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Abstract: Underwater acoustic vector sensors (UAVSs) are increasingly utilized for remote passive
sonar detection, but the accuracy of direction-of-arrival (DOA) estimation remains a challenging
problem, particularly under low signal-to-noise ratio (SNR) conditions and complex background
noise. In this paper, a comprehensive theoretical analysis is conducted on UAVS signal preprocessing
subjected to gain-phase uncertainties for average acoustic intensity measurement (AAIM) and com-
plex acoustic intensity measurement (CAIM)-based vector DOA estimation, aiming to explain the
theoretical restrictions of intensity-based vector acoustic preprocessing approaches. On this basis, a
generalized vector acoustic preprocessing optimization model is established in which the principle
can be described as “maximizing the denoising performance under the constraints of an equivalent
amplitude-gain response and phase-bias response”. A novel vector acoustic preprocessing method
named linear matched stochastic resonance (LMSR) is proposed within the framework of matched
stochastic resonance theory, which can naturally guarantee the linear gain-phase restrictions, as well
achieving effective denoising performance. Numerical analyses demonstrate the superior vector DOA
estimation performance of our proposed LMSR-AAIM and LMSR-CAIM methods in comparison
to classical intensity-based AAIM and CAIM methods, especially under low-SNR conditions and
non-Gaussian impulsive noise circumstances. Experimental verification conducted in the South
China Sea further verifies its the effectiveness for practical application. This work can lay a solid
foundation to break through the challenges of underwater remote vector acoustic DOA estimation
under low-SNR conditions and complex ocean ambient noise and can provide important guidance
for future research work.

Keywords: underwater acoustic vector sensor (UAVS); direction-of-arrival (DOA) estimation; matched
stochastic resonance (MSR); vector acoustic preprocessing; low signal-to-noise ratio (SNR)

1. Introduction

Underwater acoustic vector sensors (UAVSs) have attracted increasing attention in
recent years for both military and civilian applications [1–3]. A single UAVS is composed
of three orthogonally oriented uniaxial “particle-velocity sensors” plus a “pressure sensor”,
all collocated in a point-like spatial geometry and, hence, can measure the full sound-field
information. Compared to a traditional pressure sensor array, a vector acoustic sensor array
can be seen as an extended array with several times the number of array elements with the
same size [4]. Therefore, array signal processing techniques were initially developed for
vector acoustic sensor arrays, such as conventional beam forming (CBF), multiple-signal
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classification (MUSIC), minimum-variance distortionless response (MVDR), estimation of
signal parameters via rotational invariance technique (ESPRIT), etc. [5–9].

A AVScan be regarded as a point-space array. This merit can overcome the disadvan-
tage of conventional arrays with a large aperture size and can enable estimation of both
elevation and azimuth without left–right ambiguity, particularly for underwater very-low-
frequency (VLF) remote passive sonars. Accordingly, single UAVSs have been ubiquitously
applied in small underwater platforms, such as gliders, ocean bottom seismometers (OBSs),
subsea latent buoys, and other ocean-monitoring equipment [10–13]. As a consequence, a
sizable amount of the literature has focused on the application of single UAVSs in recent
years, mainly with respect to vector acoustic DOA estimation [3,4,14–22]. From the point of
view of methodology, there are three kinds of directions for single-vector acoustic DOA
estimation, namely array signal processing-based methods and intensity-based methods.
Array signal processing-based techniques like CBF, MVDR, ESPRIT, and MUSIC can be ini-
tially adopted with consideration of a point-space array [14–16,23]. However, the different
signal-to -noise ratios (SNRs) of vector channels may corrupt the signal subspace, which
leads to performance degradation when using the method under lower-SNR circumstances.
Several studies have utilized higher-order statistics for preprocessing. Agarwal et al. [24]
employed higher-order statistics that can increase the sound-source count estimation in
utilizing a single UAVS. Zhang et al. [25] proposed a high-resolution ESPRIT algorithm
for single-UAVS DOA estimation. The algorithm is based on higher-order cumulants
with Gaussian noise suppression characteristics so that the estimation accuracy can be
improved at lower SNRs. This method is essentially an improved array signal processing
technique; the main idea is to adopt a denoised preprocessing method. Wang et al. [26]
proposed a learning soft mask with DNN and DNN-SVM for multi-speaker vector acoustic
DOA estimation. It can accurately extract TD-TFPs under different background noise and
reverberant conditions, while this method was developed to solve the problem under
high-SNR conditions. The intensity-based methods can generally be classified into two
major categories, namely average acoustic intensity measurement (AAIM)-based methods
in the time domain and complex acoustic intensity measurement (CAIM)-based methods
in the frequency domain [4]. Related research has lasted for a long time. Experimental
comparisons and verifications have shown that CAIM-based methods have more potential
compared with array signal processing-based methods and intensity-based methods [15].
Since acoustic intensity measurement-based algorithms are proposed for zero mean and
uncorrelated background noise, these methods are generally limited under higher-SNR
conditions and ideal white Gaussian noise (WGN) backgrounds. Therefore, for practical
application requirements, the CAIM method still suffers to low accuracy, especially for
remote targets that correspond to lower-SNR and complex ocean ambient noise conditions.

To ease this problem, a weighted bar graph statistics-based CAIM method named
WCAIM was proposed that can achieve better vector acoustic DOA estimation perfor-
mance [15]. Zhong et al. [27] utilized the particle-filtering approach to vector acoustic
DOA estimations, which can improve the accuracy performance for the sake of tracking
processing. Similarly, Gunes et al. [28] utilized a Bernoulli filter and random finite sets to
reprocess vector acoustic DOA estimations for better tracking. Chen et al. [29] proposed a
source-counting method of vector acoustic DOA histograms for multi-source distinguish-
ing. It can certainly improve the estimation performance due to its statistical property,
while it essentially cannot solve the low-SNR problem, as it is a post-processing approach.
Such methods can be regarded as post-processing methods, as they reprocess the DOA
estimation outputs within a period of time to decrease the estimation error. However, these
post-processing methods cannot essentially solve the poor accuracy performance under
low-SNR circumstances. Therefore, several researchers have focused on preprocessing ap-
proaches. Zhao et al. [17] proposed an improved vector DOA estimation method utilizing
matched filter preprocessing, which is considered to achieve the best output under a WGN
background. However, this method can only be utilized with strictly defined prior informa-
tion in active sonar systems. Stinco et al. [3] considered modulation analysis to determine
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the signatures in broadband propellers’ cavitation noise and proposed XC-DEMON and
TF-DEMON to represent the intensity vector with DEMON preprocessing. Nevertheless,
DEMON preprocessing can improve the clarity of ship features, while it is unable to process
the received signal under low-SNR conditions. Cao et al. [30] utilized machine learning
approaches to improve AVS-DOA estimation performance. However, the limited sample
data restrict its generalization for real applications. Dong et al. [31] proposed a novel con-
volution (COV)-based single-vector acoustic preprocessing method that can improve vector
acoustic DOA estimation performance. However, the improvement is limited in terms of
filtering effect. It also suffers from degraded performance under complex non-Gaussian
background noise. In view of the above analyses, to solve the problem of low-SNR vector
acoustic DOA estimation, vector acoustic preprocessing with superior noise suppression
performance should be adopted. In view of the possible influence of preprocessing methods
on vector DOA estimation, the following two problems are worth studying:

(1) What are the theoretical restrictions of preprocessing methods for vector DOA
estimation?

(2) How can vector acoustic DOA estimation performance be improved under low-SNR
conditions and complex background noise?

Stochastic Resonance (SR) is an exciting nonlinear physical phenomenon in which the
output of received noisy signals can be greatly enhanced under low-SNR conditions. It has
been proven effective for weak-signal detection, particularly under low-SNR conditions
and complex non-Gaussian background noise. Therefore, it has attracted considerable
attention in a variety of research fields [32–35]. In our previous work, a matched stochastic
resonance framework was proposed for remote passive sonar detection [35–38]. This work
can effectively improve weak-signal detection performance, especially under low-SNR
circumstances. Therefore, we further employed a particular parameter-tuning method
with a classical bistable stochastic resonance model for vector acoustic DOA estimation,
which can effectively improve AAIM estimation performance [20]. This work preliminarily
demonstrated that preprocessing using bistable stochastic resonance can enhance vector
acoustic DOA estimation under low-SNR conditions. However, it was simply realized by
single adjustment of the system potential parameter (b) and keeping the system potential
parameter (a) constant.

In view of the abovementioned research, in this paper, a comprehensive theoretical
analysis is conducted on UAVS signal preprocessing subjected to gain-phase uncertainties
for AAIM- and CAIM-based vector acoustic DOA estimation, aiming to establish a gener-
alized vector acoustic preprocessing optimization model. A novel preprocessing method
named linear matched stochastic resonance (LMSR) is proposed, which can achieve a supe-
rior vector DOA estimation performance under low-SNR conditions and Lévy impulsive
noise circumstances. The main contributions of this work can summarized as follows:

(1) A generalized vector acoustic preprocessing optimization model is established in a
comprehensive theoretical analysis of UAVSsignal preprocessing, which indicates
that the gain-phase constraints for vector DOA estimation are independent of the P
channel.

(2) A novel preprocessing method named linear matched stochastic resonance (LMSR)
is proposed within the framework of matched stochastic resonance theory, which
can naturally guarantee linear gain-phase restrictions, as well as achieving effective
denoising performance.

(3) Superior vector acoustic DOA estimation performance is achieved in comparison
with classical intensity-based AAIM and CAIM methods, especially under low-SNR
conditions and non-Gaussian impulsive noise circumstances.

(4) This work can lay a solid foundation to break through the challenges of underwater
remote vector acoustic DOA estimation under low SNR and complex ocean ambient
noise and can provide important guidance for future research work.
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The rest of this paper is arranged as follows. In Section 2, the generalized vector acoustic
preprocessing optimization model is presented in a comprehensive theoretical analysis
on AVSsignal preprocessing subjected to gain-phase uncertainties. In Section 3, the lin-
ear matched stochastic resonance (LMSR) method is proposed, and its implementation
algorithm is presented within the framework of matched stochastic resonance theory. Sim-
ulation outcomes are evaluated in Section 4, and experimental verification is presented in
Section 5. Finally, discussion and concluding remarks are presented in Sections 6 and 7,
respectively.

2. Generalized Vector Acoustic Preprocessing Optimization Model with
Theoretical Analyses
2.1. Vector Acoustic Preprocessing Analysis Model Subject to Gain-Phase Uncertainties

An “underwater acoustic vector sensor” (UAVS) (known as an “underwater vector
hydrophone”) is composed of a sound pressure sensor and vibration speed sensor to
measure the pressure and vibration velocity of the sound field at one point, respectively.
At any time ( t), it can measure the sound pressure ( p(t)) and three orthogonal vibration
velocities ( vx(t), vy(t), and vz(t), corresponding to the x, y, and z axes, respectively).

In the follow-up discussion with the assumption of x–o–y plane waves, we can omit the
height information for simplicity; then, the observations of UAVS can be simply expressed
as [21]

y(t) =

 p(t)
vx(t)
vy(t)

 =

 s(t)
Qs(t)cosθsinα
Qs(t)sinθsinα

+

 np(t)
nx(t)
ny(t)

 (1)

where s(t) is the source signal; α ∈ (0, π] symbolizes the incident source’s elevation angle;
θ ∈ (0, 2π] denotes the corresponding azimuth angle; Q = 1/ρc0 gathers the factor between
the pressure and vibration velocity; and np(t), nx(t), and ny(t) are the corresponding noise
items of the received vector acoustic signals and assumed to be uncorrelated with the
source signal (s(t)). Assume that the noise field of the marine environment is isotropic
and the autocorrelation coefficient of vibration velocity channel noise is 1/2; hence, the
covariance matrix (Rn) can be expressed as

Rn = σ2
n

 1 0 0
0 1/2 0
0 0 1/2

 (2)

where σ2
n is the variance of the P channel.

In general, to improve vector acoustic DOA estimation performance, signal prepro-
cessing methods with noise reduction are likely to be adopted, especially under low-SNR
conditions. However, different methods result in different output gain and phase-lag
responses, causing unexpected significant estimation error.

To analyze the effects on estimation accuracy of different preprocessing (or denoising)
methods, a generalized vector acoustic preprocessing analysis model is proposed below.
The preprocessed vector acoustic signals with denoising effects of p′(t), x′(t), and y′(t) can
be subjected to a random gain-phase responses as follows:

y′(t) =

 p′(t)
v′x(t)
v′y(t)

 =

 Gpejφp s(t) + n′
p(t)

Gxejφx Qs(t)cosθsinα + n′
x(t)

Gyejφy Qs(t)sinθsinα + n′
y(t)

 (3)

where Gp, Gx, and Gy represent the output gain response corresponding to the p, x, and y
channels, respectively; φp, φx, and φy are the phase-bias responses of the three channels;
and n′

p(t), n′
x(t), and n′

y(t) are the noise items associated with the preprocessing approaches.
Note that when Gp= Gx=Gy = 1, φp=φx=φy= 0, corresponding to no pretreatment, which is
consistent with the received signal of Equation (1).
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2.2. Theoretical Analysis of Gain-Phase Constraints for AAIM

Ship radiated noise can be modeled as a combination of broadband noise and si-
nusoidal tonal signals. These sinusoidal tonals are generally considered the “acoustic
fingerprint” of a moving vessel (refer to ship radiated line spectral signatures [39]). For
simplicity, we can assume the target signal is a single sinusoidal tonal, as below.

s(t) = Asej2π f0t+φ0 (4)

where f0 represents the character frequency and As and φ0 are the corresponding amplitude
and phase, respectively. Then, the gain-phase constraints of preprocessing for vector DOA
estimation with the classical AAIM and CAIM can be analyzed as follows. For the AAIM
method, the average acoustic intensity can be calculated as follows:

I = [Ipx, Ipy, Ipz]
T = ⟨p(t) · v(t)⟩ (5)

where ⟨·⟩ denotes time averaging for sound intensity, and the corresponding the average
acoustic intensity of Ipx and Ipy can be obtained as follows:

Ipx = ⟨p(t)vx(t)⟩
Ipy = ⟨p(t)vy(t)⟩

(6)

According to the principle of the AAIM method, the azimuth estimator (θ̂) can be calculated
as follows:

θ̂ = arctan
⟨Ipy⟩
⟨Ipx⟩

= arctan
⟨p(t)vy(t)⟩
⟨p(t)vx(t)⟩

(7)

In consideration of preprocessing, we have the preprocessed vector acoustic signals
according to Equation (3), and the average sound intensity of I′px and I′py can be described
as follows:

I′px = ⟨p′(t)v′x(t)⟩
I′py = ⟨p′(t)v′y(t)⟩

(8)

This can be rewritten as

I
′
px = Fx cos θ cos α + ∆

′
x

I
′
py = Fy sin θ cos α + ∆

′
y

(9)

where Fx and Fy refer to the gain coefficients related to θ, and ∆
′
x and ∆

′
y represent the

corresponding unrelated noise parts. Their mathematical representations are presented
as follows:

{
Fx =⟨(GpGx A2

s Q) · ej(4π f0t+2φ0+φx+φp)⟩+ ⟨(GxQAs) · n′
p(t) · ej(2π f0t+φ0+φx)⟩

Fy =⟨(GpGy A2
s Q) · ej(4π f0t+2φ0+φy+φp)⟩+ ⟨(GyQAs) · n′

p(t) · ej(2π f0t+φ0+φy)⟩
(10)

and ∆
′
x = ⟨(Gp As) · n′

x(t) · ej(2π f0t+φ0+φp)⟩+ ⟨n′
p(t) · n′

x(t)⟩

∆
′
y = ⟨(Gp As) · n′

y(t) · ej(2π f0t+φ0+φp)⟩+ ⟨n′
p(t) · n′

y(t)⟩
(11)

From Equations (10) and (11), we can see that Fx , Fy, ∆
′
x, and ∆

′
y are directly related to the

amplitude-gain response and phase-shift response, which will affect the accurate estimation
of the target. Hence, considering an asymptotic unbiased estimator (θ̂

′
) of the true azimuth

(θ) after preprocessing, it is necessary to have
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tan θ̂
′
=

I
′
py

I ′px
≈ Fx

Fy
·

I
′
py − ∆

′
y

I ′px − ∆′
x
= tan θ (12)

The equivalent condition can be difficult to satisfy for the sake of noise; hence, we
could have an intuitive mathematical description of its asymptotic unbiased estimator (θ̂

′
)

as below.

θ̂
′
= arctan{

I
′
py

I ′px
}

s.t. Fx ≡ Fy

∆
′
x → 0

∆
′
y → 0

(13)

On this basis, theoretical discussions about the constraints are given as follows:
(1) For the first constraint (Fx ≡ Fy), according to Equation (10), we can see its am-

plitude directly related to the amplitude-gain response (Gp, Gx, and Gy) and phase-bias
response (φp, φx, and φy). In a strict sense, we can find a particular solution with an
equivalent amplitude-gain response, as well as phase-bias lags; that is to say,{

Gp = Gx = Gy

φp = φx = φy
(14)

To ease up on these strict conditions, assume that the preprocessed noise item of the p
channel is zero, meaning that ⟨n′

p(t)⟩ = 0; then, Equation (10) can be rewritten as below.{
Fx =⟨(GpGx A2

s Q) · ej(4π f0t+2φ0+φx+φp)⟩

Fy =⟨(GpGy A2
s Q) · ej(4π f0t+2φ0+φy+φp)⟩

(15)

Hence, Equation (14) can be simplified without regard to the p channel as follows:{
Gx = Gy

φx = φy
(16)

This means the preprocessing method for the p channel is dependent on the x channel and
y channel.

(2) For the constraints of ∆
′
x → 0 and ∆

′
y → 0, according to Equation (11), we could

have the preprocessed noise items of the x channel and y channel be zero and uncorrelated
with the noise item of the p channel as follows:

⟨n′
x(t)⟩ = ⟨n′

y(t)⟩ = 0

⟨n′
p(t)n

′
x(t)⟩ = 0

⟨n′
p(t)n

′
y(t)⟩ = 0

(17)

However, in actual situations, n′
p(t), n′

x(t), and n′
y(t) are probably correlated and nonzero

mean. In general, under high-SNR conditions, the signal-item accumulation of the sound
intensities of the x and y channels are large enough that Ipx ≫ ∆

′
x and Ipy ≫ ∆

′
y; hence,

they have a minimal effect on the estimation results. Nevertheless, under the lower-SNR
conditions, the influence of noise influence on estimation error is significant, directly leading
to the phenomenon of a rapid increase in estimation error. And in this circumstance, signal
preprocessing with good filtering or noise reduction performance should may be affected.
To asymptotically achieve ∆

′
x → 0 and ∆

′
y → 0, filtering approaches can be adopted by

maximizing the SNRI performance of the vector channels.
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According to the aforementioned analyses, the constraints in Equation (13) can be
eased and rewritten as below.

θ̂
′
= arctan{

I
′
py

I ′px
}

s.t. Gx = Gy
φx = φy
max SNRIx
max SNRIy
max SNRIp

(18)

where equivalent gain-phase constraints of the x and y channels should be satisfied in
order to achieve the desired denoising performance. SNRIx, SNRIy, and SNRIp represent
the SNR improvement (SNRI) of the x , y, and p channels, respectively.

2.3. Theoretical Analysis of Gain-Phase Constraints for CAIM

Such a calculation of acoustic intensity can be completed in the frequency domain by
the CAIM method as well [15]. Owing to the sparse nature of target signal energy in the
frequency domain, using CAIM can achieve a frequency-domain filtering effect. Therefore,
the CAIM performs better than AAIM, especially under lower-SNR and multi-target source
conditions. In this case, the direction of the intensity can be obtained by fast Fourier
transform of the preprocessed vector channel signals as follows:

P
′
(ω) = πGp(ω)As[δ(ω + ω0)e−j(φp+φ) + δ(ω − ω0)ej(φp+φ)] + Np(ω)

V
′
x(ω) = πGx(ω)As[δ(ω + ω0)e−j(φx+φ) + δ(ω − ω0)ej(φx+φ)] cos θ cos α + Nx(ω)

V
′
y(ω) = πGy(ω)As[δ(ω + ω0)e−j(φy+φ) + δ(ω − ω0)ej(φy+φ)] sin θ cos α + Ny(ω)

(19)

where ω = 2π f and ω0 = 2π f0 are the angular frequencies, and Np(ω), Nx(ω), and Ny(ω)
are the amplitudes of background noise in the frequency domain. Then, we have

θ̂(ω) = arctan[
ℜ{P′(ω)V′∗

y (ω)}
ℜ{P′(ω)V′∗

x (ω)} ] (20)

where θ̂(ω) is the estimated azimuth of the acoustic source, ℜ(·) denotes the real part, and
∗ represents the complex conjugation.

Then, we apply complex conjugation to V
′
x(ω) and V

′
y(ω) and multiply them by P

′
(ω).{

P
′
(ω)V

′∗
x (ω) = Fx(ω) cos θ cos α + ∆

′
x(ω)

P
′
(ω)V

′∗
y (ω) = Fy(ω) cos θ cos α + ∆

′
y(ω)

(21)

in which Fx(ω), Fy(ω), ∆
′
x(ω), and ∆

′
y(ω) can be written as

Fx(ω) =π2Gp(ω)Gx(ω)A2
s [δ

2(ω + ω0)ej(φx−φp) + δ2(ω − ω0)ej(φp−φx)]

+ Np(ω)πGx(ω)As[δ(ω + ω0)e−j(φx+φ) + δ(ω − ω0)ej(φx+φ)]

Fy(ω) =π2Gp(ω)Gy(ω)A2
s [δ

2(ω + ω0)ej(φy−φp) + δ2(ω − ω0)ej(φp−φy)]

+ Np(ω)πGy(ω)As[δ(ω + ω0)e−j(φy+φ) + δ(ω − ω0)ej(φy+φ)]

(22)

and{
∆

′
x(ω) = Nx(ω)πGp(ω)As[δ(ω + ω0)e−j(φp+φ) + δ(ω − ω0)ej(φp+φ)] + Np(ω)Nx(ω)

∆
′
y(ω) = Ny(ω)πGp(ω)As[δ(ω + ω0)e−j(φp+φ) + δ(ω − ω0)ej(φp+φ)] + Np(ω)Ny(ω)

(23)
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where δ(ω + ω0)δ(ω − ω0) = 0.
Equations (22) and (23) can be expanded by using Euler’s formula, taking the real part

as follows:{
ℜ[Fx(ω)] =2[π2Gp(ω)Gx(ω)A2

s δ2(ω − ω0) + Np(ω)πGx(ω)Asδ(ω − ω0)] cos(φx − φp)

ℜ[Fy(ω)] =2[π2Gp(ω)Gy(ω)A2
s δ2(ω − ω0) + Np(ω)πGy(ω)Asδ(ω − ω0)] cos(φy − φp)

(24)

and {
ℜ[∆′

x(ω)] = 2Nx(ω)πGp(ω)Asδ(ω − ω0) cos(φx − φp) + Np(ω)Nx(ω)

ℜ[∆′
y(ω)] = 2Ny(ω)πGp(ω)Asδ(ω − ω0) cos(φy − φp) + Np(ω)Ny(ω)

(25)

Its asymptotic unbiased estimator (θ̂
′
) can be obtained as below.

θ̂
′
(ω0) = arctan{

ℜ[P′
(ω0)V

′∗
y (ω0)]

ℜ[P′(ω0)V
′∗
x (ω0)]

}

s.t. ℜ[Fx(ω0)] ≡ ℜ[Fy(ω0)]

ℜ[∆′
x(ω0)] → 0

ℜ[∆′
y(ω0)] → 0

(26)

In consideration of the constraints in Equation (18), as we have Gx = Gy and φx = φy,
the constraint of ℜ[Fx(ω0)] ≡ ℜ[Fy(ω0)] can be satisfied. The noise items (ℜ[∆′

x(ω0)] and
ℜ[∆′

y(ω0)]) represent the noise energy corresponding to the frequency (ω0). They can be

smaller than the ∆
′
x and ∆

′
y of the AAIM method measured in the time domain. Hence,

Equation (26) can be eased and rewritten as below.

θ̂
′
= arctan{

ℜ[P′
(ω0)V

′∗
y (ω0)]

ℜ[P′(ω0)V
′∗
x (ω0)]

}

s.t. Gx = Gy
φx = φy
max SNRIx
max SNRIy
max SNRIp

(27)

where the gain-phase constraints of CAIM are in accordance with AAIM. This means that
under the same amplitude-gain and phase-shift constraints, preprocessing methods need
to maximize the noise reduction performance.

2.4. Generalized Vector Acoustic Preprocessing Optimization Model

According to Equations (18) and (27), the principle of a generalized vector acoustic
preprocessing optimization model can be described as ’maximizing denoising performance
under the constraints of equivalent amplitude-gain response and phase-bias response’. Its
mathematical relationship can be expressed as

max SNRI
s.t. Gx = Gy

φx = φy

(28)

in which SNRI is the sum of SNRIx, SNRIy, and SNRIp. From the point view of the
constraints in Equation (28), intuitively, we can see that the gain-phase constraints for
vector acoustic DOA estimation are independence of the P channel. That means that the
vector acoustic signal preprocessing method should have a linear gain response, as well
as a certain phase bias for the x and y channels. To satisfy ∆

′
x → 0 and ∆

′
y → 0, a superior

noise reduction performance with preprocessing techniques is required, as the noise items
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of n′
p(t), n′

x(t), and n′
y(t) are small enough.

In summary, the vector acoustic preprocessing method for the p channel is dependent
on the x channel and y channel. To obtain an unbiased estimate of θ̂

′
, the vector acoustic

preprocessing techniques should be constrained by a linear gain-phase response, as well
as the desired denoising performance. Note that the model can be applied to the array
signal processing techniques of single-vector DOA estimation as well and can explain the
matched-filter preprocessing approach proposed by Zhao et al. [17] for its linear signal
processing characteristic.

3. Linear Matched Stochastic Resonance
3.1. Classical Bistable Stochastic Resonance (CBSR)

Stochastic resonance is a nonlinear phenomenon whereby a transfer of energy from
noise to periodic signals can occur with a certain matched relationship of the signals,
noise, and system nonlinearities. Such a phenomenon can be commonly described by
Brownian motion.

mẍ + γẋ = −V̇(x) + s(t) + n(t) (29)

in which m is the mass of the Brownian particle, x is the displacement trajectory, and γ
is the coefficient of friction. s(t) = A0cos(ω0t + φ0) represents a periodic signal with an
amplitude of A0, a driving frequency of ω0, and an initial phase of φ0. n(t) =

√
2Dη(t)

represents the noise item, in which D and η(t) represent the noise intensity and additive
noise, respectively. V(x) denotes the nonlinear quartic double well (QDW) potential as
shown below.

V(x) = −1
2

ax2 +
1
4

bx4 (30)

where a and b denote the barrier potential parameters. For the potential (V(x)), there is
one maximum and two minimum values at x0 = 0 and ±xm = ±

√
a/b, respectively. The

depth between the maximum point and minimum point denotes the energy barrier as
∆V = a2/4b.

For simplicity, an overdamped LE model is commonly adopted [40].

ẋ = −V̇(x) + s(t) + n(t) (31)

In the situation of a stochastic signal forced nonlinear system, the statistical properties
of particle transition between two potential wells can be characterized by the famous
Kramers rate as follows:

rK =
ω0ωb√

2π
exp(−∆V

D
) (32)

where ω0 = [V′′(±xm)]1/2 = (2a)1/2 and ωb = [V′′(x0)]
1/2 = (a)1/2 represent the char-

acteristic frequencies of the nonlinear system, and the bistable nonlinear system output
amplitude response with a small periodic input signal can be written as

lim
t0→−∞

⟨x(t)|x0, t0⟩ ≡ ⟨x(t)⟩ = ⟨x(t)⟩ = x(D) cos(w0t − φ) (33)

in which the nonlinear system output amplitude (x(D)) and phase lag (φ(D)) can be
expressed as 

x(D) =
A0x2

m
D

· 2rK√
(2rK)

2 + w2
0

φ(D) = arctan
(

ω0

2rK

) (34)

For an actual noisy signal, the noise intensity (D) can be regarded as fixed in a period of
time under a high sampling frequency. As a result, x(D) and φ(D) can be further written as
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
x(A0, ω0, a, b) =

√
2A0a2

bD
· exp(−a2/4bD)√

2a2 exp(−a2/2bD) + π2w2
0

φ(ω0, a, b) = arctan
(

ω0√
2a

exp(a2/4bD)

) (35)

To characterize the performance of SR, we can use the system output power spectra
G(ω) to analyze the denoising performance with signal-to-noise ratio improvement (SNRI).
In this way, the output power spectra G(ω) of a nonlinear LE system can be expressed
as [41]

G(ω) = Gs(ω) + Gn(ω) (36)

in which Gs(ω) and Gn(ω) represent the corresponding output power spectra of signal
and noise, respectively.

Gs(ω) =
π

2
(

γAxm

D
)2 4r2

K
4r2

K + ω2
0
[δ(ω − ω0) + δ(ω + ω0)] (37)

and

Gn(ω) = [1 − 1
2
(

γAxm

D
)2 4r2

K
4r2

K + ω2
0
]

4rKx2
m

4r2
K + ω2

0
(38)

From Equation (38), we can see that the Kramers rate (rK) is related to the output power
spectra (G(ω)), the system potential parameters (a and b), noise intensity (D), and driving
frequency ( f0). Therefore, for the periodic input with additive Gaussian noise in Equa-
tion (31), the input SNR of the system can be expressed as [42]

SNRinput =
A2

4D
(39)

Upon combining Equations (37) and (38), the SNR output corresponding to
Equation (31) can be finally approximated as [41]

SNRoutput =
π

2
(

Axm

D
)2rK × [1 − 1

2
(

Axm

D
)2 4rk

2

4rk
2 + 2π f 2

0
]−1

≈
√

2∆V(
A
D
)2 exp−∆V/D

(40)

Consequently, we have the SNRI as

SNRI =
SNRoutput

SNRinput
≈ 4

√
2∆V
D

exp−∆V/D (41)

where the output performance can be determined by the noise intensity (D), the barrier
height (∆V), and the damping factor (γ).

From the perspective of potential parameter tuning [43], utilizing SR for weak signal
processing could be considered a nonlinear filter [36]. As a consequence, the system output
amplitude and phase response should be nonlinear, stochastic, and arbitrarily distributed
for varied system parameters, as shown in Figure 1.
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(a) (b)

Figure 1. Performance comparison for vector DOA estimation (a) input and output amplitude
response of CBSR with varied a; (b) input and output amplitude response of CBSR with varied b.

3.2. Theory of Matched Stochastic Resonance (MSR)

The definition of matched stochastic resonance can be described as follows: For a
dynamic nonlinear system, under the constraint of stochastic resonance effect, the nonlin-
earity of the system can be parameterized and optimized to achieve a matched output in
maximizing the signal-to-noise ratio improvement (SNRI). Its generalized mathematical
representation can be expressed as follows [35–37]:

max
a,b,γ,...

SNRI

s.t. SR conditions
(42)

where SR conditions can be obtained by classical theories and methods, including time-
scale matching conditions [40,43], stability conditions [42,44], threshold conditions [45],
amplitude gain under weak noise limit conditions [46], etc.

Assume a periodic forcing signal is applied to the particle in a bistable QDW potential;
the matched relationship of the signal frequency ( f0), noise intensity (D), and nonlinear
system parameters (a and b) can be obtained by maximizing the system SNRI. This can be
forulated as optimization problem as below [47].

max
a,b

SNRI

s.t. rK = 2 f0
A < Ac <

√
2D

SNRI > 1

(43)

where the constraint rK = 2 f0 is the time-scale matching condition, A < Ac <
√

2D is the
threshold condition, and the constraint of SNRI > 1 is to ensure the denoising performance
by utilizing an SR approach. Then, the optimization problem in Equation (43) can be further
optimized with the respect to ∆V as follows:

∆Vopt = argmax
∆V

SNRI

To the sanctification of the SR matching principle, we can obtain the relationship of the
mathematical matched potential parameters as below.{

aopt = 2
√

2π f̂0e
bopt = a2

opt/(4D̂)
(44)
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where f̂0 and D̂ represent the estimations of the signal frequency ( f0) and the noise intensity
(D), respectively, and e is the natural logarithm.

Consequently, the SNRoutput in Equation (40) can be rewritten as below.

SNRoutput =
16A2

0
a2

opt (2 + π2/2)
/

(
aopt

bopt
−

16A2
0

a2
opt (2 + π2/2)

)
(45)

Since we have the constraint of SNRI > 1, the following relationship should be satisfied:
aopt

bopt
− 16A2

a2
opt(2 + π2/2)

> 0

16
bopt(2 + π2/2)

>
aopt

bopt
− 16A2

a2
opt(2 + π2/2)

(46)

This can be further simplified under the assumption of adiabatic approximation as 0 < A <
aopt

4

√
aopt

(
2 + π2/2

)
bopt

aopt ≪ 2
√

2πe

(47)

Consequently, the optimization problem in Equation (43) can be simplified as below.

max
a,b

SNRI

s.t. a = 2
√

2π f̂0e
b = a2/(4D̂)

0 < A <
a
4

√
a
(
2 + π2/2

)
b

a ≪ 2
√

2πe

(48)

In this way, a weak signal submerged in a heavy background can be enhanced and detected.
A comparison of output SNR curves corresponding to different input noise intensities
is presented in Figure 2. For a deterministic static nonlinear system with fixed system
parameters (CBSR), the curve of the output SNR varies with noise intensity (D) as a
“resonance” curve, where there exists an optimal noise intensity value (Dopt) that can
achieve the maximum SNRoutput. For the curve corresponding to the MSR, we can see that
the system parameters can be optimized under any circumstance, and its performance is
generally weaker than the optimal matched filter under Gaussian noise.

Figure 2. A comparison of MSR output SNR responses under different noise intensities (D).
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3.3. Linear Matched Stochastic Resonance for Vector Acoustic Preprocessing (LMSR)

According to the aforementioned analysis in Section 2, we have the constraints of
vector acoustic preprocessing. Hence, the linear matched stochastic resonance can be
generally modeled by maximizing the SNRI in the constraints of linear gain response and
phase lag for SR output (x̄(D) and φ(D)) as below.

max
a,b

SNRI

s.t. x̄(D) = kA0
φ(D) = φ0

(49)

where k is the linear factor, and φ0 denotes to a determined phase lag. The constraint
of max SNRI is to guarantee an optimal resonance output with optimized denoising
performance. This can be realized according to Equation (48); then, we have

max
a,b

SNRI

s.t. x̄(D) = kA0
φ(D) = φ0
a = 2

√
2π f̂0e

b = a2/(4D̂)

0 < A <
a
4

√
a
(
2 + π2/2

)
b

a ≪ 2
√

2πe

(50)

In consideration of the matched relationship in Equation (43), we have rK = 2 f0; hence
the φ(D) in Equation (49) can be properly satisfied as a constant value.

φ(D) = arctan
(

ω0

2rK

)
= arctan

(π

2

)
= φ0 (51)

This means that for AVSsignals with the same frequency ( f0), utilizing LMSR for pre-
processing would result in a constant phase lag. This is obvious, as shown in Equation (1).
Then, the problem can be eased as the constraint of equivalent phase bias response can be
intuitively guaranteed. For the linear amplitude constraint in Equation (49), as the optimal
noise intensity (Dopt = a2/4b) we have

x
(

Dopt
)
=

8A0

a
√

4 + π2
= kA0 (52)

It can be seen that the matched output amplitude of the LMSR is only inversely
proportional to the system potential parameter (a). Hence, when aopt is a constant value, the
constraint of linear gain response can be satisfied. In this way, incorporating Equation (48)
into Equation (49), the LMSR model in Equation (50) can be generally rewritten as

max
a,b

SNRI

s.t. a = 2
√

2π f̂0e
b = a2/(4D̂)

k =
8

a
√

4 + π2

0 < A0 <
a
4

√
a
(
2 + π2/2

)
b

a ≪ 2
√

2πe

(53)

in which parameter a is varied with the signal frequency estimator ( f̂0), which can be
intuitively guaranteed as well.
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This can yield to a novel linear matched stochastic resonance phenomenon with a
linear gain-phase response. And according to the analytic results, a vector acoustic signal
preprocessing strategy can be designed to enhance single-vector acoustic DOA estimation
performance.

3.4. Implementation of LMSR-Based Vector Acoustic DOA Estimation

In the last subsection, we presented the optimization model of LMSR in Equation (53).
Here, we introduce the implementation of an LMSR-based vector acoustic DOA estimation
method for a single UAVS. The framework is illustrated in Figure 3, and the detailed
implementation steps are summarized as follows:

(1) Signal pretreatment: Common techniques such as band-pass filtering, data normaliza-
tion, or envelope extraction are executed to better reveal the signal periodicity of the
actual received noisy signals.

(2) Frequency rescaling: According to the adiabatic approximation theorem, the SR sys-
tem is restricted by input signals with a low frequency ( f0) of f0 ≪ 1Hz. For practical
high input-signal frequencies of tens to thousands of hertz, a frequency rescaling
preprocessing technique can be utilized to satisfy the assumption. By introducing
a scaling factor (α) in the process of solving the Runge–Kutta algorithm, the signal
frequency ( fc) is equivalently converted to a desirable value ( f0 = fc/α) as below.

s[k] = s(kTs) = Ac cos(2π
fc

α
(kαTs)) = Ac cos(2π f0kαTs) (54)

in which Ts is the sampling time. Generally, the f0 should be small enough; in this
paper, the empirical value is set to f0 = 0.005 Hz.

(3) Noise intensity estimation: The noise intensity estimator (D̂) is obtained following
a penalization-based least squares method by minimizing the generalized cross-
validation score [48].

(4) Parameter optimization: The reference frequency is initialized as f0 = 0.005 Hz, and
the optimal parameters (a∗opt and b∗opt) can be obtained according to Equation (53).

(5) LMSR computation: The LMSR output corresponding to all the received AVS-channel
signals is computer. The fourth-order Runge–Kutta (RK4) method is adopted to
obtain the numerical solution of the LMSR output under Gaussian noise [35]. For the
circumstance of Lévy impulsive noise, the numerical solution is reported in [49].

(6) Post-processing: The Lorentz effect of SR, DC offset, and low-frequency interference
removal are applied.

(7) Vector acoustic DOA estimation: The estimation results are calculated by using the
AAIM and CAIM methods with the processed multichannel UAVS signals.

Figure 3. The framework of LMSR-based vector acoustic DOA estimation method.
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4. Simulation Analyses

In this section, the simulation results are presented to verify the proposed methods.
It is known that the effectiveness of LMSR for AAIM and CAIM depends on its ability to
achieve a linear amplitude response as well as a fixed phase lag. Therefore, we first conduct
simulation analyses to evaluate its amplitude responses. Then, the vector DOA estimation
performances of LMSR-AAIM and LMSR-CAIM are further evaluated in comparison with
traditional AAIM and CAIM methods under different SNR conditions. In the consideration
of the merits of SR in dealing with complex background noise, the estimation performance
under typical non-Gaussian impulsive noise is evaluated as well.

4.1. Linear Amplitude Response Characteristic Analysis

To assess the linearity of LMSR, the relationship between the input and output signal
amplitudes is investigated. Here, we focus on analyzing the time-domain and frequency-
domain quantization results under the same received signal amplitude. The output ampli-
tudes corresponding to the time and frequency domains can be evaluated as below.

(1) For the time-domain average amplitude quantization, we use peak averaging, which
can be defined as

Âx =
1
M

M

∑
i=1

(Amax(i)− Amin(i)) (55)

where M is the number of sliding windows, and Amax(i) and Amin(i) represent the
maximum and minimum amplitude within the i-th sliding window, respectively.

(2) For the frequency domain, we calculate the average amplitude value corresponding
to the signal frequency via fast Fourier transform (FFT).

Âx =

√
Xω0 X∗

ω0

N0
(56)

where N0 is the number of points of the FFT, Xω0 represents the amplitude of FFT
corresponding to the signal frequency ( f0), and ∗ denotes the complex conjugation.

The tested signal is a noisy sinusoid with signal a frequency of f0 = 50 Hz, a sampling
frequency of fs = 1 kHz, and a data length of 3000 points to better reveal its output
performance. The classical frequency-shifted and rescaling SR method [50] with an elliptic
high-pass filter is utilized with pass-band cut-off frequency and stop-band cut-off frequency
set as FP = 8 and Fs = 7, respectively. The scale transformation factor (R) is set as 200. We
fix the noise intensity as D = 1 under the assumption of white Gaussian noise, and the
signal amplitude (A0) is varied from 0 to 1. This can reveal the performance of different
SNR conditions, where the smaller the A0, the lower the SNR. According to Equation (53)
the optimal parameters can be directly obtained as a∗opt = 0.12 and b∗opt = 0.0072.

The amplitude responses in the time and frequency domains of the received noisy
signals and the corresponding LMSR output signals, respectively, are shown in Figure 4.
Every point of average amplitude quantization is obtained independently 20 times ac-
cording to the simulation results. As the linear response property is derived in theory,
we thought 20 times is enough and appropriate to reveal the amplitude responses. In
comparison with Figure 4a,b, the amplitude response can only have a certain degree of
linearity when the received noisy signal amplitude is large enough under higher-SNR
conditions. Intuitively, the frequency-domain quantization results can be improved under
lower-SNR circumstances. This is in accordance with the results, as CAIM performs better
than AAIM. For the LMSR preprocessed output signals shown in Figure 4c,d, the linearity
of the amplitude response is obviously improved, and improved vector DOA estimation
performance can be expected. In view of the linear fitting curve, the frequency-domain
quantization should be better, especially under low-SNR conditions. This indicates that
LMSR-CAIM can achieve better performance, which is in accordance with the following
DOA estimation results.
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(a) (b)

(c) (d)

Figure 4. Performance comparison for vector DOA estimation. (a) Time-domain quantization of
received noisy signal; (b) frequency-domain quantization of received noisy signal; (c) time-domain
quantization of preprocessed signal with LMSR; (d) frequency-domain quantization of preprocessed
signal with LMSR.

4.2. Estimation Performance Analysis under White Gaussian Noise (WGN)

To verify the effectiveness of the performance of LMSR as a preprocessing method
for vector DOA estimation, the estimated mean error (ME) and root-mean-square error
(RMSE) of the azimuth angle are evaluated in comparison with the classical AAIM and
CAIM methods [15]. Since the SNRs of AVSchannels are different, the SNR of the P channel
is adopted for reference. The target source azimuth is simulated as 30◦, and the ME and
RMSE can be calculated as

ME =

∣∣∣∣∣ 1
N

N

∑
i=1

(θ − θ̂)

∣∣∣∣∣ (57)

and

RMSE =

√√√√ 1
N

N

∑
i=1

(θ − θ̂)2 (58)

where θ and θ̂ represent true azimuth and estimated azimuth of the source, respectively,
and N is the number of independent Monte Carlo trials. Note that every data point is
obtained by 200 independent realizations.
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As clearly shown in Figure 5, superior performance can be achieved with LMSR-AAIM
and LMSR-CAIM, especially under low-SNR conditions. We can see that the performance
of CAIM-based vector DOA estimation is better overall. For SNR < −10 dB, classical CAIM
loses its performance quickly, while the mean error of SR preprocessing remains within 1◦

until −25 dB. In comparison with the RMSE, within 2◦, the performance of the classical
CAIM method is about −5 dB, while that of the proposed LMSR-CAIM method is about
to −15 dB. Overall, within a certain level of estimation error, our proposed LMSR-CAIM
is 10 dB better than the classical method, which can break through the hard problem of
low-SNR vector DOA estimation.

(a) (b)

Figure 5. Performance comparison for vector acoustic DOA estimation of AAIM, CAIM, LMSR-AAIM,
and LMSR-CAIM. (a) Mean error (ME); (b) root-mean-square error (RMSE).

4.3. Estimation Performance Analysis under Non-Gaussian Impulsive Noise

Generally, a Gaussian assumption is widely used to describe background noise for
simplicity in theory, while not always appropriate to describe real noisy processes. Since
ocean ambient noise can be impulsive in nature, especially in the low-frequency band
( f ≤ 100 Hz), the α stable distribution (SαS) provides an excellent way to model compli-
cated noise processes and is employed and analyzed in the following sections of this paper.
α ∈ (0, 2] is a stability index that describes an asymptotic power law of the Lévy distribu-
tion; the smaller the α, the stronger the pulse characteristics. α = 2 refers to Gaussian noise.
For ocean ambient noise, we set a typical impulsive noise with α = 1.5. As for α < 2, there
is no finite variance of noise, and the noise intensity can be obtained via noise power as

D = (Cgσ)1/η/Cg (59)

where Cg ≈ 1.78 is the exponential form of Euler’s constant, and η is the dispersion
coefficient. In this paper, the Janicki–Weron algorithm is employed to generate the noise
sequence [49]. A simulation of vector acoustic signal under impulsive noise is presented
in Figure 6, where we can see that impulsive noise would seriously affect the average
amplitude quantization.
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Figure 6. Simulation of vector acoustic signal under impulsive noise (α = 1.5, θ = 30◦).

It is known that SR has merits in dealing with non-Gaussian noise. In view of this, our
proposed LMSR is expected to achieve good results under impulsive noise. A simulation
comparison of its nonlinear filtering effect is shown in Figure 7, where we can see a 10 dB
improvement in the frequency domain. The denoised performance could also lead to the
improvement of vector DOA estimation performance. The vector acoustic DOA estimation
of AAIM, CAIM, LMSR-AAIM, and LMSR-CAIM under Lévy impulsive noise (α = 1.5) is
further studied, as shown in Figure 8. We can see that superior performance is achieved
with LMSR-AAIM and LMSR-CAIM. This is in accordance with our expectation. As
impulsive noise would seriously affect average amplitude quantization in the time domain,
a CAIM-based vector acoustic DOA estimation method is recommended.

(a) (b)

Figure 7. Nonlinear filtering effect of LMSR under Lévy impulsive noise (α = 1.5). (a) Received
signal and its normalized FFT; (b) LMSR output signal and its normalized FFT.
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(a) (b)

Figure 8. Performance comparison for vector DOA estimation of AAIM, CAIM, LMSR-AAIM, and
LMSR-CAIM under Lévy impulsive noise (α = 1.5). (a) Mean error (ME); (b) root-mean-square
error (RMSE).

5. Experimental Verification
5.1. Experimental Description

To verify the effectiveness of the proposed methods in practical applications, a set of
experimental sea data is adopted, which was collected in the South China Sea. A single
UAVS was installed on a latent sea buoy and deployed at a depth of 1825 m. The UAVS was
designed and calibrated with a low-frequency band from 3 Hz to 300 Hz. The sensitivity of
the hydrophone is −175.3 dB re 1 V/µ Pa, and the sampling rate is fs = 1 kHz. The design
of the experimental ship’s navigation survey line is shown in Figure 9a. The ship started
from point A and sailed along the red dashed line to points B, C, and D and finished at
point E. There are three horizontal passes across the latent buoy, as denoted by M, N, and Q.
At points B and point C, the ship slowed down and turned back. The experimental ship’s
radiated signal was acquired in real time by the UAVS system. As shown in Figure 10,
4.5 h radiated UAVS ship signals were received analyzed with LOFAR analysis. In view
of the time-frequency results corresponding to the P channel, Vx channel, and Vy channel,
the three times of horizontal passing are obvious. The line spectral signatures of the
experimental ship have the same frequencies, while the amplitudes are different in each
channel. This yields different SNRs of the three channels, as we mentioned before. Note
that when the ship is slowing down, the SNR of the line spectral signatures greatly decrease.

(a) (b)

Figure 9. Sea experiment description. (a) Experimental ship’s navigation survey line; (b) latent sea
buoy with a single UAVS.



Remote Sens. 2024, 16, 1802 20 of 25

(a)

(b)

(c)

Figure 10. Time-frequency analysis of received vector acoustic signal in 4.5 h. (a) P channel; (b) Vx

channel; (c) Vy channel.

5.2. DOA Estimation Performance Analysis

The results of vector acoustic DOA estimation over time can be observed in Figure 11,
where the classical AAIM and CAIM and the proposed LMSR-CAIM method are utilized for
comparison. The results demonstrate that all three methods are able to roughly distinguish
changes in azimuth angle over time. For the AAIM method, as shown in Figure 11a, the
estimation error is larger, especially for the ship slowing down and turning back. The result of
the CAIM method is better, as shown in Figure 11b, while the estimation error is till large in
this circumstance. By utilizing our proposed LMSR-CAIM method, the estimation error can be
greatly decreased, as shown in Figure 11c. This reveals superior performance for weak signals
under low-SNR conditions, especially when the ship is slowing down and turning back.
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(a)

(b)

(c)

Figure 11. Estimation performance comparison for the moving ship. (a) AAIM; (b) CAIM;
(c) LMSR-CAIM.
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According to the aforementioned analyses, our proposed LMSR method can effectively
enhance CAIM-based DOA estimation performance. This demonstrates its effectiveness
for practical applications, especially under low-SNR conditions and complex, noisy circum-
stances. Furthermore, the proposed LMSR-CAIM method outperforms the CAIM method,
making it a promising approach for remote passive sonar with a single UAVS. The LMSR
proposed in this paper is simply utilized as a first-order LE model for a matched stochastic
resonance effect. In previous work, we proposed a series of methods within the framework
of matched stochastic resonance theory for remote passive sonar detection [35–38]. Their
nonlinear filtering performances are better, and they are expected to achieve better results
with respect to the vector acoustic DOA estimation problem. Overall, these findings pro-
vide a promising insights for the development of advanced vector acoustic DOA estimation
in the future.

6. Discussion

Here, we present some discussions with respect to future research directions.

(1) With the development of advanced ship shock absorption and noise reduction technol-
ogy, active or passive sonar detection tends toward lower-frequency bands ( f0 ≤ 100 Hz)
or very low-frequency bands ( f0 ≤ 10 Hz). However, ambient ocean noise in the
low-frequency band is generally non-Gaussian and impulsive [51–53]. Therefore,
how to improve vector DOA estimation performance under low-SNR conditions and
complex background noise is a key problem for underwater vector acoustic signal
processing in the future.

(2) Stochastic resonance has merits in dealing with non-Gaussian noise, which can pro-
vide new insights with respect to vector signal processing using nonlinear approaches.
In Section 3, we demonstrated that within the framework of matched stochastic reso-
nance theory, the linear gain-phase response can be guaranteed. The aforementioned
numerical and practical analyses reveal the effectiveness of our proposed LMSR
method. A considerable amount of research work has focused on the SR effect [32–35],
and in previous work, we proposed PMSR, SMSR, IMSR, AIMSR, etc., which can
achieve better nonlinear filtering performance than LMSR [35–38]. Therefore, there
should be a number of approaches to improve the overall performance and stability.
These can be further studied in the future.

(3) In recent years, deep learning has led to rapid development in a variety of research
fields. For vector signal processing, such an approach has already been adopted to
improve AVS-DOA estimation performance [30]. However, learning tasks generally
require guidance to determine a better loss function design. In Section 2, a generalized
vector acoustic preprocessing optimization model was described as ’maximizing
denoising performance in under the constraints of equivalent amplitude-gain response
and phase-bias response’. We thought this would be important guidance for future
research work.

7. Conclusions

This paper investigates the challenging problem of the low accuracy of underwater
remote single-vector acoustic DOA estimation, particularly under low-SNR conditions
and complex background noise. A comprehensive theoretical analysis was conducted
on UAVS signal preprocessing to reveal the theoretical restrictions of intensity-based
vector acoustic preprocessing approaches. A generalized vector acoustic preprocessing
optimization model was established by maximizing the denoising performance under
the constraints of equivalent amplitude-gain response and phase-bias response. To deal
with the problem of how to improve vector DOA estimation performance under low-SNR
conditions and complex background noise, a novel vector acoustic preprocessing method
named linear matched stochastic resonance (LMSR) is proposed within the framework
of matched stochastic resonance theory, which can naturally guarantee linear gain-phase
restrictions, as well as achieving effective denoising performance. Numerical analyses and
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experimental verification demonstrate the superior estimation performance of the proposed
method in comparison wiyh classical intensity-based AAIM and CAIM methods, especially
under low-SNR conditions and non-Gaussian impulsive noise circumstances. In addition,
intensive discussions are presented to provide inspiration for future investigations. This
provides a new point of view with respect to preprocessing restrictions of vector acoustic
DOA estimation and can represent a breakthrough innovation in underwater remote
passive sonar detection with vector acoustic sensors in the future.
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