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Abstract: Heart failure is the common concluding pathway for a majority of cardiovascular diseases
and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or
maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain
the development of cardiac hypertrophy and progression to heart failure. One of these includes
the activation of different neuroendocrine systems for elevating the circulating levels of different
vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins.
All these hormones are released in the circulation and stimulate different signal transduction sys-
tems by acting on their respective receptors on the cell membrane to promote protein synthesis in
cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones
induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the
occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines
and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to
maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive
hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine
oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote
oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling
abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases
and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon
activating some metalloproteinases. These observations support the view that elevated levels of
various vasoactive hormones, by producing hemodynamic overload and activating their respective
receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the
occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these
hormones plays a critical role in the progression of heart failure.

Keywords: vasoactive hormones; cardiac hypertrophy; heart failure; oxidative stress; Ca2+-handling
abnormalities; extracellular matrix; cardiac dysfunction; ventricular wall tension

1. Introduction

Heart failure is a major public health problem affecting about 26 million people
globally; there are 5.7 million in the United States alone and 670,000 new cases every
year [1,2]. This pathological state is associated with cardiac dysfunction, as well as changes
in electrical properties and myocardial metabolism, leading to the inability of the heart to
pump sufficient blood to meet the oxygen supply and nutrient demands of other organs
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in the body [3,4]. Heart failure is characterized by shortness of breath, decreased exercise
tolerance as well as fluid retention, and when accompanied by arrhythmias, there occurs
a high rate of sudden cardiac death. Several cardiovascular diseases such as coronary
artery disease, hypertension, aortic valve stenosis, mitral valve regurgitation, inflammatory
disease, genetic cardiomyopathy, diabetes and obesity eventually lead to the development
of heart failure [5–7]. The lifetime risk of developing heart failure is 1 in 5 and the long-term
survival is very poor; up to one-third of patients die within the first 12 months and about
half of them die within 5 years. The mortality due to heart failure in men is about 60%
whereas it is about 45% in women [8–10]. Thus, heart failure is a very serious disorder and
one of the most common causes of death.

Over the past 60 years, several mechanisms have been proposed to explain the patho-
genesis of heart failure [11–16]. These include (a) defects in energy production and uti-
lization, (b) increased preload and afterload, (c) elevated levels of vasoactive hormones
and altered signal transductions, (d) the development of intracellular Ca2+-overload and
Ca2+-handling abnormalities and (e) cardiac remodeling and subcellular defects. The
pathophysiology of cardiac remodeling during the development of heart failure has been
reviewed extensively [17–24]. Although all these pathologic mechanisms have been helpful
in developing a wide variety of interventions for the therapy of cardiac dysfunction in
heart failure, the research based on these issues has not provided sufficient information
for distinguishing different types of heart failure such as (a) heart failure with reduced
ejection fraction, (b) heart failure with preserved ejection fraction, (c) systolic heart failure
and (d) diastolic heart failure [25–30]. It may be noted that heart failure with a reduced
ejection fraction is caused by myocardial infarction and is usually associated with loss of
cardiomyocytes and replacement fibrosis. On the other hand, heart failure with a preserved
ejection fraction is seen in patients with chronic hypertension and chronic diabetes and
is associated with cardiomyocyte stiffness and interstitial fibrosis. It can be argued that
a description of some other distinctive features of heart failure with a preserved ejection
fraction versus that with a reduced ejection fraction would enhance the presentation. Since
the exact pathophysiological mechanisms with respect to the involvement of vasoactive hor-
mones in heart failure with preserved ejection fraction are not fully understood at present,
it would be prudent to focus the discussion on this topic, mainly on the pathogenesis of
heart failure with a reduced ejection fraction.

Since heart failure is usually preceded by cardiac hypertrophy, it is of critical impor-
tance that events leading to cardiac hypertrophy be understood to define the progression
of heart failure. Furthermore, cardiac hypertrophy under different situations at the initial
stages serves as an adaptative mechanism and is considered to be compensatory or physio-
logical hypertrophy. However, if the stimulus is not removed, there occurs a transition from
physiological cardiac hypertrophy to pathological hypertrophy. The mechanisms for the
transition of physiological (adaptive) cardiac hypertrophy to pathological (maladaptive)
hypertrophy as well as the characteristics of both these forms of cardiac hypertrophy are
reviewed elsewhere [31–40]. It is emphasized that cardiac hypertrophy, as seen due to
exercise, is not always of a pathological nature. Furthermore, the combination of fibrosis
and hypertrophy is considered to be a hallmark of pathological hypertrophy as well as
cardiac remodeling and dysfunction. It is pointed out there are three types of cardiac hy-
pertrophy that develop to reduce the ventricular wall; these include (a) concentric cardiac
hypertrophy, where the muscle mass is increased via the thickening of cardiomyocytes as
seen in response to pressure overload; (b) eccentric cardiac hypertrophy, which is associated
with an increase in muscle mass via the lengthening of cardiomyocytes as seen in response
to volume overload and (c) mixed concentric and eccentric cardiac hypertrophy, where the
muscle is increased both via the thickening and lengthening of cardiomyocytes as seen in
response to myocardial damage due to myocardial infarction. These structural changes
in the size and shape of myocardium in both physiological and pathological forms of
cardiac hypertrophy are generally indicated as cardiac remodeling and it is the pathological
(adverse) cardiac hypertrophy that results in the development of heart failure.
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Several neuroendocrine systems and pathological factors are not only inter-related
with each other but are also intimately involved in the development of cardiac hypertrophy
as well as the progression of heart failure [18,20,24,35,41–47]. Some of the endocrine systems
are shown in Figure 1. It may be noted that myocardial injury due to myocardial infarction is
known to result in activations of the sympathetic nervous system (SNS), posterior pituitary,
endothelium and platelets, which result in the release of different vasoactive hormones
such as norepinephrine, vasopressin, endothelins and serotonin, respectively, whereas the
activation of the renin–angiotensin system (RAS) promotes the formation of angiotensin
II upon the release of renin from the kidney. These vasoactive hormones have also been
shown to induce the development of pathological stimuli, including pressure overload,
volume overload, inflammation, increased ventricular wall tension and other abnormalities
during the development of cardiac hypertrophy and heart failure. However, only scattered
information is available regarding mechanisms for the transition of cardiac hypertrophy to
heart failure.
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Figure 1. Some endocrine systems involved in the development of cardiac hypertrophy and heart
failure through the release of different vasoactive hormones. SNS—sympathetic nervous system;
RAS—renin–angiotensin system.

Although plasma levels of several vasoactive neurohumorals and growth factors are
elevated in cardiac hypertrophy and heart failure [41–49], mechanisms of their release as
well as formation seem to depend upon the type and stage of pathological stimulus. For
example, a depression in cardiac output and a decrease in blood pressure due to myocardial
infarction, cardiomyopathies and inflammatory diseases stimulate the SNS and peripheral
RAS for the release of catecholamines (norepinephrine from the sympathetic nerve endings
and epinephrine from the adrenal medulla) and promote the release of renin from the
kidney for the formation of Ang II, respectively. Activations of the posterior pituitary for
the release of vasopressin and the hypothalamic center for the release of different growth
factors are also considered to be due to a decrease in blood pressure. On the other hand, the
release of vasoactive hormones and growth factors under conditions of pressure overload
and volume overload is considered to occur as a consequence of increased ventricular
pressure stress and the activation of afferent nerve fibers connected to different centers in
the brain. In addition, increased ventricular wall stress due to hemodynamic overload can
be seen to affect vascular endothelium in the heart to release endothelins, mast cells and
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serotonergic nerve fibers to release serotonin, sympathetic nerve endings in the ventricle
to release norepinephrine and endogenous RAS to release angiotensin II. The activation
and aggregation of platelets by circulating norepinephrine and angiotensin II are the major
sources of elevated levels of serotonin. These several vasoactive hormones and growth
factors are considered to play an important role in the maintenance of hemodynamic
homeostasis, the development of cardiac hypertrophy and the progression of heart failure.

It is commonly held that prolonged exposure of the hypertrophied heart to high
levels of circulating vasoactive hormones or different pathological stimuli results in the
decompensation of the hypertrophied heart for the progression to heart failure. This article,
therefore, deals with a comprehensive discussion of signal transduction mechanisms for the
development of cardiac hypertrophy as well as an updated description of events that result
in the progression of cardiac hypertrophy to heart failure. Although elevated levels of
several other hormones such as aldosterone, thyroid hormone, arterial natriuretic peptide
(ANP), brain natriuretic peptide (BNP), insulin/insulin-like growth factor and other growth
factors and NO are observed in heart failure [48–57], the discussion on these aspects is
not included in this review. In fact, this article is intended to focus on the discussion of
some vasoactive hormones, which are known to produce hemodynamic overload and
increase ventricular wall tension. Since vasoactive hormones are also known to release
different proinflammatory cytokines and produce myocardial fibrosis, their participation
in the transition from adaptive cardiac hypertrophy to maladaptive hypertrophy will be
discussed. Furthermore, in view of the critical role of vasoactive hormones in inducing
oxidative stress and Ca2+-handling abnormalities in cardiomyocytes [58–65], it is planned
to highlight their involvement in the development of cardiac dysfunction and heart failure.

2. Role of Catecholamines in Cardiac Hypertrophy and Heart Failure

It is now well known that circulating levels of both norepinephrine and epinephrine
are increased during the development of heart disease under a wide variety of stressful
conditions [66,67]. In the initial stages, elevated levels of plasma catecholamines pro-
duce adaptive changes in the heart for maintaining cardiac function; however, at later
stages, these hormones result in cardiac dysfunction and cardiomyopathy. Catecholamines
have been demonstrated to increase cardiac function and induce cardiac hypertrophy via
β-adrenoceptors, activating Gs-protein–adenylyl cyclase complex and promoting the forma-
tion of cyclic AMP [17,68–71]. The increased concentration of cyclic AMP activates protein
kinase A (PKA) and phosphorylates various intracellular sites to increase Ca2+-movements
and protein synthesis in cardiomyocytes. In fact, catecholamines have been reported to
stimulate subcellular Ca2+-transport, cardiac gene expression and protein synthesis for
the induction of adaptive changes in the heart [72–74]. These alterations through elevated
levels of circulating catecholamines in cardiac hypertrophy were attenuated through the
β-adrenoceptor blockade as well as Ca2+-antagonists [75]. Furthermore, the inhibition of
extracellular signal-regulated kinases (ERK 1/2) was found to abolish the catecholamine-
induced cardiac gene expression [74]. It appears that the β-adrenoceptors-PKA-ERK1/2-
associated signal transduction system may be involved in the initial hypertrophic response
as well as in augmenting cardiac function via catecholamines.

The increase in the cardiac contractile activity and hypertrophic growth action of cate-
cholamines under physiological conditions is mainly modulated through β-adrenoceptor-
associated mechanisms [17,76]; however, α-adrenoceptor-associated signal transduction is
considered to become more apparent for initiating the progression of cardiac hypertrophy
under pathological situations [77]. The activation of α-adrenoceptors via norepinephrine
has been shown to stimulate phospholipase C (PLC), which is coupled with Gq-proteins,
and results in the production of 1,2 diacylglycerol (DAG) and inositol -1, 4, -5 triphosphate
(IP3), the activation of protein kinase C (PKC) and mitogen-activated protein kinase (MAP
kinase, ERK1/2). The activation of this signaling pathway is associated with the release
of intracellular Ca2+ and the induction of hypertrophic response in cardiomyocytes [78].
The development of cardiac hypertrophy in spontaneously hypertensive rats, cardiomy-
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opathic hamsters and volume-overloaded rats has been shown to be associated with the
activation of PLC [79–81]. Norepinephrine-induced cardiac hypertrophy, gene expression
and protein synthesis were attenuated via U73122, an inhibitor of PLC, as well as pra-
zosin, an α-adrenergic receptor blocker [82]. A depression in norepinephrine-stimulated
gene expression and protein synthesis in cardiomyocytes via bisindolylmaleimide -1, a
PKC inhibitor, and PL98059, an ERK1/2 inhibitor, indicated that PKC-ERK1/2 may be
involved in the PLC-associated signal transduction pathway. It is pointed out that the
stimulation of protein synthesis in cardiomyocytes has also been reported to occur through
phosphatidic acid, a product of phospholipase D activation, for the development of cardiac
hypertrophy [83,84]. Thus, phospholipid-mediated signal transduction upon the activation
of α-adrenoceptors may represent an important mechanism for the occurrence of cardiac
hypertrophy due to catecholamines.

It needs to be emphasized that the actions of catecholamines at the initial stages are ben-
eficial for maintaining cardiac function, but their delayed effects are deleterious [17,66,67].
A schematic representation of events depicting the involvement of both β-adrenoceptors
and α-adrenoceptors in causing cardiac hypertrophy and the role of oxidative stress in
the occurrence of heart failure at the later stages of catecholamine action is shown in
Figure 2. It may be noted that β-adrenoceptor signal transduction is downregulated due to
high levels of circulating catecholamines for a prolonged period and, thus, there occurs
a depression in Ca2+-transport in cardiomyocytes, leading to the development of cardiac
dysfunction [17,72,85]. Such a decrease in subcellular Ca2+-transport via high levels of
plasma catecholamines has been shown to be a consequence of the occurrence of oxidative
stress [86]. It is also pointed out that oxyradicals are generated during the oxidation of cate-
cholamines through both non-enzymatic and enzymatic mechanisms and under conditions
where the endogenous antioxidant pool becomes saturated or depressed, these oxyradi-
cals lead to the development of oxidative stress [87,88]. Catecholamines have also been
demonstrated to accumulate in cardiomyocytes, become oxidized through mitochondrial
monoamine oxidase and generate oxyradicals [89]. Furthermore, the cardiotoxic effects of
high levels of catecholamines are prevented via antioxidants such as vitamin E, vitamin
A, vitamin C, N-acetyl L-cysteine and sulfur-containing amino acids [90–92]. It may be
noted that in spite of several epidemiological and experimental studies showing the benefi-
cial effects of different vitamins in attenuating cardiovascular disorders, several clinical
investigations to determine the therapeutic effects of vitamins such as E or C have shown
inconclusive and inconsistent results [91]. Accordingly, it was suggested that antioxidant
vitamins may be involved in the prevention rather than the therapy of cardiovascular
disease [91]. Nonetheless, different adrenoceptor antagonists have been shown to exert
beneficial effects in heart failure not only by exerting antioxidant effects or attenuating
cardiac hypertrophy upon blocking α- or β-adrenoceptors but also by lowering the elevated
levels of plasma catecholamines upon acting on the sympathetic nerve terminals [93–95].
These observations suggest the involvement of oxidative stress in cardiac dysfunction
during the development of catecholamine-induced cardiomyopathy.
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progression of heart failure. PLC—phospholipase C. Low concentrations of plasma catecholamines
upon the activation of adrenoceptors induce cardiac hypertrophy, whereas high concentrations upon
oxidation for a prolonged period result in heart failure.

3. Role of Angiotensin II in Cardiac Hypertrophy and Heart Failure

Over the past six decades, extensive research has been carried out to understand
the involvement of angiotensin II (Ang II) in the development of hypertension, cardiac
hypertrophy and heart failure [96–104]. Ang II is a multifunctional hormone, which is
formed in both peripheral (circulating) and local (tissue) RAS. The generation of Ang
II in the peripheral RAS is associated with the release of renin from the kidneys via a
reduction in blood flow, the formation of Ang I from angiotensinogen in the liver by renin
and the conversion of Ang I to Ang II in the lung with the angiotensin-converting enzyme
(ACE). Although all components of the RAS are expressed in various organs, ACE is
mainly localized on fibroblasts as well as the endothelium; chymase is also involved in the
conversion of Ang I to Ang II in the heart. Thus, under a wide variety of pathophysiological
conditions, the circulating levels of Ang II are elevated upon the activation of the peripheral
RAS via reduced blood flow to the kidneys, whereas the activation of the cardiac RAS is
stimulated by increased ventricular wall tension to maintain hemodynamic homeostasis.
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Several excellent reviews concerning the pathophysiological implications of the activated
RAS as well as the mechanisms of Ang II action on the cardiovascular system are available
in the literature [105–110]. Although the exact time course for the activation of the RAS
due to any pathophysiological stimulus still remains to be established, it seems that the
activation of the RAS may lag behind that of the SNS because of the time required for the
synthesis of Ang II from angiotensinogen in the peripheral RAS as well as the development
of the ventricular wall tension for the release of Ang II from the cardiac RAS.

The elevated levels of Ang II not only produce vasoconstriction, cardiac hypertrophy
and heart failure but are also involved in release of catecholamines from the sympathetic
nerve terminals and the adrenal medulla for raising blood pressure, the release of aldos-
terone from the adrenal cortex for salt and fluid retention and the release of autocrine
factors such as transforming growth factors (TGF-β) and interleukin (IL-6) for inflamma-
tory responses [100–102,104,107]. The cardiovascular effects of Ang II are mediated by two
types of receptors, namely AT1R and AT2R. The interaction of Ang II with AT1R induces
prohypertensive, prohypertrophic and proinflammatory actions, whereas the interaction
of Ang II with AT2R has been shown to produce antihypertensive, antihypertrophic and
anti-inflammatory effects [102,104,111–114]. Both Ang I and Ang II are metabolized to Ang
(1–9) and Ang (1–7) with ACE2, the homologue of ACE, which is known to activate MAS
receptors (MASR) and produce antihypertensive, anti-inflammatory and antihypertrophic
actions [115–117]. Since the effects of AT1R activation are antagonized by the effects of
AT2R activation and MASR activation, an imbalance between the adverse actions of AT1R
activation and the beneficial effects of AT2R activation as well as MASR activation has
been suggested to determine the acceleration and progression of heart disease [104,118,119].
Although AT1R, AT2R and MASR are Gq- protein-coupled receptors [120,121], the sequence
of their activations during the development of cardiac hypertrophy and heart failure has
not yet been established.

The activation of the peripheral RAS has been shown to increase the level of plasma
Ang II rapidly and stimulate AT1R in vascular smooth muscles to elevate blood pressure
and produce a hypertrophic response [102,104]. The elevated blood pressure is considered
to increase afterload on the heart and, thus, increase the left ventricular wall tension to
activate the local RAS and release Ang II. Thus, Ang II from both peripheral and local
sources activates AT1R in cardiomyocytes to stimulate myocardial metabolism and cardiac
function in addition to inducing signal transduction for the process of cardiac hypertrophy.
In the early stages, the activation of AT1R is associated with the incorporation of different
amino acids and the stimulation of a signal transduction mechanism for the synthesis of
proteins and the development of adaptive cardiac hypertrophy [102,104,122,123]. The Ang
II- AT1R hypertrophic signal transduction includes the activation of sarcolemmal PLC,
resulting in (i) the formation of DAG, the stimulation of PKC and the activation of MAP
kinase and (ii) the formation of IP3, the release of Ca2+ from the sarcoplasmic reticulum
and the activation of Ca2+-calmodulin kinase for the occurrence of cardiac hypertrophy.
It is noteworthy that AT1R is coupled with NADPH oxidase (NOX)-2 in the sarcolemmal
membrane, whereas the production of small amounts of oxyradicals upon activating AT1R
is considered to change the redox status of cardiomyocytes and promote the hypertrophic
signal transduction pathway for the induction of adaptive cardiac hypertrophy [102,104].

Since Ang II is known to activate AT2R and its metabolite, Ang (1–7) activates MASR
to produce antihypertrophic responses for limiting the development of cardiac hypertrophy
induced through AT1R activation [102,104]; the net growth of myocardium due to Ang II is
considered to be a balance between the effects of AT1R activation and AT2R as well as MASR
activations. Several immediate early genes including c-fos, c-jun and c-myc are also induced
through the activation of AT1R for the development of cardiac hypertrophy [122–124]. The
activation of AT1R in the adrenal cortex by Ang II has also been documented to release
aldosterone and promote cardiac hypertrophy as a consequence of increasing the preload
on the heart due to its sodium retention and fluid-accumulating effects [103,104,125].
Thus, the development of adaptive cardiac hypertrophy via Ang II not only involves
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the AT1R-mediated signal transduction pathway but is also a consequence of increased
ventricular wall tension due to hemodynamic overload. It should also be noted that Ang
II has been shown to release proinflammatory cytokines such as interleukin (IL)-6, IL-1β
and tumor necrosis factor (TNF)-α and anti-inflammatory cytokines including IL-10 and
transforming growth factor (TGF)-β from macrophages and neutrophils [13,104,126,127].
These proinflammatory cytokines are known to promote the accumulation of collagen in
the extracellular matrix and fibrosis in cardiomyocytes. The progressive Ang-II-induced
activation of different isoforms of NOX has also been reported to exhaust the antioxidant
reserve and increase the concentration of oxyradicals [102,128–134] in cardiomyocytes. Such
an effect of Ang II has been shown to be associated with the occurrence of apoptosis and
fibrosis. Thus, it appears that both myocardial inflammation and high levels of oxyradicals
may be involved in the transition of adaptive cardiac hypertrophy to maladaptive cardiac
hypertrophy due to elevated levels of Ang II.

It is now becoming clear that acute exposure to Ang II is associated with the devel-
opment of adaptive cardiac hypertrophy in which cardiac function is either unaltered or
augmented, whereas prolonged exposure of the heart to Ang II results in the transition
of adaptive cardiac hypertrophy to maladaptive cardiac hypertrophy, in which cardiac
function is depressed; thereafter, a progression to a major health hazard occurs, namely
heart failure. A simplified schematic representation of some major events occurring during
the development of Ang II-induced cardiac hypertrophy and heart failure is shown in
Figure 3. Although the exact mechanisms associated with the progression of heart failure
subsequent to various pathological conditions are of a complex nature and not fully un-
derstood, the involvement of Ang II in this process is evident from the fact that various
blockers of the RAS and AT1R antagonists are well known to produce significant beneficial
effects [103,104]. Furthermore, a progressive increase in the degree of oxidative stress has
been claimed to be associated with the progression of heart failure [102,128–134]. There are
four major mechanisms that have been identified in the production of oxidative stress due
to prolonged exposure to Ang II [101–164]. These include (i) the activation of NOX-2 and
NOX-4 during the hypertrophic process; (ii) the exhaustion of antioxidant reserve due to
the continued activation of AT1R and the depressed activity of nuclear factor erythroid-2
elated factor 2; (iii) the stimulation of NOX-4 in mitochondria upon the entry of Ang
II in cardiomyocytes and (iv) the induction of functional hypoxia in the hypertrophied
myocardium due to the inadequate development of capillaries in comparison to cardiomy-
ocytes growth. The excessive development of oxidative stress in cardiomyocytes has been
reported to adversely affect the function of different subcellular organelles and result in
Ca2+-handling abnormalities, metabolic alterations, changes in cardiac gene expression and
the impairment of cardiac performance [58–62,101–104,134]. Although the role of cardiac
inflammation cannot be ruled out, the evidence available in the literature strongly supports
the view that oxidative stress plays a crucial role in the progression of heart failure due to
prolonged exposure to Ang II.
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4. Role of Serotonin in Cardiac Hypertrophy and Heart Failure

Serotonin (5-hydroxytryptamine; 5-HT) is a monoamine, which is present in platelets,
mast cells and sympathetic nerve terminals in the heart [135,136]. The release of this
hormone upon the aggregation of platelets as well as the degranulation of mast cells
has been shown to produce vasoconstriction, smooth muscle cell proliferation, coronary
spasm, tachycardia, inotropic effect, cardiac hypertrophy and fibrosis [137–141]. Although
there are several families of serotonin receptors present in the cardiovascular system, the
vasoconstriction and hypertrophic effects of this hormone are mainly mediated via 5-HT2A
and 5-HT2B receptors [142–144]. The activation of 5-HT2A receptors, which are coupled
with PLC through Gαq proteins, has been shown to stimulate PKC due to the formation of
DAG and induce a hypertrophic response involving MAP kinase [145]. Furthermore, the
activation of these receptors with serotonin has been demonstrated to accumulate IP3 upon
the hydrolysis of phosphoinositide for releasing Ca2+ from the intracellular pool [146–148].
Although the stimulation of both SNS and RAS is also known to activate platelets and
release serotonin, plasma levels of serotonin are increased due to ischemia-reperfusion,
atherosclerosis, coronary artery disease and heart failure [149–154]. Accordingly, the
serotonin-5-HT2A signal pathway is considered to regulate cardiovascular function in both
health and disease [149–156].

Several antiplatelet agents such as aspirin, clopidogrel and cilostazol, either alone or in
combination, have been reported to produce beneficial effects in diverse cardiovascular dis-
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eases including pulmonary hypertension [157,158], coronary artery abnormalities [159–163]
and ventricular arrhythmias and atrial fibrillation [155,156,164]. Furthermore, the 5-HT2A
receptor antagonist, ketanserin, has been shown to improve hemodynamic and neurohu-
moral alterations in patients with heart failure [165,166]. Sarpogrelate, another 5-HT2A
receptor antagonist, was also demonstrated to mitigate cardiac remodeling as well as sub-
cellular remodeling in heart failure due to myocardial infarction [167,168]. Sarpogrelate
has been reported to suppress Ang II-, endothelin-1- or phenylephrine-induced cardiac
hypertrophy in cultured cardiomyocytes in addition to attenuating systolic dysfunction
in mice subjected to transverse aortic constriction [169]. Since sarpogrelate was found
to inhibit the effects of different stimuli other than serotonin, it has been suggested that
this agent may affect some hypertrophic signaling other than that associated with 5-HT2A
activation [169]. Nonetheless, these observations support the view that serotonin is in-
volved in the pathogenesis of cardiovascular abnormalities, and it appears that various
antiplatelet agents and 5-HT2A antagonists may not be specific for acting on the same site
in the hypertrophic signal transduction pathway for serotonin.

Serotonin not only exerts vasoconstriction and raises blood pressure but is also known
to act as a growth factor, stimulating mitogenesis and migration of arterial smooth muscle
cells [143,144,170,171]. It produces cardiostimulatory effects [172,173] and is involved in
the development of cardiac hypertrophy as well as heart failure [151,155,156]. The plasma
levels of serotonin are correlated with the progression of heart failure involving CaMK
II/HDAC 4 signal transduction [150,174–177]. The activation of 5-HT2A receptors for the
induction of cardiac hypertrophy was observed to be associated with the ERK ½-GATA4
signal pathway [169]. Elevated levels of plasma serotonin were also reported in patients
with diastolic heart failure and ischemic heart disease and were formed to activate different
receptors such as 5-HT2B and 5-HT4 [178–184]. Serotonin has also been shown to play an
important role in regulating cardiac development and function through the involvement of
HT2B receptors, and in fact, the overexpression of 5-HT2B receptors has been demonstrated
to induce cardiac hypertrophy [185,186]. The interleukin-18-induced cardiac hypertrophy
was inhibited via pretreatment with the 5-HT2B receptor antagonist, SB215505, as well
as siRNA for the 5-HT2B receptor [187]. It may also be noted that aspirin, an antiplatelet
agent, has been reported to attenuate the right ventricular hypertrophy due to pulmonary
hypertension [158], whereas another antiplatelet agent, cilostazol, was shown to depress
myocardial infarction-induced right ventricular hypertrophy [167,168]. Thus, it appears
that the involvement of serotonin in the induction of cardiac hypertrophy and heart failure
due to different types of pathological stimuli may be associated with different types of
serotonin receptors as well as signal transduction pathways.

In view of the participation of platelets as a major source for the release of serotonin
during the development of cardiac hypertrophy and heart failure, a graphic presentation
of signal transduction events associated with pathological situations is given in Figure 4.
Elevated levels of serotonin upon activating its receptors and signal transduction pathway
promote protein synthesis and induce cardiac hypertrophy. Serotonin-induced vasocon-
striction and increased blood pressure can be seen to increase hemodynamic overload
on the heart and, thus, would also promote the occurrence of cardiac hypertrophy. Since
monoamine oxidase-A (mainly present in mitochondria) is involved in the degradation of
serotonin and the production of oxyradicals and H2O2 [188], it is suggested that serotonin
will not only change the redox status of cardiomyocytes for promoting cardiac hypertro-
phy upon producing a small amount of oxyradicals at initial stages but will also produce
oxidative stress, intracellular Ca2+-overload, apoptosis and necrosis for the induction of
cardiac dysfunction and heart failure [89,188–190].
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Figure 4. Role of the activation of platelets in the development of cardiac hypertrophy and progression
of heart failure. MAO—monoamine oxidase. Cardiac hypertrophy is induced by the activation of
serotonin receptors, whereas its transition to heart failure occurs due to the oxidation of serotonin
by MAO.

5. Role of Endothelin-1 in Cardiac Hypertrophy and Heart Failure

Following the discovery of endothelin in 1988 [191] and the identification of endothelin-
1 as the most potent vasoconstrictor [192,193], extensive research has been carried out to
understand the role of endothelin-1 in cardiovascular health and disease. Several excellent
reviews in the area of endothelin-1 molecular biology, pathophysiology and pharmacother-
apy have appeared in the literature [194–200]. This hormone is produced mainly in the
vascular endothelium and is known to increase blood pressure, exert a positive inotropic
effect and produce cardiac hypertrophy. In addition, endothelin-1 influences salt and water
retention homeostasis due to its interactions with angiotensin II, aldosterone and vaso-
pressin [195]. This hormone is released from the endothelium through hemodynamic shear
stress in the ventricle as well as through hypoxia, vasoactive hormones, growth factors
and inflammatory cytokines [196]. Low concentrations of endothelin-1 are considered to
maintain cardiovascular homeostasis, whereas the excessive production of this vasoactive
hormone has been demonstrated to result in hypertension, cardiac hypertrophy and heart
failure [195,196]. The cardiovascular effects of endothelin-1 are mediated by two types
of receptors, namely ETA and ETB [201]. While the activation of ETA is associated with
vascular constriction and cell proliferation as well as myocardial cell growth and cardiac
hypertrophy, the activation of ETB has been shown to produce vasodilatory and antipro-
liferative effects [201]. Thus, the net effect of endothelin-1 on the cardiovascular system
seems to be dependent upon the activity ratio of ETA/ETB.

ETA receptors are present on both vascular smooth muscle cells and cardiomyocytes,
whereas ETB receptors are present on endothelial cells [196,202,203]. Endothelin-1 has
been shown to produce smooth muscle contraction by activating ETA receptors, whereas
it promotes the production of NO in endothelial cells upon the activation of ETB recep-
tors [204,205]. Furthermore, endothelin-1 has been observed to increase contractile force
in the heart by activating ETA receptors [206]. Both ETA and ETB receptors are coupled to
PLC through Gq-proteins [207,208]. The activation of ETA in smooth muscle cells and car-
diomyocytes results in a hypertrophic response involving PLC-PKC-MAP kinase-mediated



Cells 2024, 13, 856 12 of 27

signal transduction mechanisms [194,199]. The activation of PLC has also been shown to
increase the intracellular concentration of Ca2+ for the occurrence of vasoconstriction and
cardiostimulation as well as apoptosis [194,195]. In addition, the activation of ETA receptors
through endothelin-1 is associated with the stimulation of phosphoinositide 3-kinase and
protein kinase Akt (or protein kinase B) for promoting protein synthesis and protecting
against the development of apoptosis [194,209,210]. The mitogenic effects of endothelin-1
for the induction of smooth muscle cell proliferation and cardiac growth are associated
with the induction of several proto-oncogenes such as c-fos, c-jun and c-myc [194,199].

There is a growing body of evidence to indicate that endothelin-1 is involved in the
pathogenesis of hypertension, cardiac hypertrophy and heart failure [194–196,199,211–216].
The increase in blood pressure due to endothelin-1 can be seen to increase the left ventric-
ular pressure and induce cardiac hypertrophy. It may also be noted that the induction of
pulmonary hypertension as a consequence of elevated levels of endothelin-1 would result
in hypertrophy of the right ventricle leading to right heart failure [215,216]. The role of
endothelin-1 in the development of pulmonary hypertension and right heart hypertrophy
is further substantiated by the fact that several ETA antagonists such as bosentan, maciten-
tan and ambrisentan have been shown to produce beneficial effects in patients with pul-
monary hypertension [194,198,217,218]. In addition to hemodynamic overload, endothelin-1
induces cardiac hypertrophy upon binding with ETA receptors and the stimulation of the
PLC-mediated signal transduction pathway [218–221]. It is also pointed out that plasma levels
of endothelin-1 have been reported to increase in heart failure due to different pathologi-
cal situations [222–227]. In fact, there occurs a positive correlation between plasma levels
of endothelin-1 and the degree of cardiac dysfunction in heart failure [228]. Furthermore,
endothelin-1 has been demonstrated to activate NOX for the generation of oxidative stress
via the involvement of the ETA-proline-rich tyrosine kinase-2 and Rac 1 pathway [229] and,
thus, can be seen to induce heart failure. Treatments with ETA antagonists such as bosentan
and BQ-123 have been shown to improve the cardiac function and survival of heart failure
subjects [230]. Several endothelin-1 receptor blockers [197,231] and salidroside, an antioxi-
dant [232], have also been demonstrated to inhibit adverse cardiac remodeling in heart failure.
A schematic representation of events for the development of cardiac hypertrophy and heart
failure due to endothelin-1 is shown in Figure 5.
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6. Role of Vasopressin in Cardiac Hypertrophy and Heart Failure

Vasopressin is a nonapeptide hormone with a six-member disulfide ring and a three-
member tail with a terminal carboxyl group [233,234]. This hormone is produced in
supraoptic and paraventricular nuclei of the hypothalamus and stored in the posterior pitu-
itary. Vasopressin is secreted in response to the activation of both osmotic and non-osmotic
receptors for maintaining body fluid homeostasis and peripheral vascular resistance under
several pathological conditions [47,197,235–237]. The osmotic secretion of this hormone is
regulated by osmoreceptors in the hypothalamus, which sense small changes in plasma
osmolarity due to alterations in sodium concentrations and results in the retention of water
rather than sodium [238,239]. On the other hand, the non-osmotic release of vasopressin is
controlled by baroreceptors in the left atrium, aortic arch and carotid sinus in response to
atrial underfilling due to a decrease in cardiac output or peripheral vascular resistance [240].
The synthesis of vasopressin has also been reported to occur in the heart in response to
pressure overload [241] but the significance of the hormone action from this source is not
clear except that it may exert some local or systemic effect. The activation of the SNS is
considered to promote the production of vasopressin [240], whereas Ang II has been shown
to affect its release [242].

There are two major G-protein-coupled vasopressin receptors, namely the V1a receptor
and the V2 receptor, which mediate the cardiovascular responses of this hormone in the
body [243]. The activation of V1a receptors has been demonstrated to increase contractile
force in the heart [244] and produce cardiac hypertrophy [245]. The increase in blood pres-
sure by vasopressin due to its action on vascular smooth muscle cells can be seen to increase
the afterload on the heart and promote the occurrence of cardiac hypertrophy. Vasopressin
has been reported to cause cardiac growth by promoting protein synthesis in neonatal and
adult cardiomyocytes [245,246]. It is pointed out that the interaction of V1a receptors with
vasopressin results in the activation of PLC-mediated signal transduction, involving the
stimulation of PKC and MAP kinase as well as the increase in the concentration of Ca2+ for
augmenting protein synthesis in cardiomyocytes and smooth muscle myocytes [247,248].
On the other hand, the activation of V2 receptors, which are mainly located on the ba-
solateral membrane in the renal medulla, leads to water retention in the body [248,249].
This antidiuretic hormone has also been shown to stimulate adenylyl cyclase, increase the
intracellular concentration of cyclic AMP and activate protein kinase A for increasing the
rate of insertion of water channel-containing vesicles into apical membrane [250]. Such
an action of V2 receptor activation increases water permeability [249] for increasing fluid
accumulation in the body, which is known to produce the preload on the heart. Thus,
vasopressin is considered to increase both the afterload and preload on the heart by activat-
ing the V1a receptors and V2 receptors, respectively. This hemodynamic overload on the
hypertrophied heart would increase the ventricular wall tension and release endogenous
Ang II and norepinephrine, which are known to promote the occurrence of oxidative stress
and induce heart failure. Accordingly, it appears that the transition of vasopressin-induced
cardiac hypertrophy to heart failure may also occur due to the development of oxidative
stress as a consequence of both Ang II and norepinephrine released from endogenous RAS
and sympathetic nerve endings in the heart. A schematic representation of events for the
induction of cardiac hypertrophy and heart failure due to vasopressin is given in Figure 6.

It has been reported that the plasma levels of vasopressin are elevated during the
development of heart failure [251–253]. While the activation of the V1a receptors via vaso-
pressin results in the development of vasoconstriction, hypertension, cardiac hypertrophy
and heart failure, the activation of the V2 receptors is associated with fluid retention,
leading to the development of volume overload, venous congestion, edema and lung
congestion [254–259]. Vasopressin not only causes water retention but also results in kid-
ney dysfunction in heart failure patients. These abnormalities are associated with the
occurrence of hyponatremia, which may limit the use of several agents such as diuretics for
the management of heart failure [260–263]. Nonetheless, various therapies based on the
antagonist effects of different agents on both the V1a receptor and V2 receptors have been



Cells 2024, 13, 856 14 of 27

developed for the treatment of heart failure [197]. Since these vasopressin blockers improve
cardiac function and reduce cardiac hypertrophy, it can be argued that vasopressin plays
an important role in the pathogenesis of cardiac hypertrophy and heart failure.
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7. Perspective and Concluding Remarks

Various cardiovascular diseases such as myocardial infarction, hypertension, diabetes,
aortic stenosis and valvular regurgitation, as well as inflammatory and genetic cardiomy-
opathies, are known to be associated with elevated levels of plasma vasoactive hormones.
Although it is generally claimed that different vasoactive hormones such as catecholamines,
angiotensin II, vasopressin, serotonin, and endothelins are involved in the pathogenesis of
heart failure, the exact mechanisms for their involvement in the development of cardiac
dysfunction in various diseases are not fully understood. Since heart failure is mostly
preceded by adaptive cardiac hypertrophy, it is not clear how these vasoactive hormones
participate in the transition of adaptive cardiac hypertrophy to maladaptive hypertrophy
and progression to heart failure. In this article, we have, therefore, updated the existing
information and described the evidence that these vasoactive hormones, through acting on
their respective receptors, stimulate different prohypertrophic signal transduction mech-
anisms in cardiomyocytes for the induction of cardiac hypertrophy. The activation of
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receptors via different hormones has also been shown to stimulate sarcolemmal NOX2 for
the production of oxyradicals and change the redox status of cardiomyocytes, which is con-
sidered to promote the hypertrophy process and the development of cardiac hypertrophy.
In addition, these vasoactive hormones increase intraventricular pressure, ventricular wall
tension and shear stress by inducing marked changes in the hemodynamic overload and
inotropic effect on the myocardium. The vasoactive hormones also act on fibroblasts and
promote the formation of collagen in the extracellular matrix as well as the development of
apoptosis and replacement fibrosis for the occurrence of maladaptive cardiac hypertrophy
by elevating the levels of proinflammatory cytokines such as IL-6 and TNF-α in cardiomy-
ocytes. It is, thus, evident that initial events involved in the increase of cardiac muscle
mass are associated with adaptive cardiac hypertrophy, whereas those dealing with the
development of myocardial replacement fibrosis and the accumulation of collagen in the
extracellular matrix are associated with maladaptive cardiac hypertrophy.

Although all vasoactive hormones are known to produce cardiac hypertrophy upon
stimulating protein synthesis through their specific but complex receptor-mediated sig-
nal transduction mechanisms [31–40], the nature of proteins involved in the growth of
cardiomyocytes, smooth muscle cells and fibroblasts seems to depend upon the type of
hormonal stimulus as well as clinical stage and experimental models of cardiac remodeling
and dysfunction. For example, YAP (yes-associated protein 1) has been demonstrated to
activate the nuclear effector of the Hippo pathway by upregulating glucose transporter
1 (GLUT1), promoting glycolysis and inducing the accumulation of serine, aspartate and
malate in physiological cardiac hypertrophy [264]. On the other hand, STING (stimulation
of interferon gene) has been shown to induce pathological hypertrophy by upregulating
inflammatory response and fibrosis upon increasing the expression of phospho-protein
kinase RNA-like endoplasmic reticulum (ER) kinase and phospho-inositol-requiring ki-
nase (all indices of ER stress) [265]. Furthermore, pathological cardiac hypertrophy was
attenuated with HINT1 (histidine triad nucleotide-binding protein 1) by suppressing the
expression of HOXA5 (homeobox A5) and inhibiting protein kinase Cβ type 1 and the
MAP kinase/extracellular signal-regulated kinase/ yin yang 1 signal pathway [266]. From
such complex observations, it can be appreciated that it is difficult to describe the ex-
act nature of proteins involved in the development of cardiac hypertrophied and failing
hearts. Particularly, it is pointed out that more than one vasoactive hormone is involved
in initiating the hypertrophic process, which may not only exert their effects due to their
own receptor-mediated signal transduction system but there may also occur cross talk
between their receptor mechanisms. For example, Ang II has been shown to release cat-
echolamines [267–269] and facilitate the formation of endothelin [270–272] and, thus, the
influence of adrenoreceptor and endothelin receptor activations in the development of car-
diac hypertrophy due to Ang II cannot be ruled out. Furthermore, Ang II is known to affect
different isoforms of NOX, which may result in Na+ retention by activating the epithelial
Na+-channels in the distal nephron, promoting Ca2+-influx in smooth muscles for increas-
ing blood pressure and inducing inflammation for producing cardiac fibrosis [273–275].
Such indirect effects of Ang II on NOX isoforms with respect to hemodynamic overload and
inflammation can also be seen to affect the Ang II-induced pathological cardiac hypertrophy
due to its receptor-mediated signal transduction. In addition, it should be mentioned that
the pro-hypertrophic, proinflammatory and pro-fibrotic actions of AT1R receptor activation
through Ang II are antagonized via the activation of AT2R as well as MasR activation
via Ang II metabolite, Ang1–7 [101–104]. Thus, any imbalance between the pro- and
anti-inflammatory mediators leads to the transition of adaptive cardiac hypertrophy to
maladaptive cardiac hypertrophy.

It needs to be emphasized that the vasoactive hormones are not only involved in the
genesis of cardiac hypertrophy but are also considered to participate in the progression
of cardiac maladaptive hypertrophy to heart failure. For example, both catecholamines
and serotonin have been reported to enter cardiomyocytes and produce oxyradicals during
their oxidation by mitochondrial monoamine oxidase. On the other hand, angiotensin II
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and endothelins generate oxyradicals by activating both sarcolemmal and mitochondrial
NOX 4, whereas vasopressin may produce oxyradicals indirectly through mechanisms
associated with the release of endogenous norepinephrine and angiotensin II due to in-
creased intraventricular pressure and ventricular wall stress. The excessive generation of
oxyradicals through diverse mechanisms such as the activation of xanthine oxidase and
impaired electron transport in mitochondria can also be seen to develop oxidative stress
in the hypertrophied heart. Furthermore, the depletion or depression in the antioxidant
reserve in the hypertrophied heart via vasoactive hormones would favor the development
of oxidative stress during the progression of heart failure. It should be mentioned that
oxidative stress is known to activate metalloproteinases, produce the breakdown of col-
lagen crosslinks and destabilize the extracellular matrix. In addition, oxidative stress has
been reported to depress cardiac genes and activate calpain and other proteases either
directly or indirectly through changes in the concentration of intracellular Ca2+; these
alterations will induce subcellular defects and Ca2+-handling abnormalities in the hyper-
trophied heart. The increase in intracellular Ca2+ concentration in cardiomyocytes will also
induce mitochondrial Ca2+-overload due to the action of different vasoactive hormones.
This change will not only impair the process of energy production but will also generate
oxyradicals in the myocardium. Thus, oxidative stress may result in the development of
cardiac dysfunction and play an important role in the progression of cardiac hypertrophy
to heart failure due to vasoactive hormones. It is also pointed out that the failure of several
classical treatments such as inhibitors of the RAS and β-adrenoreceptor blockers to im-
prove the long-term outcome of heart failure is due to the fact that such interventions were
developed to suppress the effects of a single vasoactive hormone. Accordingly, in view of
the involvement of several vasoactive hormones in the development of heart failure, it is
suggested that some special combination therapy using different receptor antagonists be
designed to improve the treatment of this devastating health hazard.
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