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Simple Summary: Cancer genome analysis often reveals structural variants (SVs) involving fusion
genes that are difficult to classify as drivers or passengers. Obtaining accurate AI predictions and
explanations, which are crucial for a reliable diagnosis, is challenging. We developed an explainable
AI (XAI) system that predicts the pathogenicity of SVs with gene fusions, providing reasons for its
predictions. Our XAI achieved high accuracy, comparable to existing tools, and generated plausible
explanations based on pathogenic mechanisms. This research represents a promising step towards
AI-supported decision making in genomic medicine, enabling efficient and accurate diagnosis.

Abstract: When analyzing cancer sample genomes in clinical practice, many structural variants (SVs),
other than single nucleotide variants (SNVs), have been identified. To identify driver variants, the
leading candidates must be narrowed down. When fusion genes are involved, selection is particularly
difficult, and highly accurate predictions from AI is important. Furthermore, we also wanted to
determine how the prediction can make more reliable diagnoses. Here, we developed an explainable
AI (XAI) suitable for SVs with gene fusions, based on the XAI technology we previously developed
for the prediction of SNV pathogenicity. To cope with gene fusion variants, we added new data to the
previous knowledge graph for SVs and we improved the algorithm. Its prediction accuracy was as
high as that of existing tools. Moreover, our XAI could explain the reasons for these predictions. We
used some variant examples to demonstrate that the reasons are plausible in terms of pathogenic
basic mechanisms. These results can be seen as a hopeful step toward the future of genomic medicine,
where efficient and correct decisions can be made with the support of AI.

Keywords: gene fusion; structural sariant; genomic medicine; explainable artificial intelligence;
knowledge graph

1. Introduction

In cancer genome medicine, interpreting the vast amount of variant data from the
whole-genome sequencing of individual patients is a labor-intensive task and a bottleneck
in the advancement of genomic medicine. In addition to single nucleotide variants (SNVs),
structural variants (SVs) involving gene fusions have also gained significant attention. This
is because fusion genes are observed in 20% of cancers [1], and their interpretation is crucial,
as they play key roles in cancer development and progression.

Many SVs, including gene fusions, are detected by next-generation sequencers (NGS)
and the downstream analysis of callers such as Manta [2]. However, not all gene fusions
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are pathogenic. To address this, several AI tools have been developed to predict the
pathogenicity of the SVs containing fusion genes [3–5]. Nevertheless, high accuracy alone
is insufficient for AI prediction as there is a risk of errors, and physicians must validate
AI estimations before making a diagnosis. This validation process is time consuming and
requires expert knowledge, which can be a significant burden on healthcare professionals.
Thus, it is necessary to alleviate the burden of validating the estimation results.

The recently developed explainable AI (XAI) technology enables users to validate
prediction results by providing explanations for AI estimations. Recently, XAI has been
actively studied in various medical fields [6]. We have previously developed an XAI to
predict the pathogenicity of SNVs [7].

Here, based on our previous XAI technology, an XAI was developed to predict the
pathogenicity of SVs involving fusion genes, and to explain the prediction results (Figure 1).
To achieve this, we expanded the knowledge graph (KG) (Figure 1, middle) by adding
information related to the fusion genes, thus improving the algorithm and utilizing a large
language model (LLM) [8]. The prediction accuracy of our XAI was as high as that of the
existing tools. Moreover, the predictions provided reasonable explanations for pathogenic
mechanisms in multiple cases. This enabled us to explain the reasons behind the predictions,
making it more efficient for physicians to interpret novel prediction results. This provides
important clues and simplifies the interpretation process.
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learn the subgraph of the KG as is. 

Figure 1. Overview of the explainable AI (XAI) methodology using the knowledge graph and deep
tensor (fusion gene version). LLM outputs a simple sentence including a factor (X) and a summary
including a mechanism of X.

2. Materials and Methods
2.1. Knowledge Graph

The research and development effort for XAI-applicable genomic medicine is ever-
growing. While we can easily obtain desirable data using the LLM, maintaining the large
amount of existing data remains difficult. We approach this problem by converting the
data into a KG. Briefly, we constructed our KG using an ontology based on the Resource
Description Framework (RDF) [9], developed by the open community med2rdf [10]. This
community is led by Kyoto University and the Database Center for Life Sciences. The
proposed XAI can learn to classify graphs that consist of nodes and edges. Then, it can
learn the subgraph of the KG as is.

The size of our KG was 15,563,273,478 triples. This is larger than the 103 million triples in
DBpedia [11], which is a well-known large-scale KG. This KG was constructed to estimate the
pathogenicity of the SNV and short indels. We extended this KG to estimate the pathogenic-
ity of fusion genes. The following extended data were used: Cosmic Fusion Export (v97;
86,506 records; 140,160 triples) [12], UCSC Gene Pfam (70,063 records; 935,892 triples) [13,14],
UTR length from RefSeq (19,330 records; 154,640 triples) [15], TargetScan (235,109 records;
260,006 triples) [16], Mitelman (52,196 records; 382,476 triples) [17,18], Gene Ontology



Cancers 2024, 16, 1915 3 of 15

(317,823 records; 33,277 triples) [19,20], TumorFusions (24,569 records; 586,429 triples) [21],
and ChimerDriver (6798 records; 33,865 triples) [3], for a total of 2,526,745 triples.

2.2. Explainable AI (XAI)

Our XAI, DeepTensor [22], learns to classify graphs that consist of nodes and edges.
During learning, feature graphs with correct answers, which are positive or negative, are
required. It outputs the predicted answer, and the added feature graph contributes to the
weights of the edges when given a feature graph. Generally, black-box machine learning
makes it difficult to explain the basis of the answers. Our XAI can achieve this despite
being a black-box machine learning, as it was enhanced by an explainer based on a local
interpretable model-agnostic explanation (LIME) [23]. LIME is an induced explaining
model that explains the basis using a simple model that approximates the original learning
model for ease of interpretation.

Most physicians find it difficult to understand the basis of a feature graph using the
contribution weights of edges. The graph was first divided based on this point of view.
Each subgraph contains human-comprehensible events and total contribution weights.
Second, we converted the subgraph into natural language using the LLM. Converting a
subgraph to natural language without a vocabulary of the RDF ontology appeared difficult,
even for an LLM. Finally, the gpt-35-turbo-16k [24] was provided with some conversion
cases (Figure 2) depending on the point of view, and it converted the subgraph well.
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Figure 2. Conversion samples for each point of view.

The inductive basis of statistics via machine learning requires deductive evidence for
better acceptance by physicians. An evidence generator was developed that outputs a
summary and key points regarding the mechanisms by which each keyword is related to
the target fusion gene. The method was as follows: each prompt template was prepared
in advance (Figure 3) to provide a summary and key points using the LLM from each
point of view. When a fusion gene name, keyword, and keyword type were provided, the
abstracts related to these keywords were retrieved from PubMed using Azure OpenAI’s
text-embedding-ada-002 [25]. Gpt-4 generates a summary and key points from the template
and abstracts.
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2.3. Our Explainable Learning Model

Two learning models were prepared, one for explainability and the other for bench-
marking. For benchmarking, data leakage is unfavorable for performance measurements.
However, it is favorable for explainability to show evidence that is roughly equivalent to
the answer as a basis, even if it causes data leakage. We chose learning features to allow
data leakage as our explainable learning model and learning features to avoid data leakage
as our benchmark model.
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2.3.1. Correct Answer Set: Dataset 1

TumorFusions [21] were used as the correct answer set. This dataset contains 20,731 fusion
genes detected in cancer cells and 3838 fusion genes from normal cells obtained from patients
with cancer registered in the TCGA [26]. Fusion genes with proven drug responses were
selected from cancer cells as a positive answer because we could understand the mechanisms
of pathogenicity. Additionally, we input the related paper to the LLM to determine whether the
drug affected the consequences of the fusion genes because LLMs possess reviewing abilities
for papers [27]. Some meanings of proven drug responses based on the evidence level in the
guidelines [28] were defined as follows:

1. The target text describes approved drugs in Japan for $DISEASENAME.
2. The target text describes FDA-approved drugs for $DISEASENAME.
3. The target text is referenced by guidelines about $DISEASENAME.
4. The target text describes highly statistically reliable clinical trials/meta-analyses and

consensus among experts on $DISEASENAME.
5. The target text describes FDA-approved drugs for other cancer types.
6. The target text describes highly statistically reliable clinical trials/meta-analyses and

consensus among experts regarding other cancer types.
7. The target text describes small-scale clinical trials that have shown usefulness regard-

less of cancer type.
8. The target text describes the usefulness shown in case reports regardless of cancer type.
9. The usefulness of target text has been reported in preclinical studies (in vitro and

in vivo).

$DISEASENAME is replaced by the patient’s disease name.
Gpt-4-32k was filtered from 20,731 fusion genes to 269 fusion genes that satisfied at

least one of the above conditions. These were selected as the positive answers. Generally,
machine learning does not yield good results if the correct answer is biased to one side.
Subsequently, 807 fusion genes were randomly selected as the negative answers, three
times the number of positive ones from normal cells.

2.3.2. Features

XAI generates feature graphs from our KG when given a feature definition consisting
of a set of paths and a correct answer set. The features of the explainable learning model
are as follows:

• The amount of literature regarding the same fusion genes in Mitelman;
• The number of entries about the same fusion genes in COSMIC;
• The sequence of domains registered with Pfam on each gene;
• The lengths of both UTRs;
• TargetScan-registered miRNAs that affect UTR;
• Families of miRNAs;
• Whether each domain is within the breakpoint;

Where the numeric values are converted into graphs representing the two most
significant digits because overlearning occurs as it is. As the number of digits increases, the
structure increases in this model. This is expected to determine the relationship between
large and small.

The number of database entries may inhibit the learning of other features because it
contains almost the same information as the answer. To address this, parts of these features
were not inserted. This allows it to learn feature graphs without the number of database
entries, and allows it to learn feature graphs with the number of database entries.

2.4. Benchmark

The model was benchmarked against the state-of-the-art models, and another model
was created for comparison with Lovino’s model (ChimerDriver) [3]. The same correct
answer set was used as the model for learning and testing, but with different features.
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2.4.1. Existing Methods

Several tools have been developed to predict the pathogenicity of gene fusions.
ChimerDriver [3] employs a neural network architecture that integrates information

on transcription factors, gene ontologies, microRNAs, functional information (labels of
either oncogenes, driver genes, tumor suppressors, or others), and structural information
(retained percentage and strands).

DEEPrior [4] uses a deep learning algorithm, specifically a convolutional neural
network (CNN), to process the amino acid sequences of gene fusions. The features utilized
include the sequences themselves, and the properties derived from these sequences, such
as gene functionality, description, and protein length.

Pegasus [29] employed gradient tree boosting (GTB), a machine learning method that
combines the three following techniques: gradient descent, ensemble learning (boosting),
and decision trees. This approach is known to achieve considerable accuracy, and is rela-
tively easy to use. Pegasus uses information from protein domain annotations (preserved
or lost).

OncoFuses [5] uses Naïve Bayes, which calculates a simple additive score from many
features based on the statistics of the training data. It uses features such as the promoter,
3′UTR, the protein interaction interface (PII), and functional profiles.

As ChimerDriver outperformed the other four models [3], we focused our comparison
exclusively on ChimerDriver.

2.4.2. Learning Set: Dataset 2 and Dataset 3

Dataset 2 had 1059 gene fusions registered with COSMIC as positive (pathogenic), and
706 gene fusions selected by Babiceanu et al. [30] registered as negative (non-pathogenic).
The latter fusion genes were collected from the normal cells of various organisms and used
as negative controls.

Dataset 3 had 2623 fusion genes made from TCGA by Gao et al. as positive, and
another set of 2254 fusion genes selected by Babiceanu et al. as negative. Both Dataset 2
and Dataset 3 were obtained from the site of ChimerDriver [3].

2.4.3. Method of Comparing the Performance of the Models

To evaluate the ability of XAI to provide accurate answers for unknown data, we followed
the standard practice of using separate datasets for training and testing. This approach ensures
that the accuracy of XAI can be properly measured on previously unseen data.

1. Cross Validation

The first method used to measure the performance was a 10-fold cross-validation. In
this method, we train a portion of the set of correct answers and measure the estimation
performance for the remaining set of correct answers. Thus, the set of correct answers was
divided into 10 parts, the estimation performance was measured for each partition, and the
average of the 10 estimation performances was used as the performance of the method.

2. Holdout Validation

The second method for measuring the performance is holdout validation. Using this
method, the two following datasets were prepared: a training set and a test set. The training
set was used for model training, and the estimation performance was measured using
the test set. This method helps assess how well the model is likely to predict data with
different characteristics.

2.4.4. Our Benchmark Learning Model

For a fair comparison, a model was created to avoid data leakage. The feature of our
benchmark learning model is the feature graph, as in our explainable learning model; however,
it excludes the number of database entries. The features of our benchmark learning model are
as follows:
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• Sequences of domains registered with Pfam for each gene;
• Lengths of both UTRs;
• TargetScan-registered miRNAs that affect UTR;
• Families of miRNAs;
• Whether each domain was within the breakpoint.

3. Results

This section discusses the benchmark results obtained using our model, and compares
them with those of state-of-the-art tools. Next, we present cases in which XAI outputs an
explanation of its predictions.

3.1. Evaluation of Prediction Accuracy
3.1.1. Evaluation using Cross-Validation

To evaluate our model, we used the benchmark datasets used by other models. Our
model was trained on these datasets, and two types of evaluations were conducted as follows:

As the first evaluation method, following ChimerDriver [3], a 10-fold cross-validation
was performed using dataset 2. The results showed that our model achieved an accuracy
of 0.98, which is the same as that of ChimerDriver (0.98).

3.1.2. Evaluation Using Holdout Validation

For the second evaluation method, following ChimerDriver, Dataset 1 was used as the
training dataset, and Dataset 3 was used as the test dataset. We evaluated the performance
using the F1 score, which is a widely used index, defined as the harmonic mean of sensitivity
and positive predictive value (PPV) or precision. In the test set, the F1 score of the proposed
model was 0.845, slightly outperforming ChimerDriver’s F1 score of 0.832.

3.2. Evaluation of the Explanation of Prediction

Regarding the explanatory capabilities of the XAI, we present its output for some cases
obtained from the COSMIC database [12]. For each case, the validity was evaluated from
both the physicians’ and engineers’ perspectives (details are provided in the Discussion
section).

For the evaluation, the model was trained using Dataset 1 (refer to the Materials and
Methods section). Although other datasets were used for tool comparison, we determined
that the model trained on Dataset 1, which was created to enrich the driver variant fusion
genes, was appropriate as a clinical model. The key point here is to assess how well the model
can provide explanations that are helpful for clinical decision making or further study.

3.2.1. Case 1: KIF5B::RET Fusion

Example 1 is a case of KIF5B::RET (COSMIC Fusion Mutation ID: COSF1242, Figure 4).
A sample was obtained from a patient with lung adenocarcinoma [31]. Among the features
used, the Pfam protein domain, the number of references, and UTR length were output
as the basis of explanation. The “Pathogenicity Score” (percentage) at the top of Figure 4
indicates the predicted pathogenicity of the case. For the two genes in the fusion gene, the
complete protein structure of the 5′ gene is shown in the first row, and that of the 3′ gene is
shown in the second row. Grey regions represent the entire protein, whereas other colors,
such as green and red, indicate the domain regions. The numbers below represent the
amino acid residue positions. The lollipops [32] represent the breakpoint positions, with
red indicating the predicted reference cases and blue indicating the known breakpoint cases
present in the DB. The size (radius) of the Laplace circles was proportional to the logarithm
of the frequency. Below, the explanations output from XAI are shown in a bulleted list in
descending numerical order. The numbers in parentheses are the explanation scores, which
range from 0 to 1, with higher values indicating more important features that influence the
determination. The threshold was set at 0.05.
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The keywords in blue are hyperlinked, and when you click on them, you get a
description of how the features that contribute to pathogenicity on the next screen are
generated using the LLM. Part of the results are shown in Figure 5.
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3.2.2. Case 2: BCR::JAK2 T Fusion

Example 2 shows a case of BCR::JAK2 (COSMIC Fusion Mutation ID: COSF757,
Figure 6). Samples were obtained from hematopoietic and lymphoid tissues. The BCR-
JAK2 fusion gene was found in hematopoietic and lymphoid acute myeloid leukemia
(AML), resulting from a t(9;22)(p24;q11) translocation [33]. As shown in Figure 6, seven
references and two kinase domains are used as elements of the explanation. See the
description in Example 1 for information regarding Figure 4.
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Figure 6 shows an explanation of the featured domain Pkinase and the pathogenicity
of the fusion gene BCR::JAK2.

XAI explained how the JAK2 tyrosine kinase domain is linked to pathogenicity, com-
plementing the information on the STAT5 pathway. Figure 7 shows the results generated
using the LLM as the explanation in sentences.

Cancers 2024, 16, x FOR PEER REVIEW 8 of 15 
 

 

Figure 5. Explanation using sentences of Example 1 (KIF5B::RET). 

3.2.2. Case 2: BCR::JAK2 T Fusion 
Example 2 shows a case of BCR::JAK2 (COSMIC Fusion Mutation ID: COSF757, 

Figure 6). Samples were obtained from hematopoietic and lymphoid tissues. The BCR-
JAK2 fusion gene was found in hematopoietic and lymphoid acute myeloid leukemia 
(AML), resulting from a t(9;22)(p24;q11) translocation [33]. As shown in Figure 6, seven 
references and two kinase domains are used as elements of the explanation. See the 
description in Example 1 for information regarding Figure 4. 

Figure 6 shows an explanation of the featured domain Pkinase and the pathogenicity 
of the fusion gene BCR::JAK2. 

XAI explained how the JAK2 tyrosine kinase domain is linked to pathogenicity, 
complementing the information on the STAT5 pathway. Figure 7 shows the results 
generated using the LLM as the explanation in sentences. 

 
Figure 6. Protein structures of the fusion genes of Example 2 (BCR::JAK2), and the explanation using 
features output from our XAI. Pkinase, protein kinase. 

 
Figure 7. Explanation of the results obtained using the LLM for Example 2 (BCR::JAK2) by 
sentences. 

3.2.3. Case 3: KIAA1549::BRAF Fusion 
Example 3 is a case with the KIAA1549::BRAF fusion gene (COSMIC Fusion 

Mutation ID: COSF481, Figure 8) [34]. The tumor was located in the thalamus. 
For Example 3, the selected case was from the dataset that included genes with 

miRNA features that were common in the overall data and where miRNAs were actually 
output in the explanation. In many cases, only one or two miRNAs were identified. See 
the description in Example 1 for information regarding Figure 8. 

There were twenty-four references, two lengths of UTRs, kinase domains, and several 
miRNAs as elements of the explanation. 

Figure 9 shows the results generated using the LLM as the explanation in sentences. 

 

*Summary* 
In summary, the pathogenicity of *BCR::JAK2* is driven by the constitutive 
activation of the JAK2 tyrosine kinase domain, resulting from its fusion with the 
BCR coiled-coil domain. This leads to aberrant signaling pathways that promote cell 
proliferation and survival, contributing to the development and progression of 
hematological malignancies. Targeted inhibition of the JAK2 kinase activity 
represents a therapeutic strategy for treating diseases associated with the 
*BCR::JAK2* fusion.  
 
*Key Point*: The *BCR::JAK2* fusion gene leads to the constitutive activation of 
the JAK2 kinase domain, driving uncontrolled cell proliferation and survival through 
aberrant signaling pathways, notably the STAT5 pathway. Targeted inhibition of this 
kinase activity has shown promise in abrogating these pathogenic signaling cascades 
and inducing apoptosis in transformed cells. 

Figure 7. Explanation of the results obtained using the LLM for Example 2 (BCR::JAK2) by sentences.

3.2.3. Case 3: KIAA1549::BRAF Fusion

Example 3 is a case with the KIAA1549::BRAF fusion gene (COSMIC Fusion Mutation
ID: COSF481, Figure 8) [34]. The tumor was located in the thalamus.
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For Example 3, the selected case was from the dataset that included genes with miRNA
features that were common in the overall data and where miRNAs were actually output
in the explanation. In many cases, only one or two miRNAs were identified. See the
description in Example 1 for information regarding Figure 8.

There were twenty-four references, two lengths of UTRs, kinase domains, and several
miRNAs as elements of the explanation.

Figure 9 shows the results generated using the LLM as the explanation in sentences.
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3.2.4. Case 4: IKZF1::LRBA Fusion

Example 4 is a case with the IKZF1::LRBA fusion gene (Figure 10). The fusion was
detected in the sample TCGA-D8-A27H-01A-11R-A16F-07 in TCGA (Breast invasive carci-
noma (BRCA)). In Figure 10, two “zf-C2H2” domains, three references, miRNA, and the
length of UTRs are included as elements of the explanation. Figure 11 shows the results
generated using the LLM as the explanation in sentences.
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3.2.5. Case 5: APOE::ALB Fusion

Example 5 is a case with the APOE::ALB fusion gene (Figure 12) from non-oncogenic
fusion data [30]. The sample is derived from normal cells in the liver, and is considered as
a gene-neutral type fusion event. In Figure 12, serum albumin domains, apolipoprotein
domain, and two lengths of UTRs are shown as elements of the explanation. Figure 13
shows the results generated using LLM as the explanation in sentences.
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4. Discussion

Regarding the accuracy of the prediction, based on the results of both cross-validation
and separate training/test datasets, our model performed slightly better than the state-of-
the-art ChimerDriver tool. Similar to ChimerDriver, we employed miRNA information in
our model.

As for the evaluation of explanatory capability, we showed three output examples.
In Example 1 (KIF5B::RET gene fusion, Figure 4), the gene fusion score was 100%, and

the gene was predicted to be pathogenic. To explain the reason for this prediction, three
features are shown (protein kinase (Pkinase) as a protein domain, fifteen references, and the
length of the 3pUTR, Figure 4). Our XAI outputs the important domain “Pkinase” in RET.
Because this is the most important feature of the pathogenicity of this fusion protein [31],
the results are promising. One important feature missing in the explanation is the coiled-
coil domain, with which the fusion of RET and KIF5B is maintained, along with the kinase
domain [35]. This domain promotes homodimerization, and leads to the activation of the
cancer-causing tyrosine kinase domain. After the prediction, we examined the dataset and
revealed that the training dataset downloaded from the Pfam database did not include
information regarding the coiled-coil domain. Therefore, when the training data include
more detailed information, the re-trained XAI can possibly explain pathogenicity with
tailored fine information, such as the coiled-coil domain.



Cancers 2024, 16, 1915 11 of 15

Next, for the sentence explanation, the “Key point” mentioned the RET tyrosine kinase
domain and suggested its importance in NSCLC; the statement was obtained from the
searched literature [35,36]. As KIF5B is considered a common fusion partner of RET in lung
adenocarcinoma [36], the prediction of our XAI model is appropriate. These results may be
helpful for further studies.

In Example 2 (BCR:JAK2 gene fusion, Figure 6), the gene fusion score was 100%, and
the gene was predicted to be pathogenic. The resulting BCR-JAK2 protein comprises the
coiled-coil domain from BCR attached to the JH1-tyrosine-kinase domain from JAK2 [37].
The BCR-JAK2 fusion protein is supposed to be constantly active due to a mechanism
similar to that of the well-known BCR-ABL fusion protein [38]. The coiled-coil domain of
BCR causes the fusion protein to form oligomers (clusters), which leads to the continuous
activation of the JAK2 kinase domain. Our XAI output the important “Pkinase” domains
(both JH1 and JH2) in JAK2. However, XAI failed to include the “Bcr-Abl_Oligo” domain
in BCR in the explanation.

Next, for the sentence explanation (Figure 7), our XAI explained how the JAK2 tyrosine
kinase domain is linked to pathogenicity, complementing the information on the STAT5
pathway. This suggestion is based on the literature [39] found on PubMed by our XAI.

In Example 3 (KIKIAA1549::BRAF gene fusion, Figure 8), the gene fusion score was
100%, and the gene was predicted to be pathogenic. The KIAA1549:BRAF fusion gene is
considered a driver in pilocytic astrocytoma [40], and constitutively activates the MAP
kinase pathway [41]. Our XAI output the important “Pkinase” domains in BRAF. The UTR
information as the target of miRNA and its length are highlighted. Most of the shown
miRNAs (miR-148 [42], miR-30 [43], and miR-202 [44]), except for miR-6838, are tumor
suppressors targeting KIAA2549, suggesting that this fusion is pathogenic.

Next, for the sentence explanation (Figure 9), our XAI explained how the BRAF tyro-
sine kinase domain is linked to pathogenicity, complementing the information on the MAP
pathway. The explanation is based on the literature [45,46] found on PubMed by our XAI.

In Example 4 (IKZF1::LRBA gene fusion, Figure 10), the gene fusion score was 100%,
and this fusion gene was correctly predicted to be pathogenic. In contrast to the above
examples of gene-activating events via gene fusion, this case was selected as a gene-
inactivating (loss of function) event. IKZF1, known as IKAROS, is a zinc finger transcription
factor, characterized by its DNA-binding domain that contains multiple zinc finger motifs
of the C2H2 type [47]. These motifs are crucial for the ability of the transcription factor to
bind DNA and regulate gene expression. IKZF1 plays a significant role in the development
and differentiation of B cells. Alterations in IKZF1, such as deletions, is implicated in
the pathogenesis of B-progenitor acute lymphoblastic leukemia (B-ALL) [47,48]. Our XAI
output successfully identified the zinc finger domains of zf-C2H2 as bases of the prediction.

Next, for the sentence explanation (Figure 11), our XAI explained how the zinc finger
domains of IKZF1 are linked to pathogenicity, explaining that gene fusion may disrupt the
normal DNA-binding function, leading to alterations of B-cell development, based on the
text in the searched literature [47].

In Example 5 (APOE::ALB gene fusion, Figure 12), the gene fusion score was 0%, and this
fusion was correctly predicted to be benign (non-pathogenic). As the APOE::ALB fusion was
obtained from the non-oncogenic dataset, this case should be regarded as a gene neutral-type
fusion event. Our XAI outputs the serum albumin and apolipoprotein domains in APOE as
bases of the prediction. It is generally difficult to identify a domain that does not contribute
to carcinogenesis. However, it is reasonable to assume that the XAI system has learned the
characteristics of domains that are not typically associated with cancer.

Next, for the sentence explanation (Figure 13), our XAI explained the potential
pathogenicity of the APOE::ALB fusion gene. The XAI clearly stated that no direct evidence
linking this fusion gene to pathogenicity was found in the literature. It also suggests that
the APOE::ALB fusion gene might have some potential impact on disease development
through various mechanisms, such as alterations in the lipid metabolism.
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The length of the UTR can contribute to the pathogenicity prediction [22]. However,
apart from the stability of the UTR, length is not widely recognized as an important feature
in the pathogenicity of each fusion gene. However, it is difficult to consider the biological
and medical implications of each case. The biological meaning of this is unknown, but
this range of lengths increased the score in the first case (KIF5B::RET) and the third case
(KIKIAA1549::BRAF), indicating a reason for this decision. This section briefly describes
the coding methodology. When the length of the UTR is 117, the number 117 should not be
regarded as a strict number, but should range from 96 to 127. If 117 is expressed as a binary
number, it is 1110101. This is coded in binary form in our coding to a length ranging from
1100000 to 1111111 in binary numbers using the first two digits, or 96–127 in decimal.

The current study does not aim to provide specific therapy options or medication
recommendations, as these aspects are beyond the scope of our work. Our study aims
to support identifying potential druggable candidates, rather than confirm their actual
applicability. Considerable validation is still required to determine whether these drug
candidates are truly applicable. Therefore, we are not yet at the stage of presenting actual
medications; this research is still in an exploratory phase. In Japan, the Center for Cancer
Genomics and Advanced Therapeutics (C-CAT), a public organization, is responsible for
suggesting applicable medications and clinical trials based on panel test results. Therefore,
for established cases, such functionality already exists, and our study does not intend to
duplicate the functionality of existing resources, but rather complement them by providing
insights into potential druggable targets.

In addition to focusing on the features crucial for decision making, explanations have
been provided using the LLM. This approach is believed to make the explanations more
understandable. There are two types of explanations in conventional XAI evaluation meth-
ods as follows: global explanations, which show how features contribute to predictions
across an entire dataset, and local explanations, which show how predictions are deter-
mined for individual cases. Here, the explanations are output from the perspective of
indicating which features were focused on making judgments for individual predictions
to determine whether further investigation by a physician is necessary. Our fundamental
framework, DeepTensor [23], adopts LIME [7], a well-known method for local explana-
tions. Conventional techniques often provide explanations oriented toward training data.
However, as mentioned in our previous paper [7], this study focused on the development
of the model for clinical use. To this end, a mechanism was devised that incorporates addi-
tional explanations related to the underlying mechanisms that can be easily understood
by physicians.

5. Conclusions

We developed the first machine learning model, XAI, to predict the pathogenicity of
SVs in cancers involving gene fusions, and provide explanations for these predictions. The
accuracy was as high as that of the existing models. Moreover, the explanatory functionality
of the prediction results makes our model more convenient than other models. We obtained
valid explanations for the basic pathogenic mechanisms in multiple cases.

These findings can be seen as a promising step towards the future of genomic medicine,
where efficient and accurate decision making or further surveys can be realized with the
support of AI.
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