TP denotes the number of
flows classified as TP and FP denotes the number of flows classified as FP.

P =
TP

TP + FP
(7)

Additionally, the time taken from attack flow occurrence until it is detected is measured
to show the swiftness of detection.

Among the parameters that need to be set, the following parameters are set before-
hand based on preliminary experiments, and other parameters are individually set in the
experiments for each scenario. The dimension of RFF is set to 200, the parameters for
OC-SVM are set to (θ1, γ1, ν1) = (−0.0005, 10, 0.2), and the random state is set to 42.



Sensors 2024, 24, 3218 12 of 16

4.1.2. Processing Performance Evaluation

The processing performance evaluation was conducted on the experimental testbed
whose specification is shown in Table 8 with the dataset listed in Table 9. The parameters
were set to (WX, WY, γ2, ν2) = (10, 120, 5, 0.5), and the other parameters are the same as
those used in the detection performance evaluation experiments.

In this evaluation, we measured the time required by IDAC for flow conversion, attack
candidate extraction, model improvement, and attack detection 10 times. The evaluation
metric was the time required for processing in seconds.

Table 8. Experimental environment for processing performance evaluation.

Component Specification

Board Raspberry Pi 3 Model B
SoC Broadcom BCM2837RIFBGT
CPU ARM Cortex-A53 (Utilizing 1 out of 4 cores)
RAM 1 GB

OS Raspberry Pi OS 11 (bullseye)

Table 9. Overview of the dataset used for processing performance evaluation.

Attack Type Time Range Total Flow Count Total Window Count

Data exfiltration 2018-06-18 01:09:22–01:11:01 548 18

4.2. Evaluation Results
4.2.1. Detection Performance Evaluation

Table 10 shows the combination of parameters that resulted in the highest average
values of the TPR and TNR for each attack type in Scenario 1. Table 11 shows the parameters
and detection performance for each attack type in Scenario 2. The parameters in the table
are those with the highest average TPR and TNR values in Network1 for each attack type.
Here, the F1 score does not indicate classification performance for normal flows, and thus
we show both TPR and TNR scores.

Table 10. Parameters and detection performance for each attack type in Scenario 1.

Attack Type γ2 ν2 WX WY TPR TNR F1

DDoS 10 0.5 10 120 0.89 1.00 0.94
Data exfiltration 10 0.5 5 30 0.81 1.00 0.89

OSScan 10 0.5 10 30 0.92 0.91 0.96
ServiceScan 10 0.001 10 30 0.69 1.00 0.81
Keylogging 5 0.5 5 60 0.95 0.98 0.97

Table 11. Parameters and detection performance for each attack type in Scenario 2.

Attack Type γ2 ν2 WX WY
Non-FL FL-Network1 FL-Network2

TPR TNR F1 TPR TNR F1 TPR TNR F1

DDoS 20 0.2 5 30 0.99 0.36 1.0 1.0 0.7 1.0 0.99 0.6 0.99
Data exfiltration 10 0.5 5 60 0.77 0.64 0.85 0.8 0.8 0.88 0.33 0.73 0.29

OSScan 5 0.5 10 120 0.93 0.89 0.96 0.94 1.0 0.97 0.93 0.87 0.96
ServiceScan 10 0.2 1 30 0.9 0.46 0.95 0.79 0.62 0.88 1.0 0.56 1.0
Keylogging 5 0.5 5 30 0.89 0.52 0.9 0.93 0.96 0.96 0.79 0.93 0.88

Table 12 shows intrusion detection time for flows that were actually the attacks and
were identified as such. Table 12 shows the time required for the detection with the parame-



Sensors 2024, 24, 3218 13 of 16

ters that can achieve the highest detection performance in Scenario 1, where STD represents
the standard deviation. Note that the actual process of non-FL has small differences in
Scenario 1 and Scenario 2 and thus this paper uses the result of Scenario 1 in this evaluation.

Table 12. Comparison of detection times in Scenario 1 and Scenario 2.

Attack Type Non-FL [s] FL-Network1 [s] FL-Network2 [s]
Mean STD Mean STD Mean STD

DDoS 7.14 18.16 4.96 11.01 8.30 12.33
Data exfiltration 7.49 36.27 32.53 22.53 25.03 25.03

OSScan 0.43 2.06 0.23 1.52 0.65 2.49
ServiceScan 1.76 4.62 0.01 0.28 3.26 21.56
Keylogging 2.37 7.56 2.21 6.98 0.83 12.13

4.2.2. Processing Performance

Figure 5 illustrates the average, maximum, and minimum time duration required
for the processing. Figure 5a shows the time required to convert packet data into flow
information using Argus, and Figure 5b shows the time required to perform intrusion
detection based on flow information using the proposed method.

Mean Maximum Minimum0

5

10

15

Pr
oc

es
sin

g 
Ti

m
e 

[s
]

(a)

Mean Maximum Minimum0.0

0.1

0.2

0.3

0.4

0.5
Pr

oc
es

sin
g 

Ti
m

e 
[s

]

(b)
Figure 5. Results of processing performance evaluation. (a) Time required to convert packet data into
flow information; (b) Time required for intrusion detection based on flow information.

Figure 6 shows the progression of processing times in the processing performance
evaluation. Figure 6a shows the progression of time taken to convert packet data into
flow information, and Figure 6b shows the progression of time taken to perform intrusion
detection based on flow information using IDAC.

0 50 100 150
Elapsed Time [s]

0

5

10

15

20

Pr
oc

es
sin

g 
Ti

m
e 

[s
]

Mean
Standard Deviation

(a)

0 50 100 150
Elapsed Time [s]

0.0

0.2

0.4

0.6

0.8

Pr
oc

es
sin

g 
Ti

m
e 

[s
] Mean

Standard Deviation

(b)
Figure 6. Transition of processing time in processing performance evaluation. (a) Time required
to convert packet data into flow information; (b) Time required for intrusion detection based on
flow information.



Sensors 2024, 24, 3218 14 of 16

4.3. Discussion

The results in Table 10 for Scenario 1 show that the F1 score for all attack types con-
sistently exceeded 81%. Additionally, the incidence of false positives from misclassified
normal flows is under 9% since the TNR surpasses 0.91. This evidence confirms that ag-
gregating autonomously extracted attack candidates enables IDAC to achieve intrusion
detection accuracy on par with traditional approaches, and effectively minimize false pos-
itives and misses in the attack candidate extraction phase. Moreover, IDAC can detect
zero-day attacks since the attack candidates are outliers that are autonomously extracted
from recent traffic. However, parameters for the best detection performance vary according
to attack types, especially for WX, WY. This is because the values demonstrating high
detection performance significantly differ among attack types, and this suggests the ne-
cessity of final detection decisions based on the results from detectors set with multiple
WX , WY values.

Table 11 shows that the proposed method improves the TPR, TNR, and F1 score for
OSScan, Keylogging, DDoS, and data exfiltration attacks in FL-Network1 in comparison
to non-FL by including Network2 information in the learning process. This implies that
aggregating similar attack candidates from networks using FL can improve detection
performance. On the other hand, the participation of Network2 results in a decrease in
TPR and F1 scores for ServiceScan attacks. In addition, Table 11 also shows that the F1
score for data exfiltration and TNR for DDoS in Network2 are low compared to the others.
This issue is caused by the performance degradation of the learning model trained with
different data distributions in FL.

Table 12 clearly shows a reduction in the time required to detect DDoS, OSScan,
ServiceScan, and keylogging attacks. Table 12 shows that the proposed method short-
ens the required time for detecting OSScan, Keylogging, DDoS, and data exfiltration in
FL-Network1 by accompanying networks in the learning process with the parameters
explained in the Table 12 This reduction indicates that sharing attack candidates allows
quicker attack detection. Thus, the proposed method can aggregate more attack candidates
in a shorter time compared with the non-FL method. In other words, a more accurate
intrusion detection model can be established in a short time and the proposed method
enables swift attack detection by sharing the model among networks. However, the time
required to detect data exfiltration attacks has increased. As previously mentioned, the
detection accuracy for data exfiltration attacks significantly decreased due to the divergence
of the intrusion detection model, and this also affects the time required for detection.

Figure 5 reveals that the time required for intrusion detection processing for a single
detection target time window exceeded WX . Thus, executing real-time traffic processing in
the environment detailed in Table 8 presents significant challenges. However, Figure 6a,b
demonstrate that a considerable portion of the intrusion detection processing time is
allocated to the process of converting packet data into flow information in Argus. In other
words, the intrusion detection processing time itself is shorter than WX , and improving the
conversion process makes real-time traffic processing highly feasible. This improvement in
the conversion process can be achieved by introducing another conversion method that has
a higher processing performance to handle real-time flows.

An IDS with IDAC in a practical IoT network environment enables the extraction of
attack candidates on any IoT network regardless of network characteristics even though
the aforementioned countermeasures against performance degradation and the flow in-
formation conversion process need to be addressed. Given the current existence of many
operational IoT networks and the fact that IDAC performs detection based on potential
attack candidates, more attack features can be collected and aggregated in a shorter period
of time as the number of network participants increases. Consequently, IDAC enables au-
tonomous attack detection with low FP and FN rates for attacks that exploit vulnerabilities
discovered daily with each IoT network collaboration. This significantly contributes to
preventing the spread of damage caused by cyberattacks within the IoT ecosystem.



Sensors 2024, 24, 3218 15 of 16

The current limitation of IDAC is that the detection performance changes depending
on network features and attack types. Therefore, the detection performance may face
performance degradation when the parameters for detection are not appropriate for the
environment. Changing the parameters according to the network features and attack
types helps to maintain a certain level of detection performance. However, this would
not guarantee to maintain the performance and the detection performance degradation
is inevitable in some cases. Moreover, IDAC, which is a single-detector-based method,
may face difficulties in choosing appropriate parameters across all participating networks.
One of the solutions to this limitation is to use a multiple-detector-based method to set
appropriate parameters individually. For this, more evaluations and investigations for
IDAC are required to analyze the behavior of IDAC.

5. Conclusions

In this paper, we proposed a novel method for intrusion detection based on attack
candidates to solve the existing challenges in detecting zero-day attacks using FL in IoT
networks. IDS with IDAC deemed suspicious traffic extracted by an unsupervised anomaly
detection algorithm in each IoT network as attack candidates and aggregates these candi-
dates both within and among networks. This aggregation of attack candidates detected
within and among IoT networks enables autonomous intrusion detection based on the ag-
gregated candidates. The performance evaluations have demonstrated that IDAC achieves
comparable detection performance to conventional methods, enabling real-time intrusion
detection even on devices with limited computing resources. Therefore, we conclude that
IDAC realized autonomous intrusion detection based solely on the features of similar
attacks simultaneously observed on other IoT networks using FL. Although the IDAC
may degrade its detection performance on specific attack types as previously discussed,
using multiple detectors and employing suitable hyperparameters for each detector can
overcome the issue.

Author Contributions: Conceptualization, T.O., R.Y. and S.O.; methodology, T.O.; software, T.O.;
validation, T.O. and R.Y.; formal analysis, T.O.; investigation, T.O.; resources, R.Y. and S.O.; data
curation, T.O.; writing—original draft preparation, T.O.; writing—review and editing, T.O. and R.Y.;
visualization, T.O.; supervision, R.Y. and S.O.; project administration, R.Y.; funding acquisition, R.Y.
and S.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used for this article is available online at https://research.
unsw.edu.au/projects/bot-iot-dataset, accessed on 25 February 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mishra, N.; Pandya, S. Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A

Systematic Review. IEEE Access 2021, 9, 59353–59377 [CrossRef]
2. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;

Kallitsis, M.; et al. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

3. NJCCIC Threat Profile Satori. 2018. Available online: https://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-
spreading-in-worm-style-on-port-37215-and-52869-en/ (accessed on 14 May 2024).

4. AL-Hawawreh, M.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things based on deep
learning models. J. Inf. Secur. Appl. 2018, 41, 1–11. [CrossRef]

5. Swessi, D.; Idoudi, H. A Survey on Internet-of-Things Security: Threats and Emerging Countermeasures. Wirel. Pers. Commun.
2022, 124, 1557–1592. [CrossRef]

https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
http://doi.org/10.1109/ACCESS.2021.3073408
https://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
https://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
http://dx.doi.org/10.1016/j.jisa.2018.05.002
http://dx.doi.org/10.1007/s11277-021-09420-0


Sensors 2024, 24, 3218 16 of 16

6. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL,
USA, 20–22 April 2017; pp. 1273–1282.

7. Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.R. DÏoT: A Federated Self-learning Anomaly
Detection System for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), Dallas, TX, USA, 7–9 July 2019; pp. 756–767. [CrossRef]

8. Popoola, S.I.; Ande, R.; Adebisi, B.; Gui, G.; Hammoudeh, M.; Jogunola, O. Federated Deep Learning for Zero-Day Botnet Attack
Detection in IoT-Edge Devices. IEEE Internet Things J. 2022, 9, 3930–3944. [CrossRef]

9. Moustafa, N. The Bot-IoT Dataset. 2019. Available online: https://ieee-dataport.org/documents/bot-iot-dataset (accessed on 20
December 2023).

10. Hindy, H.; Atkinson, R.; Tachtatzis, C.; Colin, J.N.; Bayne, E.; Bellekens, X. Utilising Deep Learning Techniques for Effective
Zero-Day Attack Detection. Electronics 2020, 9, 1684. [CrossRef]

11. Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol.
2021, 26, 146–153. [CrossRef]

12. Shen, S.; Cai, C.; Li, Z.; Shen, Y.; Wu, G.; Yu, S. Deep Q-network-based heuristic intrusion detection against edge-based SIoT
zero-day attacks. Appl. Soft Comput. 2024, 150, 111080. [CrossRef]

13. QOSIENT LLC. Openarus. Available online: https://openargus.org/ (accessed on 29 February 2024).
14. Hsu, T.M.H.; Qi, H.; Brown, M. Measuring the effects of non-identical data distribution for federated visual classification. arXiv

2019, arXiv:1909.06335. Available online: http://arxiv.org/abs/1909.06335 (accessed on 14 May 2024).
15. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
16. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; Lane, N.D. Flower: A Friendly Federated Learning Research Framework.

arXiv 2020, arXiv:2007.14390. Available online: http://arxiv.org/abs/2007.14390 (accessed on 14 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICDCS.2019.00080
http://dx.doi.org/10.1109/JIOT.2021.3100755
https://ieee-dataport.org/documents/bot-iot-dataset
http://dx.doi.org/10.3390/electronics9101684
http://dx.doi.org/10.26599/TST.2019.9010051
http://dx.doi.org/10.1016/j.asoc.2023.111080
https://openargus.org/
http://arxiv.org/abs/1909.06335
http://arxiv.org/abs/2007.14390

	Introduction
	Related Work
	IDS for Zero-Day Attack Detection
	IDS with Federated Learning

	IDAC: Intrusion Detection Based on Attack Candidate
	System Overview
	Conversion Phase
	Extraction Phase
	Build and Execution Phase
	Improvement Phase

	Performance Evaluation
	Simulation Setups
	Detection Performance Evaluation 
	Processing Performance Evaluation 

	Evaluation Results
	Detection Performance Evaluation 
	Processing Performance 

	Discussion

	Conclusions
	References

