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Abstract: Due to a unique imaging mechanism, Synthetic Aperture Radar (SAR) images typically
exhibit degradation phenomena. To enhance image quality and support real-time on-board processing
capabilities, we propose a lightweight deep generative network framework, namely, the Lightweight
Super-Resolution Generative Adversarial Network (LSRGAN). This method introduces Depthwise
Separable Convolution (DSConv) in residual blocks to compress the original Generative Adversarial
Network (GAN) and uses the SeLU activation function to construct a lightweight residual module
(LRM) suitable for SAR image characteristics. Furthermore, we combine the LRM with an optimized
Coordinated Attention (CA) module, enhancing the lightweight network’s capability to learn feature
representations. Experimental results on spaceborne SAR images demonstrate that compared to
other deep generative networks focused on SAR image super-resolution reconstruction, LSRGAN
achieves compression ratios of 74.68% in model storage requirements and 55.93% in computational
resource demands. In this work, we significantly reduce the model complexity, improve the quality of
spaceborne SAR images, and validate the effectiveness of the SAR image super-resolution algorithm
as well as the feasibility of real-time on-board processing technology.

Keywords: SAR image; super-resolution; generative adversarial network (GAN); lightweight

1. Introduction

Synthetic Aperture Radar (SAR) serves as a sophisticated active microwave remote
sensing imaging radar system, distinguished by its capability for all-weather, round-the-
clock terrestrial observations. Spontaneously, SAR has become established as a pivotal
technological approach within the modern remote sensing domain. The operating principle
of SAR systems involves transmitting and receiving radar waves and utilizing moving
platforms (such as aircraft or satellites) to synthesize a larger virtual antenna to achieve
high-resolution (HR) images of the Earth’s surface. The technology not only possesses
the ability to penetrate the surface, offering insights through cloud layers and vegetation
cover, but also demonstrates significant resistance to interference, ensuring stable operation
under diverse environmental conditions. SAR technology plays an indispensable role
across various fields, including topographic mapping, environmental monitoring, natural
disaster assessment, agricultural yield estimation, and national security, underscoring its
unique value and crucial impact [1]. For instance, SAR technology provides essential data
support in the environmental monitoring realm by tracking forest logging, desertification
processes, and changes in sea ice. Additionally, in the aftermath of natural disasters, SAR
technology is instrumental in assessing the damage and impact of earthquakes, floods, and
landslides, thereby guiding disaster response and recovery efforts. Within the domain of
national security, SAR technology is utilized for terrain reconnaissance, target tracking, and
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the detection of concealed objectives, showcasing its key role in military surveillance and
strategic deployment.

Due to the unique imaging mechanism of SAR, the quality of the actual SAR images
obtained is associated with severe degradation phenomena such as speckle, ambiguity, and
sidelobes. The higher the quality and the richer the information content of SAR images
are, the greater the possibility and accuracy of target recognition in application interpre-
tation [2]. Therefore, obtaining HR SAR images has become one of the key objectives in
the development of SAR technology. Image super-resolution (SR) is a technological means
to improve the quality of SAR images. In the process of obtaining SAR images, there are
typically two categories of factors that lead to a reduction in the resolution of the images
obtained, thereby affecting their quality. One category is the inherent resolution limitations
of the SAR system itself, which prevent the images from achieving the desired effects,
with improvements or updates to equipment not only being costly and time-consuming but
also likely to be constrained by technological development. The other category includes the
unavoidable influences of various interference factors during the image acquisition process,
such as non-ideal movements of the platform, atmospheric disturbances, less-than-ideal
imaging conditions and system noise. Factors can cause image blurring, defocusing, and
geometric deformation, further reducing resolution and image quality. Given the difficulty
and cost of physically improving the resolution of SAR images, designing algorithms to
enhance the resolution of SAR images has become a cost-effective and feasible solution [3].
Consequently, image reconstruction algorithms aimed at increasing resolution have at-
tracted increasing attention from researchers, and enhancing image resolution has become
one of the most active research areas in the field of image processing.

SAR image SR algorithms are primarily divided into two major categories: tradi-
tional analytical methods and methods based on deep learning. Traditional analytical
approaches achieve significant results by establishing physical models of the degradation
process and employing optimization algorithms to solve ill-posed inverse problems. Free-
man et al. [4] introduced a sample-based SR analytical technique, and algorithms based on
sparse representation via compressive sensing theory have been proven effective tools for
addressing SAR image SR issues [5–7]. Karimi et al. [8] combined adaptive compressive
sensing with sparse priors to propose a new SAR image SR method based on conjugate gra-
dient least squares. However, due to the highly nonlinear models upon which traditional
analytical methods are based, they have a high computational complexity and struggle to
process HR, wide-swath SAR images, resulting in low processing efficiency. Furthermore,
the necessity for manual adjustment of model parameters for different scenes and systems
limits the adaptability of these algorithms.

Given these challenges, deep learning methodologies, which have achieved revolu-
tionary advances in various disciplines, offer an innovative solution for SR in SAR images.
Driven by large-scale sample data, deep learning approaches can achieve complex non-
linear fittings, bypassing the tedious process of mathematical modeling and parameter
selection and significantly enhancing algorithm performance and efficiency by shifting
the time cost from application to training phase. However, most existing deep learning
methods are developed within the optical image domain and may not adapt well to the
unique characteristics of SAR images when directly applied, thereby affecting the quality
improvement of the images [9–11]. Moreover, deep learning models typically have complex
structures and numerous parameters, requiring high-performance hardware platforms,
posing challenges for the deployment of spaceborne radar systems in orbit and on portable
devices. Therefore, investigating how to maintain network performance while reducing
model computational complexity, i.e., the network lightweight techniques of deep learning,
has become key to the timeliness and adaptability of spaceborne SAR image SR processing.

The primary focus of this work is the introduction of a lightweight SAR image SR net-
work, named Lightweight Super-Resolution Generative Adversarial Network (LSRGAN).
The network effectively reduces the complexity of the original Generative Adversarial
Network (GAN) model by using Depthwise Separable Convolution (DSConv) techniques.
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Additionally, we have incorporated an improved attention mechanism and introduced a
novel activation function. Ultimately, LSRGAN not only achieves a significant reduction in
the volume of model parameters (by 74.70%) but also accelerates the convergence speed
of model training while essentially maintaining the model’s original performance. The in-
novative design not only enhances the SR effects of SAR images but also provides new
technical support for the implementation of real-time, in-orbit processing techniques.

The structure of this paper is organized as follows: Section 2 provides a comprehensive
review of related work, discussing image SR methods based on deep learning and tech-
niques for lightweight networks. Section 3 introduces the proposed network architecture
and offers a detailed description of each component within the network. Section 4 presents
detailed experimental results of the proposed method and conducts a comparative analysis
with other GAN approaches in the current SAR domain. Section 5 concludes the paper.

2. Related Works
2.1. SAR Image Super-Resolution

In the realm of deep learning, methods for image SR were initially applied and
rapidly developed within the optical domain. Dong et al. [9] were the first to introduce
convolutional neural networks (CNNs) to the field of image SR, proposing the Super-
Resolution Convolutional Neural Network (SRCNN). The work marked a pivotal tran-
sition in image SR technology from traditional algorithms to deep learning approaches.
Dong et al. [10] further incorporated deconvolution layers into the SRCNN framework to
process low-resolution (LR) images, achieving a training speed increase of over 40 times
while ensuring reconstruction quality. Enhanced Deep Super-Resolution (EDSR) and
Multi-scale Deep Super-Resolution (DSR) systems proposed by Lim et al. [11] enhanced
the reconstruction effects by deepening the network structure. However, as the network
depth increased, the marginal effects on performance improvement gradually diminished.
The emergence of GAN represents a significant milestone in deep learning. The Super-
Resolution Generative Adversarial Network (SRGAN) introduced by Ledig et al. [12], which
incorporated a perceptual loss function, was able to restore realistic textures from highly
downsampled images and achieve impressive visual effects. Enhanced Super-Resolution
Generative Adversarial (ESRGAN) proposed by Wang et al. [13] further improved network
performance by comparing the relative real probabilities of SR images and HR images.
Pathak et al. [14] established an Attentional Super-Resolution Generative Adversarial
Network (A-SRGAN) to achieve SR of images on a large scale. The Deep Plug-and-Play
Super-Resolution (DPSR) designed by Zhang et al. [15], with its plug-and-play feature, can
process any blurry LR images.

SAR images differ significantly from optical images in terms of physical properties,
imaging mechanisms and image morphology, which has resulted in the deep learning-based
SAR image SR techniques still being in an exploratory phase. Shen et al. [16] proposed
the Polarimetric SAR Image Super-Resolution (PSSR) technique, which significantly im-
proved spatial resolution while preserving the detailed information of the image well.
Duan et al. [17] introduced an improved residual network that reduces redundant compu-
tation by removing the Batch Normalization (BN) layers. Li et al. [18] proposed a Feature
Reuse Dilated-Residual Convolutional Neural Network (FRDRCNN) that incorporates a
perceptual loss, achieving precise 4× semantic-level SAR image SR and, especially, showing
stronger visual effects in the SR of small objects and the reconstruction of edges and contour
information. To fully utilize the information in LR images, Xiao et al. [19] developed
an SAR image SR algorithm based on Cross-Resolution Discrimination (CRD) using a
teacher–student network concept, which not only ensures more high-frequency texture
details of HR images but also accurately achieves downsampling to the original LR images.
Li et al. [20] proposed a Multi-Scale Learning Based Optical Image Guidance Network
(MLOG) to fully utilize the feature information of HR optical images to assist in the SR of
SAR images. Wang et al. [21] applied SRGAN to SAR image SR, and experiments proved
that the reconstruction effect of this deep learning algorithm is superior to traditional
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Bicubic methods. Zheng et al. [22] introduced a Self-Normalizing Generative Adversarial
Network (SNGAN) that shows good performance in improving the resolution and object
recognition capability of SAR images. However, most existing deep learning methods
for image SR are developed in the optical domain, and their direct application to SAR
images can affect the quality improvement. Therefore, to address the issue of suboptimal
enhancement effects caused by variations in image characteristics, we have implemented
modifications to the activation functions within the Lightweight Residual Modules (LRMs)
and introduced an optimized Coordination Attention (CA) mechanism. This approach
is designed to enhance the model’s adaptability to diverse image attributes and improve
the overall processing efficacy, thereby significantly boosting the performance of image
processing tasks.

2.2. Lightweight Technology

In network models for deep learning, the pursuit of high performance often comes with
an increase in network depth or width, a process that inevitably introduces a large number
of parameters and computational complexity. The increase not only raises the requirements
for hardware platforms but also hinders the deployment of models on portable devices and
platforms with limited resources. Therefore, designing lightweight neural network models
that maintain high performance with fewer parameters becomes key to further addressing
the issue of model real-time performance.

In recent years, the emergence of lightweight neural network models and model
compression techniques has propelled the wide application of deep learning technologies
in mobile and embedded devices [23], especially playing a significant role in fields such as
smart homes, security and surveillance, and intelligent driving. Convolution, as the core
component of network models, occupies the majority of the network parameters. There-
fore, lightweight processing of convolution modules is crucial for achieving and overall
lightweight network model. Early lightweight models [24–27] used DSConv and group
convolutions, where DSConv [28] significantly reduces the network’s parameter count and
computational complexity, showing a great effect in model compression. Further research,
such as the lightweight asymmetric DSConv network proposed by Wang et al. [29] and the
lightweight precision convolution based on DSConv by Jang et al. [30], demonstrated the
potential of networks to enhance feature extraction capability while maintaining efficient
computation. Additionally, group convolutions [31], by decoupling standard convolutions,
improved the sparsity between filters, thereby achieving a reduction in model parameters
and a regularization effect. With the introduction of attention mechanisms, the performance
of lightweight network models has been further improved. The new lightweight network
based on multi-attention mechanisms (LACN) established by Fan et al. [32] effectively
extracted detailed features and suppressed noise, while the VLESR method proposed by
Gao et al. [33] better propagated and fused local features, thereby enhancing image quality.
Despite the limitations in depth and channel count that may lead to decreased performance
and limited feature expression capability compared to general CNN models, the design of
dynamic convolutions [34] seeks a balance between network performance and computa-
tional load without increasing network width and depth by merging multiple convolution
kernels to enhance the model’s feature expression capability.

In the field of image SR, efforts to reduce the computational complexity and save stor-
age space have led to the exploration of lightweight SR networks [35–37]. Guo et al. [38] pro-
posed a Lightweight Multi-Dimension Feature Fusion Network (LMDFFN) for optical
image SR, which maintains high reconstruction quality with fewer parameters and re-
duced computational complexity. Shi et al. [39] introduced a dual-prior network for
optical remote sensing image SR, showing better reconstruction effects under multiple
degradation factors but with a significant increase in the number of parameters as the
iteration number increases, necessitating a balance between algorithm performance and
computational efficiency. Shen et al. [40] presented a Reparameterizable Multibranch
Bottleneck Network (RMBM-MC) for lightweight optical image SR, achieving better SR
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effects with very low parameter counts and efficient deployment of edge computing de-
vices. Xu et al. [41] proposed a Structure Preservation Super-Resolution Reconstruction
Network (SP-SRNet) algorithm for satellite SAR images, utilizing a lightweight deep CNN
to extract image gradient map features, providing more structural information for the
SR network, and designing an objective function comprised of pixel loss and gradient
loss for network optimization. Zhang et al. [42] implemented SAR image SR using the
lightweight network SqueezeNet [24], achieving considerable reconstruction effects with
reduced computational complexity.

With the rapid development of lightweight technologies, preliminary successes have
been achieved in fields such as optics. In contrast, the research on lightweight technologies
in the radar domain is still in its infancy. Therefore, this study designs and implements a
novel plug-and-play LRM aimed at providing new technical support for real-time on-board
processing technologies for spacebore SAR.

3. Method

In this section, we present the overall architecture of the proposed network and
elaborate on the optimization strategies and methods for several key components within
the network structure. Furthermore, we also provide detailed descriptions of the loss
function’s composition and its calculation methods. The research focuses on SR tasks
for SAR images and aims to enhance the network’s capability in feature extraction and
utilization through advancements in the network structure, while maintaining a relatively
low model complexity. The following sections detail the design philosophy of each part
and their roles in improving network performance.

3.1. Network Structure

The overall network architecture of the LSRGAN method primarily comprises two
core components: the Generator Network (G) and the Discriminator Network (D). Through
a dynamic “game process”, both networks conduct an alternating optimization strategy,
allowing for gradual improvements in their respective performances throughout the op-
timization process. The interaction and balance between G and D are critical in driving
the continuous self-optimization and performance enhancement of LSRGAN during the
iterative process. Importantly, the dynamic balancing mechanism ensures that the network
effectively addresses various challenges during iterations, culminating in the HR generation
of target SAR images.

As shown in Figure 1, the core design of G comprises the LRM and CA modules.
The LRM is a low-requirement and low-computational network component developed
based on the concept of DSConv [25,26]. The component efficiently extracts both shallow
and deep features from LR SAR images and features strong transferability, facilitating
plug-and-play application for model compression of various network models. The use of
BN layers to standardize data distribution across layers is a conventional practice in CNNs.
The method utilizes batch-wise mean and variance for feature normalization during the
training phase and employs the estimated mean and variance from the training set during
the testing phase. However, significant statistical differences between the training and test
sets may impede the generalization capability of network models, especially in image SR
tasks where the use of BN layers can also deteriorate the contrast information of images.
Without BN layers, training becomes challenging, leading to the risk of the network getting
stuck in local optima and failing to converge. Therefore, in our G, redundant BN layers
have been tactically removed to ensure rapid convergence and improved output quality,
as elaborated in Section 3.2 of the paper. Additionally, to further enhance the network
performance, the CA module is introduced. The module employs two one-dimensional
feature encoding processes along different directions, generating feature maps capable of
directional and positional perception. These feature maps complementarily enhance the
representation of targets of interest, with a detailed description provided in Section 3.3.

In G, the relationship between the LR and HR SAR image is expressed as follows:
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ϑ̂G = arg min
1
N

N

∑
n=1

lSR(GϑG (ILR
n ), IHR

n ); (1)

in this framework, ILR ∈ ℜw×h×C and IHR ∈ ℜW×H×C represent the LR and HR SAR
images, respectively, where w and h signify the width and height of ILR and W and H signify
the width and height of IHR, assuming an SAR image comprises C color channels. GϑG
is a feedforward neural network parametric by ϑG, where ϑG = {W1:L; b1:L} encapsulates
the network weights and biases across L layers. These parameters are refined through the
minimization of the SR loss function lSR. Furthermore, IHR

n and ILR
n represent the training

data pairs of the nth set of LR and HR SAR images, n = 1, . . . , N.

Figure 1. Schematic diagram of the Generator Network structure with corresponding kernel size,
number of feature maps, and stride.

As shown in Figure 2, D adopts a CNN as its foundational architecture, integrating
DSConv within its intermediate layers to reduce the model’s parameter and computational
complexity. Moreover, to mitigate the issue of gradient vanishing that may arise during
the training phase, the network incorporates Leaky Rectified Linear Unit (LeakyReLU)
activation functions. When an input image is processed through a convolutional layer with
a stride of 2, the dimension of the output image is correspondingly reduced. Following this,
the number of feature maps supplied to the next convolutional layer is increased to twice
that of the previous layer. The methodology not only reduces the spatial dimensions of the
image but also significantly enhances the feature extraction capability of the network.

Figure 2. Schematic diagram of the Discriminator Network structure with corresponding kernel size,
number of feature maps, and stride.

Following the definitions provided by Goodfellow et al. [43], we construct D, which
is alternately optimized with G to address the max–min problem encountered in the
adversarial process. The objective function of LSRGAN is expressed as follows:
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min
ϑG

max
ϑD

EIHR∼ptrain(IHR)[logDϑD (IHR)] +EILR∼pG(ILR)[log(1 − DϑD (GϑG (ILR)))]. (2)

D and G constitute two independent network architectures. In Equation (2), the inner
maximization part defines the objective function of D and essentially involves learning
and optimizing ϑD while keeping ϑG fixed aiming to maximize the differentiation between
HR SAR images and SR SAR images. Another aspect of the outer minimization part
of Equation (2) defines the objective function of G, aimed at optimizing ϑG under the
condition that ϑD remains unchanged, to generate SR SAR images that closely approximate
HR SAR images. Therefore, through the cyclic iteration and mutual adverse optimization
strategies of ϑD and ϑG during the training process, the networks promote each other’s
improvement, ultimately training a G network capable of deceiving D, thereby solving the
image SR problem.

In traditional methods, the loss function of G typically employs the Mean Squared
Error (MSE), a method that calculates the loss at the pixel level. However, the approach can
lead to blurred images, thereby losing high-frequency detail information. In contrast, the
loss calculation at the feature level takes into account the structural information of images,
such as edges and shapes. Constraining the SR and HR SAR images at the feature level
effectively prevents the blurring of reconstructed images, thereby enhancing their visual
perceptual quality. Ledig et al. [12] proposed a perceptual loss function that consists of two
components: content loss and adversarial loss. Content loss is used to constrain consistency
between SR and HR SAR images at the feature level, while the adversarial loss is a common
form in GANs. This is discussed in detail in Section 3.4.

3.2. Residual Module Improvements

In recent years, CNNs have made significant progress across various fields. As re-
search into these networks progresses, scholars have discovered that the capability of the
network to extract features is determined by the number of layers in the network. However,
during the process of increasing the number of network layers, a phenomenon known as
network degradation occurs, where the loss function value during training progressively
declines and tends toward saturation, but when the depth of the network is further in-
creased, the numerical value of the loss function paradoxically begins to rise, resulting in
difficulties in network convergence and diminished performance. In 2015, the Residual
Network (ResNet) achieved groundbreaking results in the ImageNet competition, success-
fully addressing the issue of network degradation. ResNet incorporates residual modules
with skip connections that pass input directly to the subsequent layer, enabling deeper
network structures and reducing the risk of overfitting.

In the deep neural field, the overarching research trend is to construct deeper and
more complex network architectures to enhance performance [44]. However, alongside the
pursuit of task completion accuracy, the parameter count and computational complexity of
network models are key considerations in the design process. In real-world applications,
such as autonomous vehicles, mobile device utilization, and satellite technology, there is
often an aim to achieve the highest possible accuracy within the constraints of limited
computational resources [45]. Consequently, designing lightweight networks becomes a
challenge, especially in the context of spaceborne radar’s need for real-time processing
of SAR images. The objective is to ensure that the model is compact while maintaining
excellent network performance. We adopt the SRGAN as the foundational framework,
selecting its G as the core structure. The feature extraction portion of G utilizes the classic
architecture of ResNet. To reduce the network’s parameter count and computational
complexity, we introduce improvements to the residual block. The core strategy leverages
the conceptual framework of the MobileNet series by incorporating DSConv into the
network architecture with specific optimizations, thereby constructing a plug-and-play
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LRM. The goal is to reduce the network model’s reliance on computational resources and
to enhance its convergence speed.

3.2.1. Depthwise Separable Convolution

The concept of DSConv was first introduced in [28] and has become a hallmark in
the design philosophy of the MobileNet series of lightweight network models. As shown
in Figure 3, the novelty of the structure lies in decomposing the standard convolution
operation into two distinct processes: depthwise convolution and pointwise convolution.
Specifically, depthwise convolution applies a filter to each input channel individually for
feature extraction, followed by pointwise convolution that fuses these features on a per-pixel
basis, thereby decomposing the convolution operation. Compared to standard convolutions
that apply filters to all input channels simultaneously for feature extraction and fusion,
the decomposition strategy of DSConv significantly reduces the model’s parameter count
and computational resource consumption while largely maintaining network performance.
This offers an efficient structural optimization strategy for lightweight network design. Such
optimization is especially valuable and widely applicable for deploying network models
on resource-constrained devices, particularly in scenarios requiring real-time processing
and low-power operation.

Figure 3. Convolution structure, it includes both standard convolution and depthwise separable
convolution. In the illustration, the left and right sides represent the input and output images
respectively. The input image displays different channels in red, green, and blue, while the output
image is shown in yellow. The central part of the diagram elaborately depicts the core transition
process from standard convolution to depthwise separable convolution.

A feature map F of size SF × SF × M is input into a standard convolution layer, which
outputs a feature map T of size ST × ST × N. In the formulation, SF and ST represent
the width and height of feature maps F and T, respectively, while M and N denote the
input and output channel counts of the network model. The standard convolution layer is
parameterized using a convolution kernel K with dimensions (SK × SK × M × N). The com-
putation process for the output feature map is defined as follows:

Tk,l,n = ∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m; (3)

then, the calculation of the parameter count for standard convolution is given by the following:
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SK × SK × M × N × SF × SF. (4)

The introduction of DSConv alters the traditional interaction pattern between the
number of output channels and the convolution kernels. In DSConv, each input channel
corresponds to an independent convolution. Therefore, the output mapping computation
process for the DSConv layer is defined as follows:

T̂k,l,m = ∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m, (5)

where K̂ is the depthwise convolution kernel of SK × SK × M and the mth convolution
kernel in K̂ is applied on the mth channel to generate the mth channel on the convoluted
output feature map T̂; the calculation of the parameter count for depthwise convolution is
as follows:

SK × SK × M × SF × SF; (6)

to generate new features, it is necessary to utilize 1 × 1 pointwise convolutions in conjunc-
tion, enabling the output of linear combinations of features. Consequently, the computa-
tional cost of DSConv is calculated as follows:

SK × SK × M × SF × SF + M × N × SF × SF; (7)

that is, the computation of DSConv is the sum of depthwise convolution and pointwise
convolution computation.

From Equations (4) and (7), we have

SK × SK × M × SF × SF + M × N × SF × SF
SK × SK × M × N × SF × SF

=
(SK × SK + N)× M × SF × SF
SK × SK × M × N × SF × SF

=
1
N

+
1

S2
K

;

(8)

here, the number of channels is typically large, rendering the effect of 1
N negligible. Con-

sequently, compared to standard convolution, the computational cost of DSConv can be
by approximately S2

K times. In this study, DSConv is applied not only to enhance residual
blocks but also to compress the parameter count of D.

3.2.2. SeLU Activation Function

The activation function in networks serves as a functional transformation between the
input and output layers, aiming to enhance the model’s expressive power by introducing
non-linearity. The widely used Rectified Linear Unit (ReLU) activation function is favored
for its low computational complexity and effectiveness in mitigating issues like overfitting,
gradient vanishing, and gradient explosion. However, ReLU can cause a gradient vanishing
when the input values are negative, preventing model parameter updates. Consequently,
researchers have proposed several variants of ReLU, such as Parametric Rectified Linear
Unit (PReLU), LeakyReLU, and Scaled Exponential Linear Unit (SeLU), etc., which can
circumvent the gradient vanishing issue. In the task of SR of optical images, networks
typically use ReLU or PReLU as the activation function. However, analysis of the spatial
dimension reveals that the scattering information in SAR images exhibits characteristics
of point-like discreteness, and the observational dimension dependencies indicate that
SAR images possess discontinuities, such as flickering. These characteristics are markedly
different in optical images.

Klambauer et al. [46] introduce the SeLU activation function, which incorporates a
self-normalizing mechanism. The mechanism automatically adjusts the mean and variance
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of the network’s outputs to be close to 1 during the training process, effectively mitigating
the issue of network adaptability caused by the excessive disparity in scattering infor-
mation within SAR images. When the input to the SeLU is negative, its output exhibits
exponential growth. Conversely, for positive inputs, the output approximates linear growth.
At near zero input values, the output of the SeLU approximately follows a Gaussian dis-
tribution, which contributes to enhancing the generalization capability of the network.
The mathematical expression for the SeLU is as follows:

SeLU(x) =

{
λx i f x > 0,
λα(ex − 1) i f x ≤ 0,

(9)

here,
λ = 1.0507009873554804934193349852946,

α = 1.6732632423543772848170429916717.
(10)

3.2.3. Lightweight Residual Module

The DSConv technique decomposes the standard 3 × 3 convolutional kernels into
a layer of 3 × 3 depthwise convolution and a layer of 1 × 1 pointwise convolution, fun-
damentally changing the parameter computation in convolutional operations from tradi-
tional multiplicative accumulation to additive accumulation between two separate terms.
The technology significantly reduces complexity of the model, not only decreasing the
storage space required on hardware platforms but also effectively enhancing computational
efficiency. It holds substantial practical application value in optimizing deep learning
models and their efficient computation.

Inspired by the DSConv technology, we have designed a novel LRM that reduces
network complexity by utilizing DSConv without BN layers, making the module more
suitable for SR tasks. Furthermore, by replacing all activation functions within the module
with SeLU, which specifically introduces a self-normalizing mechanism, the mechanism
can automatically adjust the mean and variance of the network outputs during the training
process. The enhanced network configuration, when combined with residual connections,
not only facilitates efficient information transmission within deep networks but also im-
proves the network’s adaptability to SAR images, while mitigating problems related to
gradient explosion and vanishing during network training. As shown in Figure 4, the in-
clusion of a CA module at the end of the LRM (see the study in Section 3.3) provides the
module with computational efficiency and storage convenience while maintaining or even
enhancing model performance. This renders it appropriate for implementation on devices
with constrained resources, striking an effective balance between processing speed and
output quality.

Figure 4. Lightweight Residual Module; DWConv, and PWConv are depthwise convolution and
pointwise convolution, respectively.
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3.3. Coordinate Attention

In the realm of deep learning, attention mechanisms emulate human visual and cogni-
tive systems, enabling CNNs to focus on parts of the input data that are closely related to
the task at hand. The essence of the mechanism lies in the efficient utilization of limited
information resources by emphasizing key feature information while suppressing less
relevant details, thereby enhancing the network model’s feature extraction and recognition
capabilities. Specifically, by incorporating attention mechanisms, CNNs are capable of
automatically identifying and prioritizing crucial information within the input data, which
significantly boosts the network’s performance and generalization ability. In recent years,
a vast array of attention mechanisms has been proposed and extensively integrated into
network architectures for executing a variety of tasks. For the design of lightweight net-
works, researchers generally prefer the Squeeze-and-Excitation (SE) [47] module. However,
SE primarily focuses on interactions between channels and often neglects processing key
spatial location information crucial for understanding object structures in visual tasks.
Although attention mechanisms such as Bottlenet Attention Module (BAM) [48] and Con-
volutional Block Attention Module (CBAM) [49] attempt to capture positional information
by applying convolution operations after reducing channel dimensions, the approach only
enables the extraction of local relationships and is insufficient for capturing long-range
dependencies, which becomes a limitation when dealing with complex visual tasks.

Hou et al. [50] introduced a Coordinated Attention (CA) mechanism tailored for
lightweight networks, aimed at decomposing channel attention into two unidirectional fea-
ture encoding processes that aggregate features along distinct spatial directions. The method-
ology not only captures long-range dependencies along a particular spatial direction but
also preserves precise positional information in another direction. Consequently, the feature
maps extracted via convolution are effectively encoded into a pair of attention maps with
directional and positional awareness, thus enhancing the network’s ability to accurately
retain critical feature information. Considering the potential negative impacts of BN layers
on super-resolution tasks, we have optimized the CA module as depicted in Figure 5.

Figure 5. Coordinate Attention module.

The CA module applies global average pooling along the width and height dimen-
sions of the input feature map, thereby obtaining feature maps for these two dimensions.
The process facilitates the capture of attention along the height and width of the image and
encodes precise positional information. Specifically, for the input feature map X, horizontal
and vertical features are encoded by applying pooling operations with kernel sizes of (H, 1)
and (1, W), respectively. Consequently, the representation of the cth dimension feature
along the width and height directions can be described as follows:
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zh
c (h) =

1
W ∑

0≤i<W
xc(h, i),

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w),

(11)

where zc is the output that is associated with the cth channel.
The process outlined above generates a pair of feature maps with directional awareness

capabilities, significantly enhancing the network’s accuracy in locating objects of interest.
Subsequently, these two feature maps, oriented in different directions, are concatenated to
form an aggregated feature map. The map is then transformed by a convolution function
F1, which uses a 1 × 1 kernel, reducing its dimensionality to C/r of the original dimension.
In the context of SE, the parameter r denotes the reduction ratio, which governs the extent to
which the dimensionality of the module is reduced, as depicted in the following expression:

f = δ(F1([zh, zw])), (12)

in the equation provided, [·, ·] denotes a concatenation operation along spatial dimensions,
and δ represents a nonlinear activation function. Here, f ∈ RC/r×(H+W) is a feature map of
dimensions, which encodes spatial information in both horizontal and vertical directions.
The feature map f is decomposed along the spatial dimensions into two independent
tensors, fh ∈ RC/r×H and fw ∈ RC/r×W . Subsequently, each tensor is processed by utilizing
convolution transformation functions Fh and Fw with 1× 1 convolution kernels. The specific
processing steps are outlined as follows:

gh = σ(Fh(f
h)),

gw = σ(Fw(fw)),
(13)

where σ is the sigmoid function. Ultimately, the output of the CA module is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j). (14)

3.4. Loss Function

The loss function of the LSRGAN method still consists of two parts: the weighted sum
of content loss lSR

con and adversarial loss lSR
adv, specifically as follows:

lSR = lSR
con + 10−3lSR

adv; (15)

here, the mathematical expressions for the lSR
con and lSR

adv are as follows:

lSR
con =

1
Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(ϕi,j(IHR)x,y − ϕi,j(GϑG (ILR))x,y)
2,

lSR
adv =

N

∑
n=1

−logDϑD (GϑG (ILR)),

(16)

where ϕi,j denotes the feature mapping of the jth convolution layer before the ith pool-
ing layer in the network, DϑD (GϑG (ILR)) is the probability that the reconstructed image
GϑG (ILR) is a natural HR image. To obtain a better gradient, minimize −logDϑD (GϑG (ILR)).

4. Experiments
4.1. Software and Hardware Configuration

High-performance computing hardware can significantly reduce the training time
required for neural network models and enhance the speed of model convergence. When
these hardware configurations are paired with suitable deep learning frameworks, further
improvements in overall model performance may be achieved. In our study, we train
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the relevant network models on a computer hardware system equipped with an NVIDIA
GeForce RTX 3080 GPU using the dataset constructed in this paper. For each mini-batch,
we crop 16 random 88 × 88 HR SAR sub-images of distinct training images, and the loop
is executed 500 times, i.e., epoch = 500. To optimize the training process, we use the
Adam optimizer [51], maintaining its default parameter settings (β1 = 0.9, β2 = 0.999
and lr = 0.001). All experiments are conducted on a computer with a 64-bit Windows
11 operating system, supported by software including Pytorch 1.12.0, CUDA 11.6, and
Python 3.8.

4.2. Evaluation Indicators

In this study, five significant objective metrics for image quality assessment, Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Visual Information Fi-
delity (VIF), Equivalent Numbers of Looks (ENL), and Radiometric Resolution (RaRes), are
selected to objectively evaluate the efficacy of SR algorithms for SAR images. PSNR mea-
sures the degree of distortion in processed images by calculating the differences between the
original images and the processed results, mainly reflecting the maximum possible error in
the signal. SSIM analyzes and compares the original and processed images from the multi-
dimensional aspects of image luminance, structural information, and contrast, representing
an image quality assessment method that closely aligns with human visual perception. VIF
quantifies the degree image improvement by computing mutual information between the
original and the processed images. ENL assesses the relative strength of speckle within SAR
images. RaRes evaluates the capability of SAR images to distinguish between objects based
on the radiometric quality of individual pixels. These metrics are widely used in fields
such as SR and image compression, providing a scientific basis for quantitative analysis
and comparison of the effects of different image processing algorithms.

PSNR is defined based on the MSE; for HR SAR images (IHR) and SR SAR images
(ISR) of size m × n, the MSE is calculated as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[IHR(i, j)− ISR(i, j)]2; (17)

then, the mathematical expression for its PSNR is

PSNR = 10log(
MAX2

MSE
) = 20log(

MAX√
MSE

), (18)

where MAX is defined as the maximal feasible pixel value of the IHR, with the PSNR being
expressed in dB. A greater PSNR value indicates improved quality of the reconstructed
image and enhanced similarity between the two SAR images.

SSIM evaluates the similarity between the IHR and ISR based on three fundamental
characteristics: luminance, structural information, and contrast. Essentially, it is a statis-
tical method capable of effectively reflecting the overall structural similarity of images.
The mathematical representation is as follows:

SSIM(x, y) = l(x, y)α · s(x, y)β · c(x, y)γ; (19)

here, x and y symbolize IHR and the ISR, respectively. l(x, y) is indicative of luminance
comparison, s(x, y) encapsulates the comparison of structural information, and c(x, y)
represents the contrast comparison. The coefficients α, β, and γ are utilized to modulate the
prominence of luminance, structural information, and contrast within the SSIM framework.
When all α, β, and γ are set to 1, the following relationship holds:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
, (20)
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where µx and µy represent the means of x and y and σx
2 and σy

2 represent the variances
of x and y, respectively. σxy denotes the covariance between x and y, c1 = (k1L)2 and
c2 = (k2L)2 are constants for maintaining stability (here k1 = 0.01, k2 = 0.03, and L are the
dynamic ranges of the pixel values). The greater the similarity between IHR and ISR is,
the closer the value of SSIM approaches 1 (SSIM ∈ [0, 1]).

The VIF index is a full-reference image quality assessment metric that is based on the
statistics of natural scenes and the extraction of image information by the Human Visual
(HVS). It has strong consistency with human judgments of visual quality. The fundamental
concept underlying VIF is to view image quality assessment as an issue of information
fidelity, quantifying and assessing the quality of an image from the perspectives of in-
formation transmission and sharing. In the VIF algorithm, I(Cr; F | zr) and I(Cr; E | zr)
represent the information extracted from specific sub-bands of the original and processed
images, respectively, by the HVS model. Assuming each wavelet sub-band is independent,
the mutual information is extended across K-bands and summed to produce the objective
VIF score. The specific mathematical computation is as follows:

VIF =
∑K

k=1 I(Ck
r ; Fk | zk

r )

∑K
k=1 I(Ck

r ; Ek | zk
r )

; (21)

here, K represents the number of sub-bands, while I(Ck
r ; Ek | zk

r ) and I(Ck
r ; Fk | zk

r ) are the
mutual information measurements for the kth sub-band, respectively. The value of the VIF
index ranges from 0 to 1. A higher VIF value indicates that the processed image retains
more visual information, thereby denoting a higher image quality.

ENL is a metric used to quantify the uniformity of smooth regions. In the SAR domain,
the metric is employed to assess the relative strength of speckle noise in SAR images.
Specifically, ENL reflects the visual smoothness of uniform regions within the image. It can
be expressed as follows:

ENL =
µ2

σ2 ; (22)

herein, µ and σ2 represent the mean and variance of pixel intensity values in uniform areas,
respectively. A higher ENL value indicates lower noise levels in SAR images, resulting
in clearer images that facilitate more accurate visual identification and interpretation of
SAR imagery.

RaRes represents the ability of SAR systems to differentiate target backscatter coeffi-
cients, serving as a measure of the SAR system’s capability to distinguish closely distributed
targets. The performance of this metric directly influences the interpretation and quantita-
tive applications of SAR images. RaRes is inversely proportional to ENL, meaning a smaller
RaRes value indicates a stronger capability of the SAR system to differentiate adjacent
targets, resulting in higher quality SAR images with greater application value. RaRes is
defined as the ratio of the absolute deviation and mean of the reflection signal within a
resolution cell relative to the mean value, which can also be expressed as follows:

RaRes = 10lg(
1√

ENL
+ 1) = 10lg(

σ

µ
+ 1); (23)

in the equation above, µ, σ, and ENL represent the mean, standard deviation, and Equiva-
lent Numbers of Looks, respectively, of the pixel intensity values in a homogeneous area.

4.3. Datasets and Materials

The MSAR-1.0 dataset [52] is an SAR image dataset targeting various scenes and
categories using data from Hisea-1 and Gaofen-3 satellites. The scenes include airports,
ports, coastal areas, islands, and urban areas, with images containing various types such
as oil tanks, bridges, airplanes, and ships as depicted in Figure 6. The dataset consists of
polarimetric SAR data, including HH, HV, VH, and VV polarization modes. The image size
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is 256 × 256, with some bridge images having dimensions of 2048 × 2048, all in JPG format
with a 24-bit depth. A random selection of 1000 images are used for training, 70 images for
validation, and 20 images for testing, and none of the image data overlapped.

Figure 6. Some examples of the MSAR-1.0 dataset.

The SSDD dataset [53] is the first widely used publicly available polarimetric SAR
image dataset for studying ship detection based on deep learning techniques. As shown in
Figure 7, it incorporates data from RadarSat-2, TerraSAR-X, and Sentinel-1 satellites. The
majority of the images in the dataset contain extremely small or tiny targets, with dimen-
sions of approximately 500 × 500 pixels. The dataset includes SAR images with simple
backgrounds and complex backgrounds. For the purpose of training, 500 images are ran-
domly selected from the SSDD dataset, 30 images for validation, and 18 images for testing.
It is important to note that none of the image data mentioned above are duplicates.

Figure 7. Some examples of the SSDD dataset.

Merging the aforementioned data, we create a dataset for SAR image SR tasks in
this paper, comprising 1500 training images, 100 validation images, and 38 testing images.
To generate the corresponding LR SAR images, we applied Bicubic to downscale the HR
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SAR images by a factor of four. The pairs of HR and LR SAR images form the essential
dataset for deploying the LSRGAN method, as depicted in Figure 8.

Figure 8. Some examples of SAR image datasets in our study.

4.4. Experimental Results

We conduct a comprehensive validation of the proposed network method, including
comparisons in simple scenarios (as shown in rows 1 and 2 of Figure 8) and complex scenar-
ios (as depicted in row 3 of Figure 8) as well as across four different types. The SAR sample
images used for testing include not only the test set constructed in Section 4.3 but also
20 randomly selected images from the remaining dataset of MSAR-1.0 for each category.
Given that the primary aim of the study is to design a lightweight SAR image super-
resolution generative adversarial network, we compare the proposed LSRGAN model with
other deep generative models in the SAR image processing domain. The comparison is
conducted through detailed analyses of both objective evaluation metrics and subjective
visual effects. The comparison methods include Bicubic, SRGAN, and SNGAN. To en-
sure the fairness of the experiment, all methods are optimized with the respective best
hyperparameters as described in the related papers.

4.4.1. Quantitative Results

Based on the existing GAN models in the SAR image SR domain, Table 1 provides
a detailed comparison of these models in terms of the parameter count, computational
complexity, time required to train for one epoch, and the time needed for a 256 × 256 SAR
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image. Tables 2 and 3 offer a comprehensive comparison of the performance of various
GAN for SR tasks on SAR datasets.

As shown in Table 1, we set up three control experiments to validate the lightweight
effects of the lightweight SR network. From the results, it can be observed that in terms
of the number of model parameters, LSRGAN accounts for only 25.29% and 25.30% of
the parameters compared to SRGAN and SNGAN, respectively, significantly reducing the
storage requirements on hardware platforms. In terms of model computational complexity,
LSRGAN reduces the computational demands by 55.93% and 55.87% compared to SRGAN
and SNGAN, respectively, effectively lessening the computational resource requirements
on hardware platforms. Additionally, LSRGAN demonstrates a clear advantage in training
time, reducing the average training duration per epoch by 0.835 s compared to the other
two models. In the model testing time, using the processing of a 256 × 256 SAR image as
an example, LSRGAN reduces the testing time by an average of 0.133 s compared to the
other models, further showcasing the advantages of this method in processing speed.

Table 1. Comparison of model complexity for GAN methods in the field of SAR image SR. G and
D represent the generator and discriminator networks, respectively. “M” denotes million, and “s”
stands for seconds. To avoid conflicts in the representation of symbols, FLOPs are also expressed in
M. The best performance is highlighted in bold.

Model
Params (M) FLOPs (M) Time

G D Total G D Total Training (s/Epoch) Testing (s)

SRGAN 0.7342 5.2154 5.9496 5782.11 6176.25 11,958.36 13.96 0.2850
SNGAN 0.7329 5.2154 5.9483 5764.81 6176.25 11,941.06 12.73 0.3040
LSRGAN 0.4405 1.0647 1.5052 4427.78 841.75 5269.53 12.51 0.2625

As shown in Table 2, our network model shows some deficiencies in certain objective
evaluation metrics. However, compared to SRGAN, LSRGAN achieves the best results in
the VIF, indicating that our approach is more aligned with human visual characteristics,
making it more suitable for the interpretation and analysis of SAR images of the human
eye. The performance enhancement is particularly notable in the processing of simple
scene SAR images. Although LSRGAN slightly outperforms in RaRes by 0.1648 in simple
scenes compared to SNGAN, it significantly surpasses SNGAN in all other objective
metrics. As shown in Table 3, a comparative analysis of four different types reveals that our
method achieves the best PSNR for ships, with average improvements of 0.0283 dB and
0.0004 dB over SRGAN and SNGAN respectively, but performs slightly below the best
values in processing oil tanks, bridges, and airplanes. In terms of the SSIM, our method
reaches the highest scores for bridges and ships but shows weaker performance for the
other two categories, with an average reduction of 0.0066. In VIF, LSRGAN achieves
excellent outcomes in most scenarios, whether in diverse background complexities shown
in Table 2 or various types of Table 3. In the ENL and RaRes, SRGAN consistently delivers
the best results, which will guide the focus of our future research efforts. Overall, as the
four types of Table 3 mostly belong to the complex scenarios of SAR images represented in
Table 2, the less favorable objective metrics performance of LSRGAN in Table 3 does not
contradict the findings from Table 2.

In summary, although LSRGAN does not achieve the highest objective evaluation
metrics in certain scenes or types, it has demonstrated notable advantages over both SRGAN
and SNGAN in terms of model complexity and the time required for image processing. It
not only mitigates the performance degradation during the model lightweight process but
also enhances the feasibility of implementing real-time on-board image SR technologies.
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Table 2. Average performance of GAN methods in the field of SR of SAR images. The metric values
are obtained by averaging the results from 20 SAR image tests for each type. A smaller RaRes
value indicates higher image quality, while for the other metrics, the opposite is true. IHR denotes
high-resolution images, with the best performance highlighted in bold.

Method PSNR SSIM VIF ENL RaRes

Simple Scene

IHR - - - 0.4630 5.0302
Bicubic 26.5843 0.7077 0.7078 0.5529 4.9240
SRGAN 28.3157 0.7321 0.7973 0.7011 4.6836
SNGAN 28.3461 0.7082 0.8058 0.6074 4.7135
LSRGAN 28.3714 0.7372 0.8070 0.6118 4.8783

Complex Scene

IHR - - - 1.0862 3.0742
Bicubic 14.9789 0.2540 0.6705 1.5348 2.9968
SRGAN 16.8135 0.3448 0.7825 1.6245 2.6399
SNGAN 16.6857 0.3366 0.7712 1.5632 2.6811
LSRGAN 16.7682 0.3396 0.7832 1.5818 2.6739

Table 3. Average performance of GAN methods in the field of SR of SAR images. The metric values
are obtained by averaging the results from 20 SAR image tests for each type. A smaller RaRes
value indicates higher image quality, while for the other metrics, the opposite is true. IHR denotes
high-resolution images, with the best performance highlighted in bold.

Method PSNR SSIM VIF ENL RaRes

Oil Tank

IHR - - - 1.0080 3.0204
Bicubic 16.1364 0.3749 0.6884 1.0299 2.9785
SRGAN 17.8200 0.4534 0.7809 1.4312 2.6675
SNGAN 17.7384 0.4422 0.7923 1.4039 2.6891
LSRGAN 17.8718 0.4467 0.7962 1.4007 2.6904

Bridge

IHR - - - 0.6062 3.6490
Bicubic 20.7981 0.4748 0.6276 0.6670 3.4722
SRGAN 23.3431 0.5908 0.7519 0.8595 3.2672
SNGAN 23.3605 0.5953 0.7615 0.7865 3.3839
LSRGAN 23.3585 0.5954 0.7662 0.7852 3.3875

Ship

IHR - - - 0.4977 4.6396
Bicubic 22.0911 0.6190 0.5620 0.5665 4.6110
SRGAN 23.0036 0.6352 0.7774 0.7041 4.2966
SNGAN 23.0315 0.6066 0.7893 0.6557 4.3163
LSRGAN 23.0319 0.6385 0.7811 0.6607 4.4063

Airplane

IHR - - - 0.6213 3.5815
Bicubic 15.6861 0.3151 0.7201 0.7509 3.3325
SRGAN 17.3837 0.3990 0.8032 0.9079 3.1526
SNGAN 16.8872 0.3709 0.7902 0.9049 3.1549
LSRGAN 17.3128 0.3926 0.8015 0.8681 3.2080

4.4.2. Qualitative Results

SAR images exhibit significant differences from the common optical images in terms
of physical properties, imaging mechanisms, and morphology. Spaceborne SAR images
feature a wide viewing range and rich texture details, suggesting that the HR SAR images
used as label samples might suffer from issues like image smoothing, blurring, and unclear
edges. The problem can contribute to lower quantitative experimental results compared to
optical images. The experimental results from Figures 9–11 demonstrate that although our
approach has much lower model complexity than the comparative methods, it achieves
comparable or even superior performance in SR experiment results across various scenes
and types of SAR images.

As shown in Figure 9, in SAR images where maritime regions occupy more than half of
the image area, all models are able to accurately restore high-frequency details of ships and
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bridges with higher objective evaluation metrics. LSRGAN achieves the best performance
on PSNR, SSIM, and VIF metrics. In contrast, for images where maritime regions occupy
less than half of the image area, the objective evaluation metrics of the models are lower.
As shown Figure 10, despite lower values in quantitative evaluation, key details such as
the edges of airplanes and oil tanks are still clearly discernible. LSRGAN records the best
results in PSNR and VIF indicating that the methodology of this work more closely aligns
with human visual characteristics and the interpretation and decoding of SAR images.
Additionally, as shown in Figure 11, the presence of diverse geographical features in islands
and harbors resulted in complex texture details, yet LSRGAN excels in PSNR, SSIM, and
VIF, providing superior subjective visual experience.

Figure 9. Visual qualitative comparison of ships and bridges on the SAR image test set. The local
magnification areas of different methods are marked with red boxes in the original image. From the
images, it is evident that the sea areas occupy more than half of the space in both images, indicating
that they are simple scenes. The best results are bolded.
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Figure 10. Visual qualitative comparison of airplanes and oil tanks in the SAR image test set.
The background of the airplane images includes airport facilities with detailed textures, categorizing
it as a complex scene. The local magnification areas of different methods are marked with red boxes
in the original image. For the oil tank images, both the sea areas and terrestrial features occupy
about half of the image area each, with these scenes to be considered either simple scenes or complex
scenes. Moreover, the values of objective evaluation metrics indicate that they fall between these two
categories. The best results are bolded.
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Figure 11. Visual qualitative comparison of islands and ports on the SAR image test set. The local
magnification areas of different methods are marked with red boxes in the original image. From the
images, it can be seen that the sea areas occupy less than half of the image area in both pictures,
indicating that they belong to simple scenes. The best results are bolded.

4.5. Ablation Studies

High-performance network models are typically proportional in complexity and re-
quire execution on hardware platforms with significant storage and computational power.
Given the unique characteristics of SAR, spaceborne radars often face the challenge of
limited resources and can only support software with low power consumption and compu-
tational capacity for real-time image processing. To explore the impact of different modules
within our proposed LSRGAN, we incrementally improve upon the standard SRGAN
model and conduct a comparative analysis of these enhancements. All models are trained
from scratch with the same setup. As shown in Table 4, to develop a lightweight SAR image
SR method, we first introduce DSConv into SRGAN. This step results in a compression of
75.57% in storage requirements and 56.22% of computational resource demands, leading to
a slight decline in model performance (see the row labeled 2nd in Table 4). While maintain-
ing a lower level of model complexity, the use of various modules has proven to enhance
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model performance (see the rows labeled 3rd and 4th in Table 4). When all modules are
implemented simultaneously, the model’s storage and computational demands are reduced
by 74.68% and 55.93%, respectively. More importantly, model performance reaches an
optimal level (see the row labeled 5th in Table 4).

Table 4. Ablation experiment results of different blocks based on SRGAN. Bold indicates best perfor-
mance.

Name
Module

Total Params (M) Total FLOPs (M) PSNR/SSIM
DSConv LRM CA

1st × × × 5.9496 11958.36 21.2916/0.4944
2nd

√
× × 1.4534 5234.23 20.1390/0.4803

3rd
√

×
√

1.5052 5170.83 21.3500/0.4997
4th

√ √
× 1.4428 5161.62 21.4156/0.4959

5th
√ √ √

1.5052 5269.53 21.5218/0.5019

We conduct an in-depth analysis of the network performance resulting from various
component combinations. As illustrated in Figure 12, at the initial stage of the training
phase, there is a sharp decrease in the loss curve. However, as the number of training
epochs increases, the decreasing trend gradually slows down and eventually stabilizes.
Through observation of Figure 13, we find that increasing the number of training epochs
and extending the training duration can assist us in achieving optimal performance for
the task.

Figure 12. Loss curves for the training of ablation experiment.

In Figure 13, we compare the variations in the PSNR and SSIM on the validation set
throughout the model improvement process. With the application of DSConv, we observe a
tendency for some convolution kernels to become null during training. The phenomenon is
primarily attributed to the ReLU activation function, which causes significant information
loss when processing low-dimensional inputs, in contrast to its minimal impact on high-
dimensional inputs. Therefore, we initially integrate DSConv into both the generator and
discriminator networks, excluding the first and last layers, to maximize model compression
despite this potentially decelerating the model’s convergence speed and impacting its
performance, as shown in 1st and 2nd in Figure 13.

Subsequently, alongside the introduction of the CA module, we remove all BN layers
from both the CA module and DSConv. While the inclusion of the CA module enhances
model performance, it also increases the model’s parameter count and complexity. The elim-
ination of BN layers conserves computational resources and memory usage without com-
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promising model performance, as shown in 2nd and 3rd in Figure 13. The adjustment
effectively balances the model’s complexity and performance, ultimately achieving a stable
and consistent performance enhancement with minimal resource expenditure. Further-
more, in the context of SR tasks, we find that models with deeper and more complex
networks, incorporating multiple BN layers, are more susceptible to artifacts. To mitigate
the occurrence of null convolution kernels in DSConv, we use the SeLU activation function
constructs of the LRM module, aimed at improving the model’s convergence speed and
generalization capability, as shown in 2nd and 4th in Figure 13.

Finally, by integrating all the improved network components, we develop the LSR-
GAN, achieving model stability at the fastest convergence rate, as demonstrated in 5th in
Figure 13. These outcomes suggest that our approach effectively leverages the correlations
between feature mappings to enhance information transfer, enabling the network to fo-
cus more on high-frequency texture details, thereby enhancing model performance while
reducing model complexity.

Figure 13. PSNR and SSIM curves for training in the ablation experiment.

5. Conclusions

We introduce a novel lightweight SAR image super-resolution GAN named LSRGAN
to tackle the challenges of high model complexity and poor reconstruction quality found
in existing deep learning-based SAR image SR methods. Specifically, we have designed a
plug-and-play LRM that leverages DSConv for effective compression of the network model.
During the initial training phase, standard convolutions are used to achieve dimension
expansion, ensuring the rich extraction of initial features. In the inference phase, the LRM
is combined with an improved CA module, achieving precise retention of key feature
information while significantly reducing the number of parameters. The method not only
ensures superior SR results but also reduces model complexity, thereby enhancing inference
speed. Extensive experimental outcomes indicate that our network significantly improves
the visual perception of SAR images, particularly in enhancing high-frequency details such
as edges and textures. Compared with existing deep generative models, LSRGAN offers
a superior balance in terms of SAR image reconstruction quality, model complexity, and
convergence speed. Moving forward, we plan to further refine the GAN model’s scale and
computational complexity to reduce the training time and hardware resource consumption
required by the network.
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