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Abstract: Bottlenose dolphins (Tursiops truncatus) inhabit waters across a broad natural salinity
gradient and exhibit changes in skin condition based on the quality of their environment. Prolonged
exposure to low salinities (≤10–20 ppt) degenerates the epidermal barrier and causes cutaneous
lesions in dolphins, while the role of high salinity exposure (>35 ppt) in lesion development remains
unknown. We assessed seasonal lesion prevalence in three free-ranging dolphin stocks inhabiting
coastal Gulf of Mexico (GoM) waters of different salinities (0–30 ppt, 22–35 ppt, and 36+ ppt) using
images of dolphin bodies. Lesions were documented on 44% of the dolphins photographed (n = 432),
and lesion occurrence was significantly related to cold seasons and water temperatures but not salinity.
Cold water temperatures may heighten dolphin susceptibility to infectious pathogens and disease
and compound the effects of anthropogenic pollutants in the GoM. As dolphins are a bioindicator
species of marine habitat welfare, natural studies assessing dolphin skin may reveal environmental
degradation with potential impacts on marine ecosystems and human health.

Keywords: bioindicator; bottlenose dolphin; epidermal disease; Gulf of Mexico; hypersaline

1. Introduction

Bottlenose dolphins (Tursiops truncatus; hereafter “dolphins”) residing in bays, sounds,
and estuaries of the Gulf of Mexico (GoM) can experience physiological changes resulting
from exposure to a broad range of natural salinities [1–3]. The salinity gradient of the coastal
GoM is driven by fluctuations in global precipitation and the hydrological cycle, which
are often intensified by anthropogenic stressors [4,5]. Free-ranging dolphins generally
live in marine waters with an average salinity of 35 parts per thousand (ppt), although
some dolphins utilize lower salinity habitats (e.g., <20 ppt) [6]. Skin disorders (hereafter
“lesions”) in dolphins are commonly associated with low salinity exposure, which increases
the permeability of dolphin skin and fluid accumulation in the superficial epithelial layer [1].
Dolphins that frequently utilize low salinity habitats may be physiologically adapted
to local salinity fluctuations or may use stratified water columns with higher salinities
at depth [7]. Dolphins can also inhabit hypersaline lagoons (≥36 ppt) where salinities
can double that of the GoM [8], although site fidelity in these hypersaline systems is
poorly understood and the effects of hypersaline exposure on lesion development have not
been assessed.

Lesions on dolphins can be highly variable in origin and manifestation and are often
context-dependent. Exposure to salinities < 10 ppt (often resulting from tropical storms
and freshwater inundation in shallow systems) for several days or weeks generally induces
skin pallor and cutaneous lesions in dolphins of varying degenerative stages [6,9]. Despite
the continuous sloughing (i.e., shedding) of dolphin skin, fungi, algae, and bacteria may
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penetrate the epidermal barrier as integrity decreases [6]. Once the skin barrier is compro-
mised, a dolphin risks secondary infection, freshwater influx into the body, and subsequent
electrolyte imbalance, including disruption of internal sodium and water homeostasis [6,10].
Lesions on dolphins may be seasonally prominent and linked to periods of physiological
stress [11,12]. For instance, low water temperatures may pose thermal constraints on dol-
phins and limit blood flow to the skin, reducing immune protection and increasing lesion
manifestation [11,13,14]. Since coastal dolphins in the GoM inhabit ecosystems subject to
seasonal variations in salinity and water temperature, lesion prevalence may fluctuate with
natural shifts in the environment [10]. Physiological complications associated with lesions
can be exacerbated by exposure to polluted waters, as contaminants can bioaccumulate
to toxic levels and intensify lesion development and comorbidities [13,15]. Suppression
of immune function and/or persisting epidermal lesions may further expose dolphins to
physiological stress and lesion outbreaks [16–19].

As epidermal lesions can manifest from both natural and anthropogenic disturbances,
variability in the integrity of dolphin skin may reflect large-scale shifts in environmental
quality [6,20,21]. Coastal dolphins are often long-term residents of confined bay systems
where anthropogenic pressures may be prominent. Dolphins can be useful indicators of
ecosystem health and important informants of potential health risks to humans from fish
and seafood consumption [20,22,23]. Dolphins are also abundant in port areas inundated
with vessel traffic, dredging, and piling activities that reduce habitat quality and introduce
chemical pollutants through sediment suspension [24,25]. With climate change intensifying
globally, extreme alterations in salinity, water temperature, and the atmosphere provide
fertile conditions for the development of pathogenic disease and viral outbreaks, subjecting
both marine and human populations to exposure through biomagnification in the food
web [26]. There is a crucial need to understand how lesion development in dolphins
varies with environmental quality, particularly in areas where anthropogenic disturbance
is high, to develop more sustainable practices and preserve marine communities that are
highly susceptible.

Photographs of dorsal fins are commonly used to estimate lesion prevalence (i.e.,
percentage of a population or stock with lesions) among free-ranging dolphins when it
is difficult to photograph large proportions of dolphin bodies [27,28]. The dorsal fin is
the most routinely visible feature of a dolphin at the surface and can be used to identify
unique individuals across time, space, and populations [29], aiding in the standardization
of lesion assessment. However, using dorsal fins as a proxy often underestimates the extent
and expression of lesions on the whole body [27,28], limiting our knowledge of lesion
prevalence in free-ranging populations. Since most lesion cases have unknown etiologies
and are challenging to distinguish categorically, measurements of lesion prevalence are
recommended [28,30].

Our objective was to assess the seasonal prevalence (percentage) of epidermal lesions
on the bodies of free-ranging bottlenose dolphins inhabiting mesohaline (5–18 ppt), poly-
haline (18–30 ppt), and hypersaline (≥36 ppt) waters. We examined dolphins along the
coastal Texas and Mississippi regions of the northwestern GoM, including Redfish Bay
(RB), Texas, Upper Laguna Madre (ULM), Texas, and Mississippi Sound (MS), Mississippi.
RB is a shallow system that experiences seasonal changes in water temperature (15–30 ◦C)
and salinity (22–35 ppt) [31]. RB is adjacent to the Port of Corpus Christi, the largest U.S.
port in total revenue tonnage [32], with boats proximate to dolphins 80% of the time [33].
Channel dredging to accommodate increased vessel traffic has been ongoing since 1857, and
growing mineral production activities in the past decade surrounding RB are of concern
for local water quality and biota health [31]. ULM is one of six naturally occurring coastal
hypersaline lagoons in the world [8,34] where salinities regularly exceed 45 ppt (average
36 ppt) due to low circulation and little freshwater inflow [35,36]. MS experiences large
fluctuations in sea surface temperature (9–33 ◦C) and salinity (0–30 ppt) due to intense
freshwater river discharges (Mississippi, Pearl, Pascagoula, and Mobile Rivers) and fre-
quent tropical weather [37]. All three dolphin stocks are considered highly vulnerable to
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climate change and a high management priority by the National Oceanic and Atmospheric
Administration (NOAA) [38].

Lesion prevalence in dolphin stocks was assessed relative to salinity, water temper-
ature, and season. We hypothesized that dolphins in high salinities would have a lower
prevalence of skin lesions [39] and that cooler water temperatures in the fall and winter
would increase lesion prevalence [11]. By assessing the epidermal condition of dolphins ex-
posed to a large salinity gradient, it is possible to begin filling data gaps for populations set
as high management priorities by the National Oceanic and Atmospheric Administration’s
National Marine Fisheries Service (NOAA NMFS) and to proactively monitor the health
and sustainability of marine species and ecosystems where salinity is highly variable.

2. Materials and Methods

Photographs of the dorsal fins and the visible bodies of dolphins were collected
opportunistically during boat-based surveys for distinct dolphin stocks inhabiting RB
(2012–2014, 2022), ULM (2022), and MS (2013; Figure 1). Images collected between 2012 and
2014 in RB and MS were obtained from survey efforts conducted by the NOAA Southeast
Fisheries Science Center Marine Mammal and Turtle Division. All survey efforts were
performed under NOAA NMFS permits 21,938, 779–1633, and 14,450, and Texas A&M
University-Corpus Christi’s Institutional Animal Care and Use Committee (IACUC) permit
2021-10-031.
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Figure 1. Map indicating where dolphins were photographed in Gulf of Mexico waters during
surveys. Sampling locations included Redfish Bay, TX (2012–2014, 2022), Upper Laguna Madre, TX
(2022), and Western Mississippi Sound, MS (2013). The symbols denote average salinity ranges.

Dolphin groups (individuals within 10 m of one another engaged in the same predom-
inant behavioral state [40]) were photographed from a research vessel across all seasons
(Table 1). Photographs of the dorsal fin (for subsequent identification) and the visible body
of all dolphins in each group were collected using a Sony Cyber-Shot RX10 IV (2022) or
Canon EOS 60D (2012–2014) camera. The photographer was positioned perpendicular
and approximately 3–7 m from the dolphins in optimal lighting when possible. Once all
dolphins in the group had been photographed, data on water parameters (temperature
and salinity measured using a YSI pro-solo), environmental conditions (wind speed, air
temperature, water depth, Beaufort Sea State), and group composition (number of dolphins,
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age classes, predominant behavioral states) were recorded. Rainfall during the sampling
period was not recorded or assessed relative to salinity or water temperature.

Table 1. Survey efforts for Redfish Bay (TX), Upper Laguna Madre (TX), and Mississippi Sound (MS).
For each site, the corresponding season (month), year, number of days surveyed, and size of area
surveyed are listed. The geographical area surveyed was approximately the same for all efforts at
each site.

Site Season (Month) Year(s) Days Surveyed Survey Area
(km2)

Redfish Bay

Summer (June)
Summer (June)
Summer (June)
Spring (May)

Fall (November)

2012
2013
2014
2022
2022

11
1
2
7
4

56
56
56
56
56

Upper Laguna
Madre

Spring (May)
Fall (November)

2022
2022

3
2

46
46

Mississippi Sound Winter (January)
Summer (August)

2013
2013

6
6

643
643

All photographs of dolphins were carefully analyzed for the presence of lesions. Pho-
tographs were matched across seasons and years using finFindR [41] to identify individual
dolphins. All photographs captured of a unique dolphin during the same season and year
were used to determine whether lesions were present. Photographs were preliminarily
filtered based on the amount of visible body (head, abdomen, and peduncle), image angle
(ideally perpendicular to the dorsal fin), clarity (not blurry nor pixelated), and exposure
(not backlit). Photographs with <10% of the body visible or that were approximately >20◦

offset from perpendicular, blurry, pixilated, or backlit were not analyzed further. A visual
reference catalog [28] was used to aid in scoring images on the presence of lesions (0 = no le-
sion detected, 1 = lesion(s) detected). Two of the coauthors (MAG and CNT) independently
evaluated 20% of the retained photographs to ensure reliability in lesion identification.
Once an acceptable level of reliability was established (i.e., the level of agreement (K) was
significantly ≥ 0.50), one coauthor (MAG) scored the remaining 80% of the photographs
and consulted with the other when uncertain.

Positive lesion cases were identified when dolphins had a lesion(s) on either the left
or right side of their body in any photograph. Negative cases (no lesion present) required
images of both sides of a dolphin’s body for confirmation; if both sides were not captured,
the case was not included in analyses. Retained photographs of both positive and negative
cases were evaluated based on image quality (Table 2), lesion characteristics, and reviewer
confidence (scored as poor, intermediate, or high). High-quality images were required
for further consideration unless reviewer confidence in the presence or absence of lesions
was high. A minimum of five lesions approximately ≥20 mm in size (estimated) were
needed to designate a positive case, including lesions near tooth rake marks, shark bites,
and propeller/entanglement wounds (Table 2). Orange hue was excluded as a lesion type
unless the dolphin had overlying lesions or previous documentation of lesions underneath
the orange hue. If all image and lesion criteria were met and reviewer confidence was
intermediate or high, the case was included in statistical analyses. Images that met photo
quality and lesion criteria but had poor reviewer confidence were retained in analyses but
scored as negative cases to avoid artificially inflating prevalence estimates. The prevalence
of lesions (total number of dolphins with lesions/total number of dolphins with left and
right images × 100%) was calculated per year for each stock and reported as a percentage
of the total stock that was photographed.
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Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions
following the methods outlined in [28]. Useable images include examples of those that met the
criteria and could be included in statistical analyses, whereas non-useable images did not meet all
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin.

Criteria Description Useable Image Non-Useable Image

Image quality

In focus; <20◦ offset
from perpendicular;

not backlit, pixelated,
nor blurry.

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Size and number of
spots

>5 clustered lesion
spots; approximately

>20 mm in size

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Wound-related
spots

On rake marks, shark
bites, and/or pro-

peller/entanglement
wounds

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 12 
 

Table 2. Criteria used to evaluate photographs of dolphin bodies for the presence of skin lesions 
following the methods outlined in [28]. Useable images include examples of those that met the cri-
teria and could be included in statistical analyses, whereas non-useable images did not meet all 
criteria and were excluded. Red circles and arrows depict lesioned and/or wounded areas of skin. 

Criteria Description Useable Image Non-Useable Image 

Image quality 
In focus; <20° offset from 

perpendicular; not backlit, 
pixelated, nor blurry. 

 

 
 

 

Size and number 
of spots 

>5 clustered lesion spots; ap-
proximately >20 mm in size 

 

 
 

 

Wound-related 
spots 

On rake marks, shark bites, 
and/or propeller/entangle-

ment wounds 

 

 
 

 

Additional demographic data (i.e., sex) were available when dolphin photography 
was paired with remote biopsy sampling, a method to collect biological tissue that does 
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014 
were provided by the NOAA Southeast Fisheries Science Center�s Marine Mammal Mo-
lecular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined 
following the protocol outlined in [42] (Table S1). 

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for 
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion 
identification was estimated by calculating Cohen�s Kappa (K), a measure of agreement, 
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of 
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias 
effects, which can easily impact the kappa test and reduce its interpretive power [28,43]. 
Additional metrics included the prevalence index (PI; the difference in the proportion of 
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative 
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative 
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance (α = 

Additional demographic data (i.e., sex) were available when dolphin photography
was paired with remote biopsy sampling, a method to collect biological tissue that does
not require direct handling. Sex demographics on dolphins sampled from 2012 to 2014
were provided by the NOAA Southeast Fisheries Science Center’s Marine Mammal Molec-
ular Genetics lab. The sex demographics of dolphins sampled in 2022 were determined
following the protocol outlined in [42] (Table S1).

Statistical analyses were conducted in R software (v.4.1.2). All data were tested for
assumptions of normality and homogeneity of variance. Reviewer reliability in lesion
identification was estimated by calculating Cohen’s Kappa (K), a measure of agreement,
and tested for significance using a z-test (Ho: K ≥ 0.50), where K = 0 indicates a level of
agreement due to chance alone, and K = 1 or −1 indicates complete agreement or disagree-
ment, respectively. Additional metrics were calculated to account for prevalence and bias
effects, which can easily impact the kappa test and reduce its interpretive power [28,43].
Additional metrics included the prevalence index (PI; the difference in the proportion of
positive and negative cases, range 0–1; 0 = equivalent number of positive and negative
cases) [43,44], the bias index (BI; extent of disagreement between positive and negative
cases, range 0–1; 0 = absolute symmetrical agreement) [43,44], prevalence-adjusted bias-
adjusted kappa (PABAK), and Kmax. Reviewer bias effects were tested for significance
(α = 0.05) using a McNemar test, which evaluates differences in a dichotomous variable
(i.e., lesion presence) between paired subjects (i.e., reviewers). Scoring of 20% of the data
by two independent coauthor reviewers revealed high reviewer reliability (91% agreement;



Sustainability 2024, 16, 4260 6 of 12

K = 0.82; z = 12.74; SE = 0.06; CI: 0.69–0.95) with no evidence of bias effects (McNemar test;
n = 80, p = 0.06; Table 3).

Table 3. Reviewer reliability test of the level of agreement in skin lesion identification. Frequency
denotes the number of positive cases (lesion present) identified by each reviewer in the preliminary
scoring of 20% of the dataset. Cohen’s Kappa (K) indicates the level of agreement between reviewers,
accounting for chance. The Prevalence Index (PI) indicates the difference between the probability of
positive and negative cases. The Bias Index (BI) indicates the difference in the proportion of positive
cases. PABAK reflects the corrected K accounting for PI and BI. Kmax is the maximum attainable K
given the difference in the proportions of positive classifications between raters.

Frequency
Reviewer #1

Frequency
Reviewer #2 K Agreement (%) Chance

Agreement (%) PI BI PABAK Kmax

37 42 0.82 91 50 0.01 −0.06 ns 0.82 0.95
ns The McNemar test on the bias effects was not significant.

Once reviewer reliability was established, differences in the prevalence of skin le-
sions were assessed spatially (across sites) and temporally (across seasons). The overall
prevalence of skin lesions was compared between sites using a Chi-square test. Logis-
tic regression analyses were used to assess relationships between lesion prevalence and
salinity (continuous nominal measurements), water temperature (continuous nominal
measurements), season (Spring: March–May; Summer: June–August; Fall: September–
November; Winter: December–February), and sex (male, female, undetermined), when
available, across all sites. The variance inflation factor (VIF) was measured to determine
multicollinearity between variables, where VIF ≤ 1 indicates no correlation, 1–5 indicates a
moderate correlation, and >5 indicates a strong correlation for which variables should be
removed [45].

3. Results

A total of 867 unique dolphins were photographed (Table 4); after photographs were
screened for photo quality, 432 dolphins were subsequently assessed for lesions. Across
all sites, 191 dolphins were scored as positive cases, and 241 were scored as negative cases
(Table 4). Lesion prevalence was generally highest in Upper Laguna Madre, followed by
Mississippi Sound, then Redfish Bay. Seasonal variations in salinity and water temperature
are described in Figure S1. Since surveys were conducted without physically handling
dolphins, the sex of individuals is unknown except for the animals also sampled by remote
biopsy (Table S2, n = 44 dolphins).

Table 4. Number (#) of unique dolphins photographed and assessed for skin lesions. Screening
criteria were applied to generate the number (#) of unique dolphins assessed.

Site Season (Month) Year(s) # Unique
Dolphins Sighted

# Unique Dolphins
Assessed

# Positive Lesion
Cases (Prevalence %)

Redfish Bay

Summer (June)
Summer (June)
Summer (June)
Spring (May)

Fall (November)

2012
2013
2014
2022
2022

198
51
36

144
85

99
26
21
50
41

39 (39)
8 (31)
3 (14)

12 (24)
25 (61)

Upper Laguna
Madre

Spring (May)
Fall (November)

2022
2022

74
29

34
20

18 (53)
14 (70)

Mississippi Sound Winter (January)
Summer (August)

2013
2013

95
200

56
85

30 (54)
42 (49)
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Regression models indicated no collinearity concerns (all VIF values ≤ 1.5). The
prevalence of lesions was not significantly related to salinity level (z431 = −1.3, p = 0.2);
however, cumulative lesion prevalence across all seasons in high saline waters (ULM) and
low saline waters (MS) was greater than that in approximately average saline conditions
(RB) (Table 4). Lesions were observed on dolphins in all three sites and were significantly
related to season (R2

3 = 20.4, p = 0.001). In RB, lesions were significantly more prevalent in
the fall than in the spring or summer (X2

2 = 41.4, p < 0.001; Table 4). The highest prevalence
of lesions during the spring and summer months occurred in the summer of 2012 (Table 4).
A total of 36 dolphins were resighted between the 2012–2014 and 2022 survey periods in
RB, of which 7 dolphins (n2012 = 5, n2022 = 2) exhibited lesions that were only documented
in the summer of 2012 and fall of 2022. In ULM, the prevalence of lesions was higher
in the fall than in the spring, although not statistically significant (X2

1 = 1.518, p = 0.2;
Table 4). Two of the four dolphins resighted in ULM between spring and fall had lesions,
and lesions on these dolphins were only documented in the fall. In MS, more dolphins had
lesions in the winter than in the summer, although not statistically significant (X2

1 = 1.043,
p = 0.3; Table 4). Two of the five dolphins resighted in MS between winter and summer had
lesions, and lesions on these dolphins were present during both seasons. A strong negative
correlation was found between lesion prevalence and water temperature (r430 = −0.14,
p = 0.003); lesions were most prevalent on dolphins in all stocks when ambient water
temperature was the lowest (i.e., fall and winter; Table 4). No relationship was identified
between lesion prevalence and dolphin sex (z43 = 0.03, p = 0.9).

4. Discussion

Environmental conditions are becoming increasingly variable along the coastal GoM
as climate change intensifies extreme weather events. Pulses of severe weather can impose
physiological stress on apex marine organisms like dolphins, and altered conditions may
persist for long periods of time [46,47]. This study is the first to assess the epidermal
condition of dolphins across a salinity gradient that includes hypersaline levels. We
demonstrate that lesion prevalence in dolphins varies with season, seemingly more as
a factor of water temperature than salinity, although other variables may be important
predictors. Understanding the impacts of environmental variability on habitat structure,
ecosystem dynamics, and species adaptability is crucial for sustainable management and
consideration of potential human health concerns.

Skin lesions on dolphins are widespread and affect large proportions of popula-
tions around the world [21]. Dolphin skin is the first protective barrier against ambient
stressors and is sensitive to fluctuations in salinity. Hydropic degeneration (i.e., fluid
accumulation and epithelial cell swelling) resulting from prolonged exposure to salini-
ties < 10 ppt typically precedes epidermal lesions that may lead to secondary infection
and mortality [10,11,14,48]. In natural high-saline waters, however, epidermal wounds
on dolphins appear to heal faster than in average saline conditions [39], likely due to the
anti-inflammatory and anti-bacterial properties of sodium. In this study, salinity did not
exhibit a significant effect on lesion prevalence; however, a high prevalence of lesions was
observed in ULM dolphins in high-saline waters, similar to the prevalence of lesions seen in
the MS stock in low-saline waters. Additionally, the prevalence of lesions in RB during the
summer of 2012, when ambient salinity levels were nearly 38 ppt, was significantly higher
than in 2022, when salinities were 32–33 ppt. Unusually high salinities in 2012 were linked
to a La Niña event and the most severe 1-year drought in Texas’ history, which began in
2011 [49]. The high prevalence of lesions on dolphins despite high ambient salinity may
indicate that lesion development is linked to additional factors that may be exacerbated by
hypersaline conditions.

Multiple stressors acting on and within the water column may be amplified by high
salinity. For instance, the skin microbiome of dolphins is sensitive to changes in water
chemistry, and high salinities may support a unique microbial community that is conducive
to lesion proliferation. High salinity generally decreases the solubility of organic pollutants,
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which may enhance their bioavailability and affinity for lipophilic tissues (i.e., blubber)
where lesion development ensues [24,50]. With previous reports of contamination in RB
and ULM by metals, pesticides, and other organic compounds [31], it is important to
understand the potential for high salinity to amplify the toxicity of organic pollutants
and inflate lesion prevalence. Increased salinities may also intensify changes in the pH
of dolphin skin and, like human skin, contribute to the pathogenesis of skin disease [51].
With increasing environmental perturbations resulting from climate change, alterations
in water chemistry are especially important to consider. In the southwestern United
States, major weather events like La Niña are leading to increasingly hot and dry climates,
which raise salinity levels, reduce precipitation and streamflow, and increase evaporation
rates [52,53]. Estuary dewatering, upstream diversions, and industrial brine discharge
from oil, gas, and desalination plants also reduce freshwater inflow into bays, sounds, and
estuarine systems [54,55]. Understanding how high salinity adversely affects the functional
properties of dolphin skin and alters their adaptability in complex environments is crucial
for interpreting how dolphin tissue can be utilized for biomonitoring. For instance, a better
understanding of the predominant route of marine toxin accumulation in dolphin tissue
(i.e., ingestion or skin absorption) would be important for establishing the relationship
between salinity, toxin bioavailability, and subsequent trophic cascades. In regions where
marine ecotourism and fishing are important economic contributors, studies of dolphin
skin as a biomarker of environmental contaminant loads could benefit human communities
by informing policymakers on ecosystem health to promote more sustainable development.

Like salinity, rapid changes in water temperature can also have negative effects on
dolphin skin. A negative relationship between lesion occurrence and water temperature
has been found in other studies, demonstrating that lesions may be most prevalent when
ambient waters are cool [10,11]. Dolphin susceptibility to viable pathogens and disease
may be heightened in cold waters; cold-water exposure may limit blood flow to the
skin and impede immune protection, reducing epidermal cell regeneration [56]. Shifts in
the microbial community inhabiting dolphin skin during cold water exposure may also
render dolphins more susceptible to lesions and secondary diseases [57]. The decrease in
water temperature between seasons was most pronounced during the winter in MS. Five
months prior to the winter survey in MS, Hurricane Isaac inundated southern Mississippi
with >10 inches of rain [58] and drastically reduced ambient salinity levels. Cold waters
compounded by low salinity may have resulted in the patterns of observed lesions. For
example, generalized or diffuse epidermal pallor is often the first progressive stage of
freshwater exposure [1,28,48] and was most prevalent in the MS stock. The rapid input
of terrestrial contaminants into MS from storm surge may also have contributed to lesion
development. The connection between a major weather event and changes in epidermal
condition suggests the capacity of dolphin skin to reflect environmental disturbance.

Integrating archived and newly collected images of dolphins from RB provided a
holistic overview of how changes over time may influence dolphin health and reflect
ecosystem quality. In 2015, following the 2012–2014 survey period, a global oil exportation
ban was lifted, and the shipping channel adjacent to RB experienced a major influx in vessel
activity [32,33]. Progress on a multi-million dollar dredging project has since ensued to
broaden and deepen the channel to accommodate larger vessels and trade operations [33].
Large-scale channel dredging may increase the abundance of contaminants in the water
column, which can bioaccumulate in dolphin skin tissue and precede or heighten lesion
development. However, our data do not support this hypothesis. While the 2011 drought
spiked lesion prevalence in 2012, overall lesion prevalence was approximately consistent
between 2012–2014 and 2022 in RB, indicating that dolphins may have adapted to the
increasing development and port activity in the area or that the impacts of dredging were
not fully captured in the short window of survey effort conducted in 2022. Nonetheless, it
remains crucial to understand how large-scale climate changes that influence marine water
chemistry may compound the effects of dredging activities and other channel modifications
in coastal areas. The historical presence of pesticides and heavy metals like zinc and mercury
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in RB from industrial operations and superfund sites raises concerns about their continued
persistence and bioavailability in the ecosystem as a result of commercial dredging [31].

The addition of skin lesion data to fill temporal gaps in our study may add new in-
sights and help elucidate the connection between industrial activity and marine ecosystem
health. Incorporating regional precipitation data could strengthen our interpretation of the
observed shifts in salinity and water temperature that directly influence seasonal lesion
prevalence. Although images are useful tools for assessing disease in dolphin populations,
it is difficult to generalize physiological change without biological tissue. However, we
acknowledge the opportunistic nature of the study and the caveats that limit our ability to
generalize retrospective conclusions. Despite varied efforts across space and time, a conser-
vative approach was taken to mitigate biases; comparable numbers of positive and negative
cases were reported for each site cumulatively, suggesting conservative estimates of lesion
prevalence and important biological relationships relative to environmental conditions.
Future work to determine the biologically useful information that can be derived from
images and applied to free-ranging dolphin research can help identify at-risk populations
during rapid environmental change.

5. Conclusions

This study supports growing evidence that variable conditions, including salinity,
water temperature, and the compounded effects of severe weather, render dolphins sus-
ceptible to epidermal lesions. Additional variables that may influence lesion development
include organic pollutants and pH level, although the variability of these factors across sites
and their overall influence on epidermal disease in dolphins remains poorly understood.
We demonstrate the drawbacks of visual-only assessments and the challenges of elucidating
biologically important information when tissue samples are unavailable. Bottlenose dol-
phins are valuable study organisms often characterized as bioindicator species, implying
the potential for dolphin skin to be a meaningful tool in assessments of environmental
quality and dolphin physiology. Future studies of free-ranging dolphin populations are
needed to explore the complex role of multiple stressors on skin lesion development and
elucidate the potential link to human health.
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Mississippi Sound, MS (2013).
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