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Abstract: Stress is a natural yet potentially harmful aspect of human life, necessitating effective
management, particularly during overwhelming experiences. This paper presents a scoping review
of personalized stress detection models using wearable technology. Employing the PRISMA-ScR
framework for rigorous methodological structuring, we systematically analyzed literature from
key databases including Scopus, IEEE Xplore, and PubMed. Our focus was on biosignals, AI
methodologies, datasets, wearable devices, and real-world implementation challenges. The review
presents an overview of stress and its biological mechanisms, details the methodology for the
literature search, and synthesizes the findings. It shows that biosignals, especially EDA and PPG, are
frequently utilized for stress detection and demonstrate potential reliability in multimodal settings.
Evidence for a trend towards deep learning models was found, although the limited comparison with
traditional methods calls for further research. Concerns arise regarding the representativeness of
datasets and practical challenges in deploying wearable technologies, which include issues related to
data quality and privacy. Future research should aim to develop comprehensive datasets and explore
AI techniques that are not only accurate but also computationally efficient and user-centric, thereby
closing the gap between theoretical models and practical applications to improve the effectiveness of
stress detection systems in real scenarios.

Keywords: personalized stress detection; stress; wearables; Internet of Things (IoT); artificial intelligence
(AI); scoping review; PRISMA framework

1. Introduction

Stress can be described as a state of unease or mental strain that arises from chal-
lenging circumstances. It is a natural human reaction that urges us to confront difficulties
and threats in our lives. Experiencing stress is part of everyone’s life; nonetheless, how
we manage stress significantly influences our overall well-being [1]. According to the
American Psychological Association (APA) [2], stress is a typical response to the demands
of daily life. However, it can become detrimental when it disrupts our day-to-day activities.
In such instances, stress can make it challenging to unwind and can be accompanied by a
spectrum of emotions, such as anxiety and irritability. Concentration may become difficult
when under stress, and physical symptoms like headaches, body aches, upset stomach, or
sleep disturbances may manifest. Appetite changes, either a loss of appetite or increased
eating, can also be observed [3]. Prolonged stress can exacerbate existing health issues and
may lead to heightened use of substances like alcohol, tobacco, and others [4]. Stressful
situations can also trigger or worsen mental health conditions, particularly anxiety and
depression, necessitating access to healthcare [5]. From a biological point of view, stress is a
complex physiological response to a perceived threat or challenge. This response is part of
the body’s natural adaptive mechanism, often referred to as the “fight-or-flight” response,
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which has evolved to help individuals cope with potentially dangerous situations [6]. The
primary biological player in the stress response is the endocrine system, particularly the
release of stress hormones, such as cortisol and adrenaline [7]. When an individual per-
ceives a situation as stressful, the brain’s amygdala interprets this as a potential threat, and
the hypothalamus–pituitary–adrenal (HPA) axis is activated. The adrenal glands release
stress hormones, primarily cortisol and adrenaline, into the bloodstream, which trigger a
cascade of physiological responses throughout the body, including increased heart rate and
blood pressure, dilation of the airways, diversion of blood flow away from non-essential
functions, release of glucose into the bloodstream, heightened alertness, and increased
perception of pain [8]. The stress response prepares the body to either confront the per-
ceived threat (fight) or escape from it (flight) by mobilizing energy reserves for a rapid and
robust response. Once the perceived threat is resolved, the body initiates mechanisms to
halt the stress response, cortisol levels drop, and the body returns to a state of equilibrium
(homeostasis). Although clinical practice guidelines have not yet established a definitive
standard for assessing stress through biofeedback, they highlight the importance of inte-
grating multiple biosignals (Electroencephalogram (EEG), Electrodermal Activity (EDA),
and Heart Rate Variability (HRV)) with traditional psychological assessment tools, such
as standardized questionnaires. These assessments should be customized to individual
needs and calibrated to each subject based on baseline measurements [9,10]. Similarly,
researchers utilize a variety of methods to measure stress responses, including self-reports,
behavioral cues, and physiological changes induced by stress. Self-report tools like the
Perceived Stress Scale (PSS) [11] assess the emotional burden of life circumstances, while
lab tests like the Trier Social Stress Test (TSST) [12] provoke immediate stress responses.
Considerations in choosing stress measures include stressor timescale, response characteris-
tics, and exposure attributes [13]. Stress-related biomarkers, though elusive, offer objective
indicators of physiological processes and are integrated into models explaining the stress–
health relationship. Both psychological and physiological stress responses vary within
and between individuals, influenced by socioeconomic, cultural, genetic, developmental,
and health factors [14]. Advanced statistical models help understand variability in stress
responses, which is crucial for identifying reliable biomarkers and interpreting their role
in stress-related health outcomes [15]. With the rise of technology, especially the growth
of the Internet of Things (IoT) and artificial intelligence, researchers have started creating
models that can detect stress by looking at how our bodies react. In the early 2000s, they
began exploring whether wearable devices could spot signs of stress [9]. Initial efforts
focused on developing person-independent models capable of classifying stress-related
signals regardless of the individual they originated from. This approach aligns with the
early practices in many fields of artificial intelligence. However, the need for personalized
models to capture and utilize individual variations in fine-grained physiological responses
quickly emerged. While the field of personalized stress detection is evolving rapidly, it
currently lacks a comprehensive review that consolidates the studies dedicated to creating
personalized models. This scoping review aims to provide an overview of the models used
for personalized stress detection and the available datasets for training. Simultaneously,
it seeks to map non-invasive commercial wearable devices (smartwatches, bands) capa-
ble of collecting signals and providing raw data to researchers. Furthermore, the review
aims to identify the implementation challenges of personalized stress detection systems in
real-world contexts.

Specifically, the review will be guided by the following research questions:

RQ1: What are the primary biosignals provided by wearables that can be utilized for
personalized stress detection?

RQ2: What are the key artificial intelligence (AI) techniques used to develop personalized
stress detection models?

RQ3: Are there publicly available datasets for training personalized stress detection models?
RQ4: What are the wearable devices available on the market that allow the acquisition of

raw data?
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RQ5: What are the primary challenges encountered in the practical implementation of
stress detection models in the real world?

The review is structured into three main sections. First, the Methods section discusses
the approach employed to identify the literature corpus. It provides insights into the
methodology used for gathering and selecting relevant studies. The second section, Results,
offers a comprehensive overview of the studies that have been identified. These studies col-
lectively contribute to addressing the research questions mentioned earlier, and this section
will provide a synthesis of the findings in a coherent and organized manner. The third and
final section, Discussion, is where we delve into a detailed analysis of the results derived
from the review, highlighting its limitations and proposing future research directions.

2. Methods
2.1. Study Design

We conducted this scoping review in adherence to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)
statement [16]. Employing a comprehensive search strategy aimed at ensuring replicability,
reliability, and transparency, we followed Arksey and O’Malley’s five-stage approach to
scoping reviews [17]. This involved identifying the research question, searching for relevant
studies, the study selection, charting the data, and collating, summarizing, and reporting
the results.

2.2. Sources and Search Strategy

Studies were identified through the major academic databases (Scopus, IEEE Xplore,
and PubMed), considering papers published from 2010 to 2023. Google Scholar, arXiv,
and medRxiv have also been considered secondary sources for identifying new trends.
The database search was completed on 31 December 2023. A standard web search using
Google was carried out to identify commercial wearable devices capable of providing
raw data, contacting manufacturers in cases where specifications were not available in the
public materials (websites, datasheets, and software development kits). The exact queries
of web search are not provided because they lack reproducibility. However, we adopted a
systematic approach of examining the first 250 results of a query containing the name of
the biosignal and the term “wearable device”. The keywords used for the database search
instead are summarized and categorized by research question in Table 1.

Table 1. Research questions and related search queries.

Research Question Queries

What are the primary biosignals provided by
wearables that can be utilized for personalized
stress detection?

(“personalized” OR “subject level” OR “individual”)
AND (“stress”) AND (“detection” OR “prediction”
OR “recognition” OR “classification”) AND
(“wearable”)

What are the key artificial intelligence techniques
used for developing models for personalized
stress detection?

(“physiological”) AND (“stress”) AND (“detection”
OR “prediction” OR “recognition” OR
“classification”) AND (“wearable”)

Are there publicly available datasets for
training personalized stress detection models?

(“personalized” OR “subject level” OR “individual”)
AND (“stress”) AND (“detection” OR “prediction”
OR “recognition” OR “classification”)
AND (“dataset”)

(“emotion” OR “stress”) AND (“detection” OR
“recognition” OR “research” OR “classification” OR
“prediction”) AND (“dataset” OR “database”)

What are the wearable devices available on the
market that allow the acquisition of raw data?

Web search:
{biosignal} AND “wearable device”
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Table 1. Cont.

Research Question Queries

What are the primary challenges encountered in the
practical implementation of stress detection models
in the real world?

(“wearables” OR “wearable devices”) AND
(“machine learning” OR “artificial intelligence” OR
“monitoring”) AND (“challenge” OR “challenges”
OR “issues” OR “perspectives” OR “limitations” OR
“topics”) AND (“ethical” OR “ethics” OR “sensors”)
AND (“arousal” OR “distress” OR “stress” OR
“physiological activity” OR “physiological reactions”
OR “physiological response”)

(“wearables” OR “wearable devices” OR
“smartwatch” OR “smartwatches”) AND (“machine
learning” OR “ml” OR “artificial intelligence” OR “ai”
OR “monitoring” OR “prediction” OR “classification”
OR “detection”) AND (“challenge” OR “challenges”
OR “issues” OR “perspectives” OR “limitations” OR
“topics”) AND (“ethical” OR “ethics” OR “sensors”)
AND (“arousal” OR “distress” OR “eustress” OR
“stress” OR “physiological activity” OR
“physiological reactions” OR “physiological
response”)

2.3. Selection of Studies

In designing our search strategy, we meticulously adhered to predefined inclusion
criteria to ensure the relevance and reliability of the gathered information. The inclusion
criteria listed below served as a robust framework, guiding our pursuit of the pertinent
literature to meet the specific parameters essential for our research objectives:

• The study was conducted from 2010 onwards. (We selected 2010 in accordance with
the history of artificial intelligence [18], which marks its exponential growth during
that period).

• The study was conducted in laboratory settings or real-life contexts.
• The study was published in English.
• The study used mainly non-invasive (the term non-invasive refers to a device that

does not cause physical discomfort to the subject) wearables or bands.
• The study focused on mental stress.
• The study involved creating models or datasets for personalized stress detection or

investigating the challenges in real-world applications.
• The study was not a review article.
• The study did not use synthetic data produced by Generative Adversarial Networks

(GANs) or other generative systems.
• The study was not exclusively published as an abstract or poster at a conference.

Furthermore, to ensure a robust and reliable screening process, M.B., S.P., M.D., and
S.G. independently conducted the screening, resolving discrepancies through collaborative
discussions and consensus building. In the initial phase, studies were selected based on
information from titles or abstracts. In cases where this information was insufficient, the full
texts were retrieved for a more comprehensive analysis to determine eligibility. Subsequently,
the full texts of all selected studies were obtained at a later stage to guarantee the quality and
relevance of the information included in the review. A detailed view of the screening steps and
the number of studies selected at each stage is provided in the Section 3.

3. Results

In this review, out of 108 screened articles, 56 were included. Specifically, we included
32 papers on developing personalized stress detection models, 13 on datasets containing
raw biosignals for personalized stress detection, and 11 related to challenges for stress
detection in real-world settings. Among the 56 papers, 30 were journal articles, 22 were
conference papers, 3 were preprints, and 1 was published online on the university lab
website. Most of the studies that focused on developing models for personalized stress
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detection were centered around stress detection in controlled laboratory environments
(n = 14), while 13 studies focused on stress detection in real-life situations, and only
5 concentrated on controlled scenarios. The average sample size in these studies was
40.2 (SD = 60.1) subjects and gender representation was not always even, with only 2 out of
32 studies providing adequate balance.

Regarding the number of studies on personalized stress detection models published
in the analyzed time span, there has been an increasing trend over the years, indicating a
growing interest in personalized models (see Figure 1). Details on the selection process can
be found in the PRISMA flow diagram reported below (Figure 2), while the complete list of
studies included in the review is available in Section 3.1.
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Figure 1. Number of studies published in each category over the past decade.
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Figure 2. PRISMA flowchart of this scoping review.

In terms of datasets available for training personalized stress detection models, a total
of 13 have been identified. Similar to the studies, these datasets have been designed to
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address various tasks and scenarios. Among the identified datasets, the majority (n = 9)
were generated under controlled laboratory conditions, while a limited number represented
controlled scenario conditions (n = 2) or real-life contexts (n = 2). As observed in the studies,
there is a clear interest in the topic but, in this case, the publication flow is more irregular
(refer to Figure 1). This could be attributed to the high complexity and precision that
publishing a dataset requires. Further details regarding the datasets, their specific attributes,
sample sizes, and labeling methodologies will be elaborated in Section 3.2. In terms of
wearable devices capable of capturing raw biosignals, we have identified 16 devices. These
include six wrist-worn wearables comprising four smartwatches and ten bands. Analyzing
the release dates of these devices, it becomes evident that the availability of such devices
has increased in the post-pandemic period (see Figure 3). A comprehensive list of these
devices, along with their associated costs and features, will be elaborated in Section 3.3.
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Figure 3. Number of devices capable of capturing raw biosignals released over the past decade.

3.1. Biosignals and Techniques for Personalized Stress Detection with Wearable Devices

Table 2 presents a comprehensive summary of the selected studies pertinent to Re-
search Questions 1 and 2 (RQ1 and RQ2), focusing on the use of biosignals and techniques
for personalized stress detection.
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Table 2. Studies about biosignals and techniques for personalized stress detection. Reported performance is the average across all subjects involved in the study.

Study Year Sample
(Gender) Type Signals Stressor Task Type Ground Truth Approach

(Model)
Performance

(Metric) Dataset

[19] 2010 22
(N/A) SCE

ECG
EDA
SKT
RSP

Public Speaking Stressor
Mental Arithmetic Stressors

Cold Pressor Stressor

Classification:
Binary EMAs ML

(RBF SVM)
68%

(Precision) N/A

[20] 2015 5
(N/A) SCE PPG

EDA Trier Social Stress Test Classification:
Binary STAI ML

(SVM)
78.98%

(Accuracy) N/A

[21] 2015 8
(N/A) LIFE PPG

ACC Real Life Classification:
Binary EMAs ML

(REPTree)
85.7%

(Accuracy) N/A

[22] 2015 44
(44M, 0F) LAB

PPG
ECG
EDA
EEG
EMG

Go/No-go Visual Reaction
Stroop Color Test

Fast Counting
PASAT Speed Run

Visual Forward Digit Span
N-back

Classification:
Binary STAI ML

(K-Means + GRNN)
85.2%

(Accuracy) N/A

[23] 2016 6
(N/A) LIFE EDA Real Life Classification:

Binary Clinical Notes STAT
(Threshold-based Classifier)

60.55%
(Accuracy) N/A

[24] 2017 18
(N/A) LAB

PPG
EDA
MIC
ACC

Trier Social Stress Test Classification:
Binary STAI ML

(AdaBoost)
94%

(Accuracy) N/A

[25] 2017 33
(25M, 8F) LAB

PPG
ECG
EDA
RSP

NIBP

Memory Game
Fly Sound

Image Stimuli
Cold Pressor Stressor

Classification:
Binary

Experimental
Condition

ML
(kNN)

95.8%
(Accuracy) N/A

[26] 2018 40
(N/A) SCE

ECG
EDA
EMG

Driving
Mathematical Questions

Analytical Questions

Classification:
Binary

Experimental
Condition

DL
(2*TCN [Shared]

+ 1 TCN [Subject])

0.918
(AUROC) [27]

[28] 2019 21
(18M, 3F) SCE

PPG
EDA
ACC

Contest Classification:
3-level

NASA-TLX

Free Stress Scale
(0–100)

ML
(RF/MLP)

97.92%
(Accuracy EMP)

91.54%
(Accuracy SAM)

N/A
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Table 2. Cont.

Study Year Sample
(Gender) Type Signals Stressor Task Type Ground Truth Approach

(Model)
Performance

(Metric) Dataset

[29] 2020 32
(22M, 10F) SCE

PPG
EDA
SKT
ACC

Exam
Classification:

Binary
4-level

NASA-TLX

Experimental
Condition

ML
(RF)

Binary:
92.5%

(Accuracy)

4-level:
85.63%

(Accuracy)

N/A

[30] 2020 15
(12M, 3F) LAB

PPG
EDA
SKT

Trier Social Stress Test Classification:
4-level

PANAS
STAI
SAM
SSSQ

ML
(RF)

96.68%
(Accuracy) [31]

[32] 2020 73
(28M, 45F) LIFE PPG

ACC Real Life Classification:
Binary EMAs ML

(SOM)
54.5%

(Accuracy) N/A

[33] 2020 255
(N/A) LIFE

EDA
SKT
ACC

Real Life Regression:
Stress level EMAs DL

(LC + LSTM DAE)
16.5

(MAE) [34]

[35] 2020 255
(N/A) LIFE

EDA
SKT
ACC

Real Life Regression:
Stress level EMAs DL

(LC + LSTM DAE)
15.0

(MAE) [34]

[36] 2021 15
(8M, 7F) LIFE ECG Real Life Classification:

Binary EMAs ML
(SOM + Fuzzy Classifier)

95.7%
(Precision) N/A

[37] 2021 34
(11M, 23F) LAB ECG

EMG
Stroop Color–Word Test

Math Test
Classification:

3-level

STAI
Free Stress Scale

(1–5)

ML
(Fuzzy Clustering

Membership-based
Classifier)

75.6%
(Accuracy) N/A

[38] 2021 14
(N/A) LIFE

PPG
ACC
GYR

Real Life Classification:
Binary EMAs ML

(RF)
76%

(F1 score) N/A

[39] 2021 41
(5M, 36F) LIFE ECG

EDA Real Life Classification:
Binary EMAs DL

(MFN with SABs)
77.4%

(F1 score) N/A
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Table 2. Cont.

Study Year Sample
(Gender) Type Signals Stressor Task Type Ground Truth Approach

(Model)
Performance

(Metric) Dataset

[40] 2021 15
(12M, 3F) LAB PPG Trier Social Stress Test

Classification:
Binary
3-level

PANAS
STAI
SAM
SSSQ

DL
(1D-CNN)

Binary:
82.2%

(F1 score)

3-level:
70.5%

(F1 score)

[31]

[41] 2022 15
(12M, 3F) LAB

PPG
EDA
SKT
ACC

Trier Social Stress Test Classification:
Binary

PANAS
STAI
SAM
SSSQ

ML
(LR)

99.98%
(Accuracy) [31]

[42] 2022 N/A
(N/A) LIFE PPG

ACC Real Life Classification:
Binary EMAs ML

(N/A) N/A N/A

[43] 2022 35
(10M, 25F) LAB PPG

Stroop Color Test
Trier Social Stress Test

Hyperventilation

Classification:
Binary

STAI
PSS

STAT
(Adaptive Reference Range-

based Classifier)

68.63%
(Accuracy) [43]

[44] 2022 14
(N/A) LIFE PPG Real Life Classification:

4-level EMAs DL
(LSTM)

64.5%
(Accuracy) N/A

[45] 2022 15
(12M, 3F) LAB EDA Trier Social Stress Test

Classification:
Binary
3-level

PANAS
STAI
SAM
SSSQ

DL
(2*1D-CNN + FCN)

Binary:
90%

(Accuracy)

3-level:
70%

(Accuracy)

[31]

[46] 2022 15
(12M, 3F) LAB PPG Trier Social Stress Test

Classification:
Binary
5-level

PANAS
STAI
SAM
SSSQ

DL
(1D-CNN)

Binary:
96.7%

(Accuracy)

5-level:
80.6%

(Accuracy)

[31]

[47] 2023 15
(0M, 15F) LIFE

PPG
EDA
SKT
ACC

Real Life Classification:
Binary EMAs

DL
(CNN Architecture

with SSL)

79.65%
(Accuracy) [48]
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Table 2. Cont.

Study Year Sample
(Gender) Type Signals Stressor Task Type Ground Truth Approach

(Model)
Performance

(Metric) Dataset

[49] 2023 41
(34M, 7F) LAB

ECG
EDA
RSP

NIBP

Fire Response Task in VR
N-back

Classification:
Binary

Free Stress Scale
(0–100)

ML
(RF)

82%
(Accuracy VR)

98%
(Accuracy
N-back)

N/A

[50] * 2023 15
(12M, 3F) LAB EDA Trier Social Stress Test Regression:

Items in scales

PANAS
STAI
SAM
SSSQ

DL
(CNN Architecture

with SSL)
N/A [31]

[51] * 2023 15
(12M, 3F) LAB

ECG
EDA
EMG
SKT
RSP
ACC

Trier Social Stress Test Classification:
3-level

PANAS
STAI
SAM
SSSQ

DL
(1D CNN + MLP)

95.06%
(Accuracy) [31]

[52] 2023 16
(8M, 8F) LAB EDA

SKT Acoustic Stressors Classification:
Binary

Experimental
Condition

STAT
(MOS Algorithm [53])

92.74%
(Accuracy) N/A

[54] 2023 20
(13M, 7F) LIFE

PPG
ACC
GYR

Real Life Classification:
Binary EMAs ML

(RF)
40–45%
(Recall) N/A

[55] 2023 83
(51M, 32F) LIFE

PPG
EDA
SKT
ACC

Real Life Classification:
Binary EMAs ML

(RF)
66.55%

(Accuracy) N/A

* Preprint.
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3.1.1. Biosignals

Before proceeding with the description of the findings in the literature, it is advisable to
provide a definition of biosignal. A biosignal refers to any signal originating from a biologi-
cal structure that can be measured over time [56]. Biosignals can vary in nature and contain
information about the system, organ, and process that generated them. Therefore, biosig-
nals are used to assess individuals’ health status and cognitive processes [57]. Biosignals
can have different origins (electrical, pressure, chemical) and are measured using sensors,
transducers, and actuators [58]. The literature analysis identified a comprehensive set of
eight biosignals, detectable through wearable devices, that are well-suited for personalized
stress detection. These biosignals, namely Electrodermal Activity (EDA), Photoplethysmo-
gram (PPG), Electrocardiogram (ECG), Peripheral Skin Temperature (SKT), Respiration
(RSP), Electromyogram (EMG), Electroencephalogram (EEG), and Non-Invasive Blood
Pressure (NIBP), play a crucial role in reflecting psychophysiological changes induced by
the sympathetic nervous system. When exposed to stressors, these biosignals mirror the
intricate interplay of physiological responses orchestrated by the sympathetic nervous
system. The body’s reaction to stress involves the activation of the sympathetic nervous
system, triggering the release of stress hormones such as adrenaline, an increase in heart
rate, and preparation for immediate action—a response commonly known as the “fight or
flight” mechanism. This heightened state of alertness is accompanied by muscle tension,
changes in metabolism, and other physiological changes. Significantly, these stress-induced
reactions extend beyond high-stress situations and manifest in more commonplace sce-
narios such as traffic, workplace pressure, and financial concerns. Consequently, even in
everyday circumstances, wearable devices can capture and reveal the individual’s stress
through these biological signals [59]. Notably, the intensity of the physiological response
may vary, and this fluctuation is influenced by the severity of the stressor [60]. To pro-
vide a more detailed understanding, Table 3 presents the number of studies using each
biosignal, along with brief definitions and their specific relationships with stress. Another
aspect that emerged from the literature concerns the number of sources (biosignals) used
to train the models. More than half of the studies adopted a (multimodal) multi-sensor
approach (n = 19). The multimodal approach seems to generally improve performance
compared to single-source models, indicating the capability of multi-sensor systems to
capture diverse physiological responses associated with stress [28,39]. Among the studies
using a single biosignal, the majority focused on PPG/ECG (n = 10) and EDA (n = 3).
These biosignals produce comparable results in a single-modality setup [28,29], which is
particularly interesting since PPG/ECG sensors are now available on many commercially
available smartwatches, highlighting the potential real-world impact of personalized stress
detection studies. Finally, some studies (n = 11) have addressed the issue of the impact of
individuals’ motion on biosignals by incorporating motion information into the models.
Specifically, readings from accelerometers (ACC) (n = 11) and gyroscopes (GYR) (n = 1)
of wearable devices have been employed. The joint use of such information along with
biosignals allows for their cleaning [28,29,36,61,62] and makes it possible to adapt models
to different contexts, providing them with context awareness. This enables the proper
functioning of the models even in dynamic situations and facilitates the discrimination
of mental stress from physical stress. In cases of physical stress, individuals may display
cardiac or sweating patterns similar to those observed in stress states, but these are due to
physical activity. The presence of physical activity is clearly visible in the data captured by
accelerometers and gyroscopes, allowing the models to accurately differentiate between
the two types of stress [61,62].
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Table 3. Biosignals, connection to stress, and number of studies employing each biosignal.

Signal Description Connection to Stress N

EDA EDA is a biosignal that measures skin conductance, reflecting sweat
gland activity.

Activation of the sympathetic nervous system during stress stimulates eccrine sweat glands through the
release of neurotransmitters (especially norepinephrine) [63], leading to sweat production and changes in
skin conductance.

21

PPG
PPG is a biosignal that records changes in the volume of blood flow in
arteries, capillaries, and any other tissue following each contraction
and relaxation of the heart.

Stress hormones such as cortisol and adrenaline, released during stressful situations, activate the
sympathetic nervous system (SNS). This activation results in an increased heart rate, stronger cardiac
contractions, and vasoconstriction, especially in the extremities [64], affecting blood flow and PPG readings.

19

SKT SKT is a biosignal that measures the temperature of the skin in the
peripheral area.

Skin temperature is closely linked to blood flow and it is affected by peripheral vasoconstriction induced by
stress hormones like cortisol and adrenaline [65]. In acute stress, a slight decrease in temperature, attributed
to vasoconstriction, is expected [66].

10

ECG ECG is a biosignal that records the electrical activity of the heart on the
surface of the body during the cardiac cycle.

Sympathetic nervous system activity primarily involves an increase in heart rate during stress [67]. ECG,
like PPG, provides insights into these changes, including alterations in PR interval and QRS duration [68]. 9

EMG EMG is a biosignal that records the electrical activity produced by the
muscle when it contracts.

Cortisol and adrenaline, released during stress, induce a phenomenon of muscular vasodilation, resulting in
muscle tension that prepares the body for action or damage minimization [69]. 4

RSP RSP is a biosignal that provides information about the patterns of
inhalation and exhalation in an individual.

During stressful situations, as a component of the fight-or-flight response, the body readies itself for either
escape or confrontation by dilating the airways and altering respiration patterns. These responses, as seen
for other biosignals, are directed by the influence of the HPA axis [70].

3

NIBP NIBP is a biosignal that measures blood pressure without the
requirement for invasive procedures.

Stress impacts blood pressure patterns through the activation of the HPA axis, leading to pressure
fluctuations resulting from increased heart rate and blood vessel constriction [71]. 2

EEG
EEG is a biosignal that measures the electrical activity of the brain,
specifically detecting fluctuations in voltage resulting from ionic
current flows within the neurons of the brain [72].

Under stress conditions, the brain focuses concentration and increases alertness to enhance the body’s
chances of surviving the situation [73,74]. These processes are reflected in an increase in β activity and a
decrease in α activity.

1
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3.1.2. Techniques

Regarding the techniques for developing personalized stress detection models, the
search identified three main approaches: a statistical approach, a machine learning ap-
proach, and a deep learning approach. To date, the most prevalent approach involves
traditional machine learning methods, followed by deep learning architectures, and, finally,
statistical techniques (see Figure 4). Before delving into various approaches, it is necessary
to provide a preamble to better frame the personalized stress detection task. Regardless of
the adopted approach, all the approaches mentioned use individual subject data to develop
personalized models. In other words, according to this problem definition, each subject
poses a distinct classification or regression problem from other subjects. Consequently, the
train–test split is performed on individual subject data, which are used respectively to train
the model and evaluate the performance of the specific subject. It should also be explicitly
stated that our research did not find fully unsupervised methods. Therefore, everything
reported should be considered limited to signal classification through supervised methods
or methods that require at least a minimal amount of labeled data.

Machine Learning

18

Deep Learning

11 Statistical Modeling
3

Figure 4. Number of studies grouped by AI approach.

Machine Learning Approach

The machine learning approach involves training algorithms on labeled datasets to
enable the automated identification and categorization of stress levels based on input
features, facilitating accurate and efficient stress assessment. Nearly all studies follow
a classic pipeline consisting of multiple steps: signal preprocessing, feature extraction,
algorithm selection, feature selection, and hyperparameter tuning. This approach allows
for interpretable models but requires a clean signal and a feature engineering process based
on prior knowledge. In other words, in this approach, the classifier’s accuracy depends
on the quality of the signal and the relevance of features extracted from it. However,
raw signals extracted from the sensors contain artifacts due to motion, electromagnetic
interference, and other disturbances from the surrounding environment. For this reason,
more than half of the machine learning approach studies (n = 13) have introduced strategies
for cleaning the signal based on filters.

In signal processing, a filter is a mathematical operation or a device that modifies
or extracts certain features from a signal, often used to remove unwanted components
or emphasize specific characteristics. In particular, the studies included in the review
used lowpass, highpass, bandpass, and notch filters. A summary of the filters used, a
definition of each filter, and related biosignals are reported in Table 4. In relation to machine
learning algorithms, a variety of classical supervised algorithms and specific combinations
of unsupervised and supervised techniques are used. A comprehensive list of the identified
algorithms is delineated in Table 5.

As observed in Table 5, a preference for tree-based models is evident (n = 9). Tree-based
models prove especially advantageous in medical settings due to their interpretability and
capacity to reveal meaningful patterns. These models facilitate the assessment of feature
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importance and the visualization of rules utilized for classification, thereby enabling domain
experts to inspect and evaluate the validity of the classification model visually. Furthermore,
studies included in the review that compared tree-based models with other algorithms
highlighted superior performance of the tree-based solutions [21,28,29,38], affirming the
effectiveness of such models in medical applications and, in particular, in personalized
stress detection.

Table 4. Summary of filters used for cleaning, grouped by biosignal.

Filter Definition Signal Studies

Lowpass A lowpass filter is a filter which allows signals with frequencies below a specified cutoff frequency to
pass through, attenuating higher frequencies.

EDA
ECG
SKT

[23,24,33,35,49,52]
[36]
[52]

Highpass A highpass filter is a filter which permits signals with frequencies above a defined cutoff frequency to
pass through while attenuating lower frequencies.

ECG
EMG

[25]
[37]

Bandpass A bandpass filter is a filter which selectively allows a specific range or “band” of frequencies to pass
through, attenuating frequencies outside that range.

PPG
ECG
EDA
EMG
NIBP

[24,38,46]
[37]
[55]
[22]
[49]

Notch A notch filter is a filter which attenuates a specific narrow range of frequencies, effectively creating a
“notch” in the frequency response. ECG [36,49]

Table 5. List of machine learning algorithms employed in personalized stress detection.

Algorithm Tree-Based Unsupervised + Supervised N

Random Forest ✓ ✗ 7

Self-Organizing Map-based Classifier ✗ ✓ 3

Support Vector Machine ✗ ✗ 2

AdaBoost ✓ ✗ 1

Bagging (REPTree) ✓ ✗ 1

K-Nearest Neighbors ✗ ✗ 1

K-means + GRNN ✗ ✓ 1

Logistic Regression ✗ ✗ 1

Multilayer Perceptron ✗ ✗ 1

In terms of extracted features, the studies did not use a predefined set of features.
Instead, researchers derived several aspects from biosignals based on the literature and
prior knowledge. However, a significant number of features were consistently considered
across multiple studies. Table 6 lists the most common features for each signal identified
in the selected studies, providing a brief definition of each feature and a reference to
studies that used that specific feature. If analyzed with attention, Table 6 highlights a
particularly interesting aspect: many features extracted from PPG and ECG signals measure
the same phenomena (e.g., parasympathetic activity). This aspect should be considered
when developing machine learning models, as incorporating multiple features measuring
the same phenomenon introduces noise into the model. A solution researchers propose
involves implementing a feature selection step to remove redundant variables. However,
this aspect is underestimated, as only 5 [21,24,25,29,49] out of 18 studies have included
some form of selection of the most relevant features.
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Table 6. Common features for each signal with definitions and connection to stress.

Signal Feature Definition and Connection to Stress Studies

PPG
ECG

HR Avg. heart beats per minute; reflects the physiological stress response. Changes in heart rate may indicate the body’s adaptive response to stressors. [19,21,22,32,37,38,44,54,55]

RR Mean duration between R-peaks; reflects the autonomic nervous system interplay. Variations in RR intervals may signify the dynamic balance
between sympathetic and parasympathetic branches. [21,28,29,32,36–38,42,54]

SDNN Standard deviation of NN intervals; signifies the balance between sympathetic and parasympathetic influences. Changes in SDNN may indicate
alterations in autonomic balance and responsiveness to stress. [21,28,29,36–38,54]

SDSD Standard deviation of differences in NN intervals; indicates autonomic balance and responsiveness. Variations in SDSD may reflect the regulatory
influence of both sympathetic and parasympathetic branches. [21,28,29,37,38,54]

RMSSD Square root of mean squared differences in NN intervals; reflects parasympathetic activity, adaptability, and resilience to stress. Higher RMSSD
values are associated with increased adaptability and resilience. [21,28,29,32,36–38,42,49,54]

pNN50 Percentage of NN intervals differing by >50 ms; indicator of parasympathetic activity and heart regulation. Monitoring changes in pNN50 provides
insights into the dynamic regulation of the heart and its response to stressors. [21,22,28,29,36–38,49,54]

HRV Variation in time intervals between heartbeats; serves as an indicator of the body’s adaptability to stress. Higher HRV is generally associated with a
more flexible autonomic nervous system and better resilience to stressors. [20–22,24,28,29,42,44,49]

LF Frequency activity (0.04–0.15 Hz); often associated with sympathetic nervous system activity. LF variations may indicate the sympathetic influence
on heart rate during stress. [19,21,22,28,29,36,37]

HF Frequency activity (0.15–0.40 Hz); primarily associated with parasympathetic nervous system activity and respiratory influences. HF variations may
indicate changes in relaxation and parasympathetic dominance. [21,22,28,29,36,37]

LF/HF Ratio of low frequency to high frequency; considered a measure of the balance between sympathetic and parasympathetic nervous system activity. A
higher ratio may suggest increased sympathetic dominance, potentially indicating stress. [21,22,28,29,36,37]

EDA

SCL + SCR Average of combined Skin Conductance Level and Response; comprehensive indicator of arousal. The combined measure reflects both the tonic
(baseline) and phasic (event-related) components, providing a holistic view of skin conductance dynamics related to stress. [20,24]

SCL Average Skin Conductance Level (SCL); reflects overall arousal level. SCL provides a baseline measure of sympathetic arousal, contributing to the
assessment of stress levels. [19,25,29,49,55]

SCL SD Standard deviation of Skin Conductance Level; indicates variability in arousal. Variations in SCL may suggest fluctuations in the autonomic nervous
system’s tonic arousal, possibly linked to stress reactivity. [19,29]

SCR Average Skin Conductance Response (SCR); represents phasic changes in arousal. SCR reflects the rapid, event-related changes in skin conductance,
offering insights into acute stress responses. [22,49]

SCR Peaks Number of peaks in Skin Conductance Response; indicates the frequency of arousal events. The count of SCR peaks provides a quantitative measure
of how frequently the individual experiences heightened arousal. [19,29,55]

SCR Peaks Ampl Amplitude of peaks in Skin Conductance Response; reflects the intensity or strength of arousal events. The amplitude of SCR peaks may provide
information on the magnitude of physiological responses during stress. [19,25]
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Table 6. Cont.

Signal Feature Definition and Connection to Stress Studies

RSP

BR Breathing rate; frequency of breath cycles may indicate stress. Changes in breathing rate can be associated with stress and the body’s effort to adapt
to physiological demands. [25,38,44,54]

RP Respiratory period; duration of one respiration cycle may relate to stress. The time taken for a complete respiratory cycle may be influenced by
stress-related changes in breathing patterns. [19,25]

SKT

T Avg. skin temperature; deviations from the baseline skin temperature may indicate stress. Abnormal skin temperature variations can be indicative of
physiological responses to stressors. [19,55]

T SD Standard deviation of skin temperature; variability in skin temperature may be associated with stress. Increased T SD may suggest fluctuations in
autonomic responses linked to stress reactivity. [19]

T Slope Slope of skin temperature trends; changes in slope may reflect stress-related temperature dynamics. The rate of change in skin temperature may
provide insights into adaptive responses to stressors. [55]

NIBP

SBP Systolic blood pressure; elevated SBP may indicate increased stress or heightened physiological response. Systolic blood pressure is sensitive to acute
stressors and reflects the force exerted on arterial walls during heartbeats. [25,49]

DBP Diastolic blood pressure; elevated DBP may suggest sustained stress or tension in the cardiovascular system. Diastolic blood pressure reflects the
pressure in the arteries when the heart is at rest, and chronic stress may contribute to sustained elevation. [25,49]

EMG

EMG Avg. value of muscle activity (EMG); increased activity may indicate stress. EMG captures muscle activity, and elevated average values may be
associated with heightened muscle tension or stress responses. [22,37]

EMG SD Standard deviation of muscle activity (EMG); variability in muscle activity may be associated with stress. Increased EMG SD suggests fluctuations in
muscle tension, potentially reflecting stress-related changes in motor activity. [22,37]

EEG Mean α, β, σ, θ
Mean values of different EEG frequency bands (α, β, σ, θ); variations in EEG frequencies, such as increased beta and decreased alpha, may be
associated with heightened mental activity or stress. Changes in delta and theta frequencies could also indicate alterations in relaxation or arousal
states.

[22]
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Deep Learning Approach

The deep learning approach is an approach based on learning through the use of
sophisticated neural networks. Specifically, it employs layers to extract increasingly high-
level features from raw data. In contrast to the machine learning approach, here, there is no
need to extract any features from the input signal, and the performance depends on the
researcher’s skill in defining the most suitable network architecture to solve the problem.
Unlike classical machine learning models, this approach generates black box solutions
whose interpretability for the final user is limited or requires specific techniques such
as activation maps. The studies on personalized stress detection with deep learning are
limited (n = 11). However, they can still contribute to outlining the emerging components of
architectures and the strategies researchers employ to address specific problems. Discussing
the particularly relevant components of the architectures introduced by researchers, we
find the Convolutional Neural Network (CNN) layers [26,45,47,50,51] and self-attention
mechanisms [39]. CNN layers (used in 7 out of 11 studies) are fundamental building
blocks of a CNN. A CNN layer consists of a set of learnable filters (called kernels) that
slide over the input data to perform convolution operations. The convolution operation
involves element-wise multiplication of the filter weights with the input data, followed
by summation. This process allows the network to learn hierarchical representations of
features in the input data automatically. In addition to the convolutional operation, a CNN
layer typically includes an activation function (e.g., ReLU) to introduce non-linearity and a
pooling layer for down-sampling, reducing the input data’s spatial dimensions.

The studies [26,45,47,50,51] included in the review used a variant of CNNs known as
a 1D CNN. In a 1D CNN, filters slide over the input sequence to perform convolutional
operations (see Figure 5). The sliding-window convolutional operations in a 1D CNN
facilitate the network in recognizing patterns and dependencies across different time
scales. For instance, in stress classification, they can effectively identify sudden changes
in heart rate or variations in skin conductance that are indicative of stress responses and
consequently extract relevant features automatically for the final classifier [50]. However,
while 1D CNNs excel at processing data in short time windows, they have limitations in
learning long-range dependencies within the signal. To address issues arising from long-
range dependencies, especially in very wide time windows, researchers have proposed
the use of Long Short-Term Memory (LSTM) [33,35,44], and Transformers [39] for solving
stress classification tasks. LSTM networks [75] are a type of Recurrent Neural Network
(RNN) specifically designed to address the challenge of capturing long-range dependencies
in sequential data. Unlike traditional RNNs, LSTMs can learn and retain information over
extended time intervals, making them well-suited for tasks such as signal classification [76].
This is achieved through a specialized memory cell consisting of a cell state and three gates:
input gate, output gate, and forget gate. The cell state allows LSTMs to store and access
information over long periods while the gates regulate the flow of information into and out
of the cell, enabling the network to manage and preserve relevant information for the task.
In stress monitoring, physiological signals like heart rate variability require analysis over
longer durations to accurately discern stress patterns. LSTMs handle this by maintaining
a state that can remember and relate past information to present data, which is crucial in
environments where stress indicators manifest intermittently and evolve over time [33,35].
On the other hand, Transformer [77] is a type of deep learning architecture designed
to classify feature vectors by employing self-attention mechanisms. These mechanisms
allow the model to dynamically assess the importance of various elements within the
input sequence (See Figure 6).
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Figure 5. 1D CNN in signal processing. Adapted from [78].

1 
 

 

 
Figure 6. Transformer-based architecture for signal classification. Adapted from [79].

In stress detection tasks [39], the process starts by segmenting continuous data streams
into smaller segments and then extracting relevant features from these segments. To
acknowledge the order of the data, positional encoding is added to introduce temporal
context. An attention mechanism is utilized to weigh the importance of different elements
within the biosignal data, capturing their relationships. Finally, the transformer architecture
is completed with a classification head. Focusing on interesting strategies related to deep
learning, the use of self-supervised learning (SSL) is highlighted. Before delving into the
details of self-supervised learning, it is essential to note that, in the field of personalized
stress detection models, it is common practice to collect real-life data using wearable
devices. Wearable devices enable data collection in ecological situations. However, a
tradeoff must be found between the demand for labels from participants and the quantity
of data needed to develop an accurate model. To address this issue, researchers have started
collecting a limited number of labels (in the analyzed studies, approximately four per day)
while simultaneously passively recording unlabeled biosignals. The underlying idea of
this data collection is to leverage the knowledge contained in unlabeled signals through
self-supervised learning techniques. Self-supervised learning involves training models on
unlabeled data to build background knowledge and mimic a form of common sense in
AI systems. The workflow of self-supervised learning comprises two steps: pre-training
on unlabeled data to build background knowledge and fine-tuning on downstream tasks.
Pre-training involves training a model on data without annotations, using a pretext task to
guide the model to learn intermediate data representations. In contrast, downstream tasks
are specific tasks to which the knowledge gained from the pre-training phase is transferred.
Studies using this method [47,50] learned a representation of biosignals during the pretext
phase without labels. They then fine-tuned using labels from the downstream task to predict
stress. In terms of performance, both studies showed more stable results [47,50] than a
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CNN baseline using a fully supervised approach. However, only [50] demonstrated a clear
improvement in terms of accuracy. The study [50] also found that self-supervised learning
can achieve performance similar to fully supervised approaches using less than 30% of the
data. These initial findings are promising and suggest the need for further investigation.

Statistical Approach

The statistical approach relies on a more traditional signal analysis using statistical
algorithms. The strengths of studies employing this approach lie in the interpretability of
the rules, signal classification speed, and the ability to adapt the classifier over time. Like
machine learning, this approach heavily depends on the signal selected to identify stress
and quality of such signal. For this reason, all the studies utilizing the statistical approach
included in the review employ signal filtering methods based on motion detection [23] and
filters [43,52]. Regarding the signals examined in the studies, two focused on EDA [23,52],
while one considered PPG [43]. In general, the pipeline employed by studies based on
statistical approaches can be summarized in two main steps, with an optional third step:
collecting a baseline (composed of filtered biosignals) for the subject, constructing rules
through statistical algorithms, and potentially adapting these rules on the fly over time.
Two of the studies employ particularly interesting algorithms. Ref. [43] uses an adaptive
referencing range expectation maximization (AR-EM) algorithm. AR-EM is a method
employed in biosignal analysis to generate personalized adaptive reference ranges. It
employs an expectation-maximization (EM) framework to efficiently estimate unknown
parameters and optimize reference ranges based on an individual’s records. Meanwhile,
Ref. [52] utilizes a MOS algorithm [53] variant to compute an individualized MOS score
for each second in the measurement signal. This score is calculated by assigning values
based on the amplitude and slope of the EDA signal and following the distribution of the
signal. To date, no study has compared the effectiveness of statistical approaches with other
techniques, and their application in unstructured real-life contexts has yet to be explored.

3.2. Datasets For Personalized Stress Detection

The literature review identified 13 public datasets (summarized in Table 7) suitable for
developing personalized stress detection models. All identified datasets, except one [43],
are multi-signal and contain information from multiple sensors. The majority of the datasets
(n = 9) were developed under laboratory conditions, while only a small number of datasets
were created in controlled scenarios (n = 2) and real-life conditions (n = 2). The average
sample size is 42.3 participants, ranging from a minimum of 10 subjects to a maximum of
120. The participants’ average age is 25.2 years. These two pieces of information suggest
both a limited size and the presence of age bias within most of the datasets. However,
it should be noted that one particular study [80] provides a generous and representative
sample (120 subjects) of the French population. In 8 out of 13 studies, a strong gender bias
is also present. All datasets, except one [81], focused on the healthy population. Among the
most included signals in the datasets, we found EDA (n = 12), PPG (n = 11), ECG (n = 7),
SKT (n = 6), and ACC (n = 6). Ref. [31] appears to be the most popular dataset, with 25%
(n = 8) of the studies included in the review relying on it. Its popularity may stem from
several factors: it utilizes a solid protocol and contains multimodal data from both the
chest and wrist locations, allowing for comprehensive comparisons and benchmarking.
Additionally, it is easily accessible and its data are organized in a very convenient way
with already synchronized labels. These features make it exceptionally user-friendly and
functional for researchers aiming to study stress under different conditions.
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Table 7. Summary of public datasets for personalized stress detection model development.

Dataset Type Sample (Gender) Biosignals (Device) Stressor Ground Truth Pros and Cons

SWELL-KW
[82]

SCE

Size:
25 (17M, 8F)

Age:
25 (3.25)

ECG (Movi)
EDA (Movi)
FBT (Kinect)
VS (Camera)

Email interruptions
Time pressure

NASA-TLX
RSME
SAM

Free Stress Scale
ICI

+ The stress condition mirrors what can be
found in real life in a work environment
- Potential age and gender bias
- It focuses on a specific work-related stress
condition

AffectiveROAD
[83]

SCE

Size:
10 (5M, 5F)

Age:
29.9 (3.7)

PPG (Empatica E4)
EDA (Empatica E4)
ACC (Empatica E4)

ECG (BioHarness 3.0)
SKT (BioHarness 3.0)
RSP (BioHarness 3.0)

VS (Camera)

Real life
(Driving)

External annotation:
Stress Metric
(Observer)

Self assessment:
Label validation

+ The presence of video streams enables
the development of sensorless models
(with rPPG)
- Very limited sample size
- Potential age bias
- It focuses on driving stress
- The stress metric is only validated by the
driver

WESAD
[31]

LAB

Size:
15 (12M, 3F)

Age:
27.5 (2.4)

ECG (RespiBAN)
EDA (RespiBAN)
EMG (RespiBAN)
SKT (RespiBAN)
RSP (RespiBAN)
ACC (RespiBAN)

PPG (Empatica E4)
EDA (Empatica E4)
SKT (Empatica E4)
ACC (Empatica E4)

Trier Social Stress Test

PANAS
STAI
SAM
SSSQ

+ Solid protocol and assessment of the
participants’ state
+ It includes a wide range of signals from
sensors placed both on the chest and the
wrist
- Potential gender and age bias
- The Trier Social Stress Test elicits an
extreme response that may not be
comparable to those experienced by a
non-clinical subject in real-life

CLAS
[84]

LAB

Size:
62 (45M, 17F)

Age:
Mostly 20–27

PPG (Shimmer 3 GSR+)
ECG (Shimmer3 ECG)

EDA (Shimmer 3 GSR+)
ACC (Shimmer 3 GSR+)

Video stimuli
Math problems
Logic problems

Stroop Test

Stimuli label
Task performance

+ Fairly big sample size
- Potential age and gender bias
- No clear details on the age distribution
are provided
- Researchers did not implement a solid
strategy for ground truth
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Table 7. Cont.

Dataset Type Sample (Gender) Biosignals (Device) Stressor Ground Truth Pros and cons

PASS
[85]

LAB

Size:
48 (N/A)

Age:
N/A

ECG (BioHarness 3.0)
RSP (BioHarness 3.0)
PPG (Empatica E4)
EDA (Empatica E4)
SKT (Empatica E4)

EEG (Muse Headband)

Gaming
Physical activity

(Cycling)

BORG

NASA-TLX
(Variant)

+ Combining mental stress and physical
activity enables the development of
models that account for movement
artifacts and discriminate between
physical and mental stress
- Very limited information about the sample
- ACC data not included in the dataset

UBFC-Phys
[86]

LAB

Size:
56 (10M, 46F)

Age:
21.8 (3.11)

PPG (Empatica E4)
EDA (Empatica E4)

VS (Camera)

Trier Social Stress Test
(Variant)

CSAI

+ The presence of video streams enables
the development of sensorless models
(with rPPG)
- Potential gender and age bias
- The Trier Social Stress Test elicits an
extreme response that may not be
comparable to those experienced by a
non-clinical subject in real life

MDPSD
[87]

LAB

Size:
120 (72M, 48F)

Age:
22 (N/A)

PPG (N/A)
EDA (N/A)

Stroop Test
Rotation Letter Test

Kraepelin Test
Free Stress Scale

+ Fairly large sample size
- Potential age bias
- Limited information regarding the
devices used for data collection
- All the stressors elicit an extreme
response that may not be comparable to
those experienced by a non-clinical subject
in real life

SMILE
[88] **

LIFE

Size:
45 (6M, 39F)

Age:
24.5 (3.0)

EDA (IMEC Chill Band)
ACC (IMEC Chill Band)

ECG (IMEC Health Patch)
ACC (IMEC Health Patch)

Real life EMAs
+ Real-life stress assessment using EMAs
- Potential gender and age bias
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Table 7. Cont.

Dataset Type Sample (Gender) Biosignals (Device) Stressor Ground Truth Pros and cons

EmpathicSchool
[89] *

LAB

Size:
20 (N/A)

Age:
25.3 (4.3)

PPG (Empatica E4)
EDA (Empatica E4)
SKT (Empatica E4)
IBI (Empatica E4)

ACC (Empatica E4)
VS (Camera)

IQ test
Presentation

Stroop Color–Word Test
NASA-TLX

+ It contains a combination of stressors,
encompassing both extreme conditions
and real-life challenges
- Relying solely on NASA-TLX as a
ground-truth measure may not provide a
reliable identification of stress states

A multimodal
sensor dataset for
continuous stress

detection of
nurses in a

hospital
[48]

LIFE

Size:
15 (0M, 15F)

Age:
30–55 (range)

PPG (Empatica E4)
EDA (Empatica E4)
SKT (Empatica E4)
IBI (Empatica E4)

ACC (Empatica E4)

Real life
(working at the hospital

during COVID-19)

Automated labeling
using an algorithm

trained on
AffectiveROAD

Post-shift survey for
label confirmation,

addition, and correction

+ Intelligent automated pre-labeling
approach using a pre-trained model
+ Researchers also investigated the factors
causing stress
- Very strong gender bias
- Potential recall bias
- The data pertain to a specific context (a
hospital during a pandemic), which may
differ significantly from real-life situations

MMSD
[80]

LAB

Size:
74 (36M, 38F)

Age M: 35 (13)
Age F: 33 (12.5)

PPG (Shimmer)
ECG (Shimmer)
EDA (Shimmer)
EMG (Shimmer)
GYR (Shimmer)

Stroop Color–Word Test
Mental Arithmetic Test

Computer Work

STAI
Cortisol Test

+ Good sample size
+ Sample carefully controlled to be
representative of the French population
+ Ground truth using both a validated
scale and an objective gold standard
technique (cortisol sample)
- All the stressors elicit an extreme
response that may not be comparable to
those experienced by a non-clinical subject
in real life
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Table 7. Cont.

Dataset Type Sample (Gender) Biosignals (Device) Stressor Ground Truth Pros and cons

Stress-Predict
Dataset

[43]
LAB

Size:
35 (10M, 25F)

Age:
32 (8.2)

PPG (Empatica E4)
Stroop Color Test

Trier Social Stress Test
Hyperventilation

STAI
PSS

+ Two validated scales for stress
assessment provide a solid label
- Potential gender bias
- All the stressors elicit an extreme
response that may not be comparable to
those experienced by a non-clinical subject
in real life

AKTIVES
[81]

LAB

Size:
25 (10M, 15F)

Age:
10.2 (1.27)

Clinical sample

PPG (Empatica E4)
EDA (Empatica E4)
SKT (Empatica E4)

VS (Camera)

Gaming
External annotation:

3 observers

+ Using 3 independent annotators
mitigates the risk of mislabeling
+ Clinical sample and control group
- Age-specific dataset
- External annotation might not be accurate

* Preprint. ** Only available online (no paper nor preprint found).
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Regarding the assignment of ground-truth stress labels, more than half of the studies
(n = 7) used at least one validated tool. Among the most commonly used tools are the
NASA Task Load Index (NASA-TLX), the State Trait Anxiety Inventory (STAI), and the
Self-Assessment Manikin (SAM). NASA-TLX [90] is a subjective workload assessment tool
used to evaluate perceived workload across different tasks. It provides a multidimensional
rating of mental demands, physical demands, temporal demands, performance, effort, and
frustration. STAI [91] is a self-report questionnaire that assesses two types of anxiety: state
anxiety and trait anxiety. State anxiety refers to the individual’s current emotional state,
reflecting temporary feelings of anxiety and stress in a specific situation. Trait anxiety, on
the other hand, measures a person’s general tendency to perceive situations as threatening.
SAM [92] is a tool designed to assess subjective reactions to various stimuli, including
emotional responses such as valence, arousal, and dominance. It typically involves using
graphical representations, such as stylized human figures or “manikins” to allow individu-
als to express their emotional states along these dimensions. It is important to emphasize
that although these tools are validated, the constructs they measure may only partially
overlap with stress and may introduce distortions in the labels. In terms of non-validated
instruments, n-point Likert scales are used to assess perceived stress. In datasets that focus
on real-life contexts, the primary method for assigning ground-truth labels is based on
surveys. As seen in many articles that covered real-life experiments [32,36,38,39,42,47,54],
a dataset [88] provides labeled biosignals through Ecological Momentary Assessments
(EMAs). EMA is a research method used in psychology and related fields to assess in-
dividuals’ real-time experiences, behaviors, and physiological states in their natural en-
vironments [93]. Unlike traditional assessment methods that rely on retrospective recall,
EMA involves collecting data at multiple points in time, often using electronic devices such
as smartphones or wearable sensors by sending prompts or surveys through them. This
approach might be seen as invasive, but if the number of labels is limited, it can provide
good quality ground truth for signal classification.

The analysis of stressors, presented in Table 8, has highlighted the adoption of two
main types of stressors used for building the datasets. The first type of stressor pertains to
daily life stressors that mimic situations individuals may encounter in real-life contexts,
while the second includes artificial procedures for eliciting stress states. Given the predom-
inant presence of datasets developed in laboratory settings, there is a notable tendency
toward using artificial procedures for stress state elicitation. In fact, 7 out of 13 datasets
incorporate at least one of these procedures. While utilizing controlled procedures to evoke
stress states allows for enhanced control over the dataset, it also comes with the risk of not
producing information suitable for developing personalized stress detection models that
work in the real world. In fact, despite the proven effectiveness of controlled procedures
in inducing stress responses within a laboratory environment, they may need more direct
evidence of ecological validity [94]. Although most datasets used either daily life stressors
or artificial procedures, only three studies [80,84,89] implemented both strategies. To con-
clude, there are currently several datasets available for the development of personalized
stress detection models; however, most of them have been developed in a laboratory setting
and may not ensure model transferability to the real world. Additionally, these datasets
exhibit some biases related to the age and gender of participants. Therefore, there is a need
to develop datasets in naturalistic contexts with less distorted sample characteristics.
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Table 8. Analysis of stressors employed in dataset construction.

Type of Stressor Stressor Dataset(s)

Daily life

Gaming
Computer work

Real life
Driving

Video/image stimuli
Email interruptions

Time pressure
Public speaking

[81,85]
[80,89]
[48,88]

[83]
[84]
[82]
[82]
[89]

Artificial

Stroop Test
Trier Social Stress Test
Mental Arithmetic Test

IQ Test (Variant)
Kraepelin Test

Rotation Letter Test
Hyperventilation Provocation Test

[43,80,84,87,89]
[31,43,86]

[80,84]
[84,89]

[87]
[87]
[43]

3.3. Devices for Raw Data Collection in Stress Detection Research

The research on devices has identified a total of 16 devices for acquiring raw signals.
More than a third of the identified devices (n = 6) allow the collection of information from
multiple biosignals, and almost all of them (n = 14) collect movement-related data, suggest-
ing good potential for developing real-world applications. Regarding the wearability of
the devices, a heterogeneous picture emerged: of the identified devices, six are wrist-worn,
four are worn on the arm, two on the chest, and two on the forehead. Additionally, two
devices can be worn in different parts of the body based on the biosignal to be measured.
Regarding battery life, different performances have emerged, ranging from a minimum of
4 h for the EmotiBit to a maximum of 16 days for the Polar H10. Concerning the possibility
of interfacing devices with mobile systems, all devices were potentially compatible with
Android, while only less than half with iOS (n = 7). The most prevalent protocol for commu-
nication with wearable devices is Bluetooth, supported by all devices included in Table 9.
To date, despite the great potential, the possibility of extracting raw data from commercially
available smart rings is not available. In general, the devices available on the market today
exhibit a high degree of wearability and enable the capture of a wide range of biosignals.
The cost involved in purchasing them is also reasonable and within reach even for research
groups with limited resources. However, notable challenges persist, primarily concerning
limited battery life across most of these devices. Additionally, seamless integration with iOS
devices, which constitute a significant share of the total device market in certain regions,
remains a considerable hurdle.
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Table 9. List of devices for raw signal acquisition.

Device Type Sensors Connectivity Mobile Release Battery Life Cost (Q4 2023)

Empatica EmbracePlus [95] Wrist PPG, EDA, SKT, ACC, GYR Bluetooth Android, iOS 2020 7 days ∼2000 EUR

Samsung Galaxy Watch 4 [96] Wrist PPG, BIA, ACC, GYR WiFi, Bluetooth Android 2021 40 h ∼140 EUR

Samsung Galaxy Watch 5 [97] Wrist PPG, BIA, ACC, GYR WiFi, Bluetooth Android 2022 50 h ∼200 EUR

Samsung Galaxy Watch 6 [98] Wrist PPG, BIA, SKT, ACC, GYR WiFi, Bluetooth Android 2023 40 h ∼300 EUR

Polar OH1+ [99] Arm PPG, ACC Bluetooth Android, iOS 2019 12 h ∼60 EUR

Polar H10 [100] Chest ECG, ACC Bluetooth Android, iOS 2017 400 h ∼90 EUR

Polar Verity Sense [101] Arm PPG, ACC, GYR Bluetooth Android, iOS 2021 20 h ∼100 EUR

Bangle.js 2 [102] Wrist PPG, ACC Bluetooth Android 2021 4 days ∼90 EUR

Shimmer3 ExG [103] Multi ECG, EMG, ACC, GYR Bluetooth Android 2018 N/A ∼550 EUR

Shimmer3 GSR+ [104] Wrist EDA, ACC, GYR Bluetooth Android 2018 N/A ∼520 EUR

PLUX cardioBAN [105] Chest ECG, ACC Bluetooth Android 2022 N/A ∼500 EUR

PLUX muscleBAN [106] Arm EMG, ACC Bluetooth Android 2022 N/A ∼320 EUR

EmotiBit [107] Arm PPG, EDA, SKT, ACC, GYR WiFi, Bluetooth Android 2022 4-8 h ∼230 EUR

BrainBit Callibri [108] Multi ECG, EMG, EEG, ACC Bluetooth Android, iOS 2019 24 h ∼280 EUR

BrainBit Headband [109] Head EEG Bluetooth Android, iOS 2019 12 h ∼460 EUR

Interaxon Muse S (Gen 2) [110] Head PPG, EEG Bluetooth Android, iOS 2022 10 h ∼310 EUR
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3.4. Real-World Challenges in Stress Detection Solutions

Our search on the real-world challenges in stress detection solutions identified 11 articles.
A qualitative examination of these articles unveiled five prominent themes: data quality and
distortions, technical aspects related to wearable devices, user experience and behavior, privacy,
and interpretability. On a quantitative level, the most frequently encountered theme is data
quality and distortions (n = 9), followed by user experience and behavior (n = 4) and technical
aspects related to wearable devices (n = 3). On the other hand, the themes of privacy and
interpretability were addressed by just one article each (See Table 10).

Table 10. List of studies on real-world challenges in stress detection solutions, grouped by theme.

Theme Study(s)

Data quality and signal distortion [111–119]

Technical aspects related to wearable devices [111,116,120]

User experience and behavior [114,116,120,121]

Privacy [120]

Interpretability [118]

3.4.1. Data Quality and Signal Distortion

Concerning data quality and signal distortion, three main issues have been identified:
signal distortion, label assignment, and missing data handling. Regarding signal distortion,
studies have emphasized that raw data from wearable devices is often distorted and
might not meet minimum standards for their use in real-world contexts. Among the
most common causes of these distortions are motion artifacts [113,114,116,118], physical
or human activity [111,116,118,119], and optical sensor issues [113]. Motion artifacts and
human activity artifacts stem from the subject’s movement during measurement, where the
sensor may lose adherence (in the case of ECG or EDA) or move too far from the skin (in
the case of PPG), resulting in instances of poor contact and, in some cases, complete loss of
contact. While this poses a tangible problem, the literature suggests strategies for managing
such distortions, including the incorporation of accelerometer data into models and the
implementation of human activity recognition classifiers for signal cleaning, as well as the
use of filters discussed in Section 3.1.2. Regarding optical sensor issues, the situation is more
complex but limited to PPG and SKT sensors. These sensors rely on skin characteristics for
signal construction and are consequently strongly influenced by them. Specifically, tattoos
in the wrist area, skin perfusion, and skin tone may distort the optical sensor output due to
different reflection patterns [113]. The solution to these issues is unclear and represents a
more concrete obstacle than motion artifacts. While signal distortion may adversely impact
the integrity of data used for developing and implementing personalized stress detection
models, we also confront the issue of label distortion. The quality of labels in a dataset
is crucial as it guides the algorithm in learning. However, the quality of labels poses a
particularly complex challenge in developing stress detection models, as it is necessary
to find a strategy for measuring a vague construct such as stress. The definition of stress
as a psychological construct is still an ongoing process, and researchers have not yet
reached a consensus. The challenge, therefore, is to reliably measure a construct that is not
well-defined. One solution proposed by researchers is to expose individuals to protocols
that elicit stress states and use cortisol tests for label assignment [117]. However, besides
lacking ecological validity, this approach is impractical for creating personalized stress
detection models in the real world, as it would require a time-consuming in-person session
to create the training set, limiting the scalability. An alternative approach researchers
propose is to use validated scales that measure constructs ideally close to perceived stress
for label assignment. Although this solution is more methodologically robust, it should be
emphasized that consistency between the scale and model output has to be maintained, and
any data manipulation or aggregation (for example, for building a binary classifier from
scales’ continuous values) should be avoided [117]. The quality of labels thus represents an
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open problem that requires clarification both regarding the construct measured and the
instruments for its measurement, which should be compatible with personalized stress
detection solutions that are implemented. As previously outlined in the section about signal
distortion, real-life data from wearable device sensors may contain missing data [117].
Specifically, missing data in biosignals represent interruptions in the time series. The
presence of gaps in a time series poses a practical problem, affecting the feature extraction
stage in machine learning-based approaches and the possibility of utilizing such biosignal
fragments in deep learning models. Interpolation was traditionally employed to address
this issue; however, this approach is outdated, may introduce bias, and can adversely
affect model performance. Recent studies have proposed two main methods to manage the
gaps in the time series. The first method [115] can be applied in developing personalized
stress detection models based on machine learning and involves using complete biosignal
fragments to train classifiers capable of predicting the missing features of incomplete signals.
This approach introduces fewer distortions than interpolation because it operates not on the
time series but on its high-level informative content, leveraging globally learned knowledge.
The second method, on the other hand, is more general and models signal fragmentation
as a sparsity issue. In particular, according to [112], it is possible to exploit nuclear norm
minimization, a method based on the low-rank assumption, to derive unobserved sensor
data thanks to mathematical properties (i.e., observed entries are sampled uniformly at
random, and exact recovery can be achieved leveraging probability). Although these
approaches are effective, most studies developing personalized stress detection models
in real-life scenarios tend to discard incomplete signals or rely on interpolation to reduce
computational load and model complexity. Considering this, it is essential to examine
new perspectives for managing missing data, ensuring a seamless, efficient, and prompt
resolution of data gaps.

3.4.2. Technical Aspects Related to Wearable Devices

Focusing on the technical aspects related to wearable devices, the literature analysis
has identified three limitations that affect real-world implementations of personalized stress
detection models: battery life [111,116], computing and network capabilities [111], and ven-
dor updates [120]. Battery life is the primary challenge when deploying personalized stress
detection models that rely on biosignals from wearables. While the production processes of
wearable devices have improved over the years, resulting in increasingly efficient proces-
sors, the physical limit of batteries remains. Most commercially available wearable devices,
especially smartwatches, use batteries with capacities below 500 mAh [122], capable of sup-
porting device activity for only a limited number of hours. The battery constraint impacts
the operational choices researchers are forced to make. Specifically, researchers must find
a tradeoff between information granularity and battery life [111,116]. Hitting the battery
limit can result in incomplete data and study dropouts due to poor experience. In order
to reduce battery drain, researchers may limit the number of measurements, data upload
frequency, and the complexity of on-device operations. Regarding on-device operations, it
is essential to note that wearable devices offer limited network and computing capabilities
and are currently unable to execute complex models. These functions are usually out-
sourced to an edge layer (e.g., phone) and cloud solutions [111]. Lastly, it is noteworthy that
most wearable devices lack open-source accessibility, which introduces potential challenges
associated with the code governing the sensors. Researchers have raised concerns about
the possibility of encountering alterations in raw data stemming from updates or firmware
modifications to the device introduced by vendors. Addressing these technical challenges
is critical and involves implementing strategies for optimizing processes or data collection,
exploring new hardware solutions, and granting researchers greater control over the source
code of devices, potentially through the adoption of open-source solutions.
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3.4.3. User Experience and Behavior

Regarding user experience and behavior, three main challenges have been identified
for implementing real-world solutions for personalized stress detection: the presence of
technical support, granting user data access, and the implementation of best practices
for EMAs. Regarding the technical support side, researchers have emphasized the need
to establish a contact line with the participants involved in the study [114,121], as it is
common for them to encounter difficulties that, if ignored, can lead to missing data or
study dropout. In particular, the presence of technical support helps to reduce device
malfunctions due to improper usage and to manage any configuration issues [114,121].
However, it should be noted that a user-friendly wearable like a consumer smartwatch
reduces the need for frequent intervention. Regarding user data access during the study, it
has been observed that, although it can positively affect motivation, it can lead to behavior
manipulations by the participant, which may change his or her behavior to observe effects
on the dashboard provided [114]. It should be emphasized, however, that this behavior
was observed in a sample of adolescents, so it may be more relevant to specific types of user
groups. Considering best practices for the implementation of EMAs, researchers largely
agree on the need to identify an accuracy/labels tradeoff that allows collecting a sufficient
number of labeled data through EMAs for creating a training set that is large enough to
train a good classifier for stress [120,121] without posing a significant burden on the subject.
While exaggerating with labels could lead to dropout, having a small amount of data points
could negatively impact the final performance of the classifier. Identifying a strategy to
optimize the number of EMAs is therefore crucial. Findings from [116,121] suggest that user
response rates are influenced by the activity performed at the time of survey reception, the
time of day, the subject’s mood, and personal patterns. Ref. [121] suggests that developing
machine learning models for identifying the ideal timing for the user to send the minimum
number of communications while still collecting the desired amount of data would be
beneficial. Finally, engaging solutions (e.g., apps) for collecting EMAs seem to promote
higher response rates than more traditional methods (e.g., SMS). In conclusion, researchers
should focus on building tailored solutions to gather the data, considering the need for
technical support and implementing strategies for collecting training labels with a less
invasive and more engaging approach.

3.4.4. Privacy

Privacy refers to the right of individuals to keep personal information and activities
confidential. Given that solutions for personalized stress detection are based on physiologi-
cal data and contain sensitive information about the psychophysical state of an individual,
this dimension becomes significant. Medical data and privacy are critical aspects of health-
care, and protecting patients’ sensitive information is a legal and ethical responsibility. In
this regard, researchers [120] proposed a set of best practices for managing data in studies or
real-life applications. In particular, according to privacy by design principles, participants
should be informed in detail about the data collection process, the use of collected data,
and the purpose of the research. Data collection should also be limited to essential data,
excluding those not strictly necessary for the stress detection task, such as GPS data, which
could indirectly identify an individual. To address the risks of data leaks and promote pri-
vacy, it is advisable to integrate solutions that adhere to security standards and allow users
to limit or revoke data access at any time. A potential strategy to mitigate privacy-related
risks could be developing personalized stress detection models that work on wearable
devices [41]. However, it is essential to remember that, with current technology, wearables
have limited computational power and batteries that limit this possibility. Regarding the
legal aspect of implementing models in real life, many countries are developing regulations
or guidelines to guide the adoption of privacy-friendly AI. However, a shared set of rules
has yet to be identified. Fostering a dialogue between developers, end-users, and regula-
tory bodies is pivotal to establishing a shared understanding of the ethical considerations
involved in personalized stress detection model development. As we continue to advance
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in this field, a commitment to responsible innovation and a holistic approach to privacy
will be crucial in shaping the future of research.

3.4.5. Interpretability

As mentioned earlier, the stress detection task falls within medical applications and,
as such, requires models capable of providing information about the rules followed by
the model in making decisions. A white box model is preferable in medical AI due
to its transparency, providing clear insights into the decision-making process, which is
crucial for ensuring accountability and trust in healthcare applications. This transparency
allows medical practitioners to understand and interpret the model’s decisions, enhancing
usability and facilitating collaboration between clinicians and AI systems. In this regard,
researchers [118] have proposed using SHapley Additive exPlanations (SHAP) values to
make the models more interpretable. SHAP values fairly distribute the contribution of each
feature to the prediction of a model among its individual features. By assigning a numerical
value to each feature’s impact on the prediction, SHAP values enhance interpretability
by revealing the importance of different factors in influencing the model outcomes. This
helps to understand the model’s decision-making process better but also aids in explaining
individual predictions, making the model more transparent and trustworthy for users and
stakeholders. However, the limitation of this solution lies in the fact that it can be mainly
applied to models that adopt a machine-learning approach. The explainability of deep
learning models is a more complex topic that requires targeted investigation by researchers.
So far, interpretable models for personalized stress detection based on deep learning have
yet to be available, and more research on interpretable deep learning models is needed.

4. Discussion

Understanding and managing stress is a fundamental aspect of human existence,
with its roots in discomfort and mental tension triggered by life’s challenges. How we
navigate stress plays a pivotal role in shaping our overall well-being. In the era of tech-
nological advancement, particularly marked by the rise of the IoT and AI, researchers
have ventured into creating models that can discern stress by closely observing bodily
reactions. This not only allows for continuous monitoring but also offers a cost-effective
approach. While stress detection systems have become increasingly widespread, the last
decade has seen a notable shift towards personalized models. These models are designed
not only to capture the unique variations in individuals’ stress responses but also to offer
predictions tailored for specific contexts, including but not limited to clinical settings. Exist-
ing literature reviews [9,123–128] have explored stress detection models, predominantly
focusing on generalized frameworks. However, until now, none have consolidated the
crucial dimension of personalized models. This comprehensive review addressed this
gap by systematically answering the research questions introduced earlier. Specifically, it
delved into the most commonly used biosignals for personalized stress detection (RQ1),
the AI techniques employed by researchers in developing such models (RQ2), and the
publicly available datasets for training personalized models (RQ3). Additionally, the review
identified wearable devices in the market that facilitate the acquisition of raw data (RQ4)
and outlined the main implementation challenges in developing real-world stress detection
solutions (RQ5). This review uniquely provides a comprehensive mapping of existing
datasets specifically suitable for training subject-tailored classifiers, a critical development
for effective personalized stress detection. To our knowledge, this is the first review that
focuses exclusively on personalized stress detection models, marking a significant advance-
ment in the field. Lastly, we offer an in-depth analysis of the real-world challenges that
must be addressed to deploy effective, transparent, and fair stress detection models, setting
a new standard for future research in this area.
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4.1. Biosignals

In the exploration of biosignals for personalized stress detection through wearable
devices, our analysis has identified a spectrum of eight key signals: EDA, PPG, ECG, SKT,
RSP, EMG, EEG, and NIBP. Notably, existing models predominantly center around the
utilization of EDA and PPG signals. EDA, measuring skin conductance, reflects sweat
gland activity influenced by the sympathetic nervous system during stress, while PPG
records blood flow changes, influenced by stress hormones activating the sympathetic
nervous system, ultimately altering heart rate and causing vasoconstriction. Some stud-
ies [28,29] revealed the potential of EDA and PPG in delivering comparable and reliable
results in single-modality setups. This finding is surprising as EDA has historically been
considered the gold standard for stress detection; moreover, the discriminative power of
PPG gains further significance considering the widespread availability of PPG sensors in
today’s smartwatches. However, the need for precision in personalized stress detection
models prompts a call for attention to multimodal approaches, which leverage multiple
sensors. While EDA- and PPG-only models show promise, the incorporation of additional
signals, such as motion data from accelerometers and gyroscopes, emerges as a key factor
in enhancing accuracy [28,29,36,61,62]. The integration of motion data not only refines
biosignals for improved reliability but also facilitates model adaptation to diverse con-
texts, ensuring functionality in dynamic situations. This comprehensive approach aids
in distinguishing mental stress from other stress types [61,62], providing a more nuanced
understanding of an individual’s stress state. In conclusion, the array of biosignals available
today allows for a comprehensive approach to stress detection, with sensors already widely
used in smartwatches among the population. While evidence supports the effectiveness
of a multimodal approach [28,39], the discussion surrounding the trade-off between the
number of sensors and the improvement in accuracy necessitates further investigation.
Consideration of both economic and computational costs is crucial when evaluating the
implementation of multimodal models in wearable solutions.

4.2. AI Techniques

In discussing the techniques for developing personalized stress detection models, our
exploration has unveiled three primary approaches: a statistical approach, a machine learn-
ing approach, and a deep learning approach. Regardless of the selected methodology, each
approach utilizes individual subject data to construct personalized stress models, treating
each individual as a distinct classification or regression task. An intriguing gap identified in
our research is the absence of fully unsupervised methods for personalized stress detection,
prompting consideration for label-free solutions in future studies. Currently, the prevailing
trend in this field favors traditional machine learning methods, followed by deep learning
architectures, and, finally, statistical techniques, with the deep learning approach gaining
prominence. The statistical approach relies on traditional signal analysis using statistical al-
gorithms, excelling in interpretability, signal classification speed, and classifier adaptability
over time, but these solutions heavily depend on signal quality and rules. Machine learning
models instead are trained on labeled datasets for automated stress identification based on
input features, and involve steps such as signal preprocessing, feature extraction, algorithm
selection, and hyperparameter tuning. While this approach allows interpretable models,
it necessitates a clean signal and prior knowledge-based feature engineering similarly to
statistical models. On the other hand, the deep learning approach employs neural networks
to learn high-level features from raw data, eliminating the need for pre-extraction of fea-
tures from the input signal. However, resulting black box solutions limit interpretability
unless specific techniques like activation maps are implemented. As of today, there are
also no studies comparing the performance of various approaches on the same dataset,
making it challenging to assess the tradeoff between interpretability, computational load,
and resulting accuracy. Another aspect introduced by some of the reviewed studies [47,50],
which needs further investigation, is the use of partially labeled datasets gathered by wear-
able devices to train the models. Collecting a limited number of labels while concurrently
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recording unlabeled biosignals passively aims to extract valuable knowledge from these
unlabeled signals, opening new opportunities for efficient and practical stress-related data
collections and model training. In conclusion, the need for further research is evident,
particularly in the use of unlabeled data and comparative studies involving state-of-the-art
deep learning, machine learning, and statistical methods on identical datasets. These stud-
ies should meticulously consider factors such as computational power, inference time, and
the possibility of running models on devices with limited resources (e.g., smartwatches).
Additionally, there is a need for further studies in clinical practice to assess the acceptability
of black box versus white box models. Legal considerations regarding the deployment of
such models in hospitals and real-world clinical settings also merit careful exploration.

4.3. Datasets

The exploration of the literature for datasets instead revealed a generous amount of
public datasets (n = 13) that serve as valuable resources for the development of person-
alized stress detection models. These datasets, which are rich in multi-signal data from
sensors, are excellent resources for the field’s advancement. However, a close examination
of these datasets reveals several significant flaws. To begin, the majority of the datasets
have sample size limits and significant biases, notably in terms of gender and age demo-
graphics. Furthermore, a major amount of the collected data is restricted to controlled
laboratory conditions, which may limit the applicability of stress detection algorithms to
real-world scenarios. Beyond these environmental constraints, concerns are raised about
the assignment of ground-truth labels through the use of some validated tools, such as
NASA-TLX and STAI, which measure constructs only partially overlapping with the com-
plexity of stress [117]. This aspect raises questions about the potential impact on model
training, suggesting that the approximation of stress through these tools may introduce
subtle biases into the model outputs. In other words, this approximation could potentially
be inherited by the model during the training phase, influencing outputs in a manner
not directly measurable by metrics but consistently impacting results in a systematic way.
Furthermore, the protocols employed in developing most datasets involve artificial pro-
cedures to elicit stress states (e.g., Stroop Test, TSST). These procedures, however, fail to
accurately reflect real-life situations, compromising the ecological validity [94]. To our
knowledge, there is limited research focusing on this aspect, highlighting a critical gap in
the literature. Further investigations into the transferability of data produced with such
procedures are deemed necessary to enhance the robustness of stress detection models and
ensure their applicability to real-world settings. Future efforts should aim at producing
datasets with larger and less biased samples that better represent the general population,
while avoiding distortions related to age or gender. Furthermore, an in-depth exploration
of the relationship between measurement tools and the specific dimension of stress being
investigated is essential for the development of accurate models, both in terms of raw
performance and construct validity. To foster the development of models applicable in
real-world settings, the creation of more datasets featuring information collected through
EMAs [129] is suggested. Such datasets, capturing individual experiences in naturalistic
conditions, offer a means to overcome the limitations introduced by artificial stress induc-
tion procedures and provide a more authentic representation of stress states. It is also
crucial that these datasets are made more accessible and organized in a convenient way,
with already synchronized labels, similar to [31], which has been shown to be a popular
and user-friendly dataset for researchers. This would facilitate the development of stress
detection models and encourage more researchers to contribute to the field.

4.4. Devices

In our focus on devices, our web search identified commercial wearables capable of
capturing raw data for all the biosignals specified in RQ1. The majority of these devices
enable the collection of more than one biosignal, with many also facilitating the collection
of movement-related data crucial for training more effective models. Without delving
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into the technicalities of each wearable, we suggest researchers focus on certain features
(battery life, connectivity, and compatibility) when finding and choosing the tool that
best fits their research. In particular, we identified battery life to be highly heterogeneous
among the devices, ranging from a few hours to a few days. Another highly relevant
aspect is connectivity and compatibility with mobile devices. In this regard, Android
exhibits superior compatibility, while iOS seems more closed and challenging to integrate
with wearables. Bluetooth stands as the gold standard, thanks to its low-energy features
(BLE) that allow the device to optimize energy consumption and use the least amount
of power possible during idle. We also observed that the price range of most devices is
reasonable and within reach, even for research groups with limited resources. Surprisingly,
our search did not identify any commercial smart ring capable of providing raw data useful
for research in personalized stress detection. We recommend that researchers consider not
only commercial wearables but also explore the latest developments in non-commercial
sensors documented in the academic literature, for example, ref. [130] developed OmniRing,
an open-source smart ring platform equipped with an Inertial Measurement Unit (IMU)
and PPG sensors for activity tracking and health analytics applications. Innovations also
include novel sensors specifically designed to measure physiological stress markers, such
as cortisol levels throughout the day [131,132]. Recent progress has led to the creation of an
electronic skin for stress response assessment [133] that non-invasively monitors three vital
signs—pulse waveform, galvanic skin response, and skin temperature—and six molecular
biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions, and
ammonium) for enhanced monitoring accuracy. These sensors offer a promising avenue
for capturing more accurate stress responses in naturalistic settings. Often developed
in academic or open-source environments, such devices provide unique opportunities
for customization and experimentation, extending beyond the capabilities of standard
commercial products.

4.5. Real-World Challenges

Our examination of the practical challenges associated with stress detection solutions
revealed some relevant recurrent themes: data quality, technical limitations, user expe-
rience, privacy and transparency. Above all, a key concern pertains to the quality and
inherent distortions present in raw data obtained from wearable devices. Notably, signal
distortions caused by motion artifacts, physical or human activity, and limitations in optical
sensors present significant hurdles [113,114,116,118]. While integrating accelerometer data
and utilizing human activity recognition classifiers show promise as solutions, tackling
optical sensor challenges, particularly with PPG and SKT sensors, proves to be a more
complex task which needs further investigation, in particular in the area of distortions
given by different reflection patterns of skin (e.g., tattoos, skin tone). Shifting to technical
considerations, wearable devices introduce limitations that substantially impact the real-
world implementation of stress detection models. Issues such as battery life, computing
and network capabilities, and the ongoing challenge of vendor updates necessitate atten-
tion. The interplay between information granularity and battery life directly influences
data completeness and user experience [111,116]. Recognizing the inherent limitations of
wearable devices, the common strategy involves relying on edge layers and cloud solutions
to manage complex operations like inference [116]. On the other hand, vendors should
grant researchers greater control over the source code of devices, potentially through the
adoption of open-source solutions. Moving to user experience and behavioral aspects, the
importance of technical support and careful consideration of user data access take center
stage. Establishing effective communication channels with study participants becomes
crucial, with user-friendly wearables helping to mitigate technical issues and enhancing the
overall user experience [114,121]. During the data labeling stage researchers should also
pay more attention to optimizing the balance between accuracy and the burden on study
subjects, possibly by introducing machine learning models for identifying the ideal timing
for the user to send the request for the label [54,121]. Simultaneously, the commitment to
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privacy by design principles emerges as a foundational pillar. This commitment involves
securing informed participant consent, restricting data collection to essential information,
and excluding non-essential data. In this context, proposals for on-device stress detection
models surface as potential privacy-mitigating strategies, although their feasibility neces-
sitates careful consideration of current technological constraints. The medical context of
stress detection also necessitates transparent models that describe decision-making pro-
cesses. White box models, particularly those employing SHAP values, gain favor for their
transparency. However, they are limited to classical machine learning approaches, leaving
a noticeable gap in interpretable models for deep learning in personalized stress detection.
This emphasizes the need for sustained research in this specific area.To sum up, the diverse
challenges uncovered in our exploration call for a comprehensive and collaborative strategy.
Ongoing research, interdisciplinary collaboration, and commitment to ethical and transpar-
ent practices are crucial in overcoming these challenges and nurturing the development of
effective and responsible stress detection models applicable in the real world.

5. Conclusions

In conclusion, this paper provides a comprehensive overview of the evolving land-
scape of personalized stress detection models, focusing on using wearable devices to
undertake the task. The synthesis of findings in this scoping review addressed the cur-
rent literature gap and revealed the relationship between biosignals, artificial intelligence
methodologies, datasets, wearables, and real-world implementation challenges. The sys-
tematic approach employed in this review, guided by the PRISMA-ScR framework, ensures
a rigorous examination of the existing knowledge base. As the field of personalized stress
detection through wearable technology continues to progress, this review serves as a valu-
able resource, offering insights into the current state of research, highlighting limitations,
and suggesting promising avenues for future exploration. Integrating personalized models
into stress detection systems marks a significant advancement, promising tailored inter-
ventions that can positively impact individual well-being in various settings, including
clinical practice.
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HRV Heart Rate Variability
SCE Controlled Scenario Environment
LAB Laboratory
LIFE Real life
ECG Electrocardiogram
EDA Electrodermal Activity
RSP Respiration
SKT Peripheral Skin Temperature
ACC Accelerometer
IMU Inertial Measurement Unit
PPG Photoplethysmography
EEG Electroencephalogram
EMG Electromyogram
SO2 Peripheral Oxygen Saturation
MIC Microphone
VS Video Stream
FBT Full Body Tracking
GYR Gyroscope
IBI Interbeat Interval
BIA Bioelectric Impedance Analysis
NIBP Non-Invasive Blood Pressure
EMA Ecological Momentary Assessment
TSST Trier Social Stress Test
STAI State Trait Anxiety Inventory
PANAS Positive and Negative Affect Schedule
SAM Self-Assessment Manikin
SSQ Short Stress State Questionnaire
PSS Perceived Stress Scale
RSME Rating Scale Mental Effort
ICI Internal Control Index
CSAI Competitive State Anxiety Inventory
NASA-TLX NASA Task Load Index
ML Machine Learning
DL Deep Learning
GRNN General Regression Neural Network
DAE Denoising Auto Encoder
SVM Support Vector Machine
RBF Radial Basis Function
MLP Multilayer Perceptron
RF Random Forest
SOM Self-Organizing Map
AUROC Area Under the Receiver Operating Characteristic
TCN Temporal Convolutional Network
LR Logistic Regression
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
SSL Self-Supervised Learning
MFN Modality Fusion Network
SAB Self-attention Block
SHAP SHapley Additive exPlanations
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76. Polat, K.; Öztürk, Ş. Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods; Intelligent

Data-Centric Systems; Academic Press: San Diego, CA, USA, 2023.
77. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]
78. Kim, S.H.; Geem, Z.W.; Han, G.T. Hyperparameter Optimization Method Based on Harmony Search Algorithm to Improve

Performance of 1D CNN Human Respiration Pattern Recognition System. Sensors 2020, 20, 3697. [CrossRef] [PubMed]
79. Zeng, Z.; Kaur, R.; Siddagangappa, S.; Rahimi, S.; Balch, T.; Veloso, M. Financial Time Series Forecasting using CNN and

Transformer. arXiv 2023, arXiv:2304.04912. [CrossRef]
80. Benchekroun, M.; Istrate, D.; Zalc, V.; Lenne, D. Mmsd: A multi-modal dataset for real-time, continuous stress detection

from physiological signals. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and
Technologies, Virtual, 9–11 February 2022; SciTePress-Science and Technology Publications: Setúbal, Portugal, 2022.
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