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Abstract: Although Chronic Obstructive Pulmonary Disease (COPD) is highly prevalent, it is often
underdiagnosed. One of the main characteristics of this heterogeneous disease is the presence of
periods of acute clinical impairment (exacerbations). Obtaining blood biomarkers for either COPD as
a chronic entity or its exacerbations (AECOPD) will be particularly useful for the clinical management
of patients. However, most of the earlier studies have been characterized by potential biases derived
from pre-existing hypotheses in one or more of their analysis steps: some studies have only targeted
molecules already suggested by pre-existing knowledge, and others had initially carried out a
blind search but later compared the detected biomarkers among well-predefined clinical groups.
We hypothesized that a clinically blind cluster analysis on the results of a non-hypothesis-driven
wide proteomic search would determine an unbiased grouping of patients, potentially reflecting
their endotypes and/or clinical characteristics. To check this hypothesis, we included the plasma
samples from 24 clinically stable COPD patients, 10 additional patients with AECOPD, and 10 healthy
controls. The samples were analyzed through label-free liquid chromatography/tandem mass
spectrometry. Subsequently, the Scikit-learn machine learning module and K-means were used
for clustering the individuals based solely on their proteomic profiles. The obtained clusters were
confronted with clinical groups only at the end of the entire procedure. Although our clusters were
unable to differentiate stable COPD patients from healthy individuals, they segregated those patients
with AECOPD from the patients in stable conditions (sensitivity 80%, specificity 79%, and global
accuracy, 79.4%). Moreover, the proteins involved in the blind grouping process to identify AECOPD
were associated with five biological processes: inflammation, humoral immune response, blood
coagulation, modulation of lipid metabolism, and complement system pathways. Even though the
present results merit an external validation, our results suggest that the present blinded approach
may be useful to segregate AECOPD from stability in both the clinical setting and trials, favoring
more personalized medicine and clinical research.

Keywords: COPD; exacerbation; proteins; inflammation; immune response; lipid profile; coagulation;
complement system

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a clinical entity with high preva-
lence (around 10% of the adults in developed countries) even though it still shows a high
rate of underdiagnosis [1,2]. Moreover, COPD remains among the top three causes of
mortality and the ten most frequent causes of disability-adjusted life years (DALYs) [1,2],
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resulting in a major health problem. This chronic disorder is mostly caused by the chronic
inhalation of tobacco smoke and other hazardous chemicals, and is mainly characterized
by respiratory symptoms and persistent airflow obstruction, the latter expressed as an
obstructive respiratory pattern in forced spirometry [3–7]. Without any doubt, the need for
a validated spirometry for COPD diagnosis contributes to its underdiagnosis. In addition,
COPD patients also show exacerbation periods (AECOPD), defined by the acute worsening
of respiratory symptoms, requiring changes in the current medication [3–7]. Even though
this latter definition is very useful in the clinical setting, it contains enough elements of
subjectivity and potential bias to make it difficult to specifically assign the ‘exacerbation’
label to a particular episode of clinical impairment. Consequently, it is critical to be easily
able to identify COPD patients among the general population as well as the AECOPD
episodes in such patients. Since both circumstances probably have relatively specific un-
derlying molecular mechanisms (endotypes), these can be investigated through the search
for differential biological markers and pathways. To date, two different conceptual and
technical approaches have been used to cope with this challenge. The most common were
those driven by specific hypotheses based on pre-existing knowledge, generally using
conventional laboratory techniques [8–10]. However, this approach necessarily restricted
the search to a relatively small list of initially preselected blood biomarkers, which can be
considered as ‘the usual suspects’. Therefore, it is not surprising that the results have been
relatively disappointing. The complementary approach, which has been used more recently
with promising results, is to use non-hypothesis-driven and wide screening markers with
omic technologies. However, once the biological signals are obtained, the most common
next step has been to compare the results among predefined clinical groups, which is
a ‘non-blind approach’ that potentially restricts the possible outcomes and limits their
usefulness. Moreover, the majority of these latter studies have focused on specific groups
of patients belonging to wide multicentric cohorts, with the advantages and disadvantages
implicit in their particular inclusion criteria and a potential technical heterogeneity among
the centers [9,11]. Furthermore, most of the proposed panels of biomarkers and/or models
obtained with these two approaches have failed in the validation step carried out in new
cohorts [12,13]. By contrast, the use of non-hypothesis-driven statistical methods (such
as the clustering approach) in the second step of the analysis of omic data can provide
some additional advantages for blindly classifying individuals into distinct groups, whose
members will share biological features. The main objective of the present study was to test
the feasibility of this approach. Therefore, we initially obtained biological data from the
plasma of COPD patients and controls through a non-hypothesis-driven wide proteomic
approach using tandem liquid chromatography–mass spectrometry. As a second step, a
cluster analysis was applied to the proteomic results, and only at the end were these blindly
generated clusters confronted with those clinical conditions that are the diagnostic targets
of the study: COPD and AECOPD.

2. Materials and Methods
2.1. Study Design and Ethics

This is a case–control (COPD patients vs. healthy controls) as well as a case–case
(patients in stable conditions vs. those with AECOPD) study, prospectively carried out
in our hospital (and associated research center) to identify blood proteomic biomarkers
that could be potentially used to identify individuals with COPD in the general population
or differentiate AECOPD from periods of stability. The local Clinical Research Ethics
Committee (CEIC) of our institution approved the study protocol (ref. 2014/5895/I), and
the investigation was performed in close accordance with the principles of the Helsinki
Declaration. All participants provided their informed written consent after receiving
complete information on the objectives and techniques included in the study.
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2.2. Study Population

Stable COPD patients were recruited from our monographic outpatient clinic, whereas
AECOPD patients were obtained from the hospital ward of the respiratory department.
Healthy individuals were selected through a medical questionnaire as well as normal blood
analysis and forced spirometry. Individuals were carefully preselected in a random process
from age and sex subgroups, ensuring maximum intergroup age- and sex matching; and
all of them were European Caucasians from the Mediterranean area. Some individuals
included in the present investigation have also participated in a wider multicentric project
aimed at the identification of biomarkers for different COPD phenotypes following com-
parisons between predefined classical clinical groups [14,15]. Diagnosis of COPD and its
degrees of severity occurred following current guidelines [4,16]. Briefly, criteria for COPD
diagnosis were based on smoking history and a post-bronchodilator FEV1/FVC < 0.7, while
the disease severity was assessed both through (a) the level of FEV1 impairment (GOLD
I–IV), and (b) this item plus symptoms and an earlier history of AECOPD (GOLD A–B,
E). [4] Forced spirometry was carried out following ATS-ERS standards [17], and reference
values were those for a Mediterranean population [18,19]. Clinical stability (SCOPD) was
defined as the absence of AECOPD in the previous three months, whereas AECOPD was
designated as the presence of a sudden worsening of respiratory symptoms requiring
additional therapy [4], and both conditions were certified by a senior specialist in respira-
tory medicine. This care team was independent of the research group that performed the
proteomics study. Patients who were associated with other chronic respiratory disorders
were excluded.

2.3. Clinical and General Data

Demographic and clinical data were obtained from both (a) clinical records includ-
ing image techniques, blood analysis, and lung function tests, and (b) a standardized
questionnaire on respiratory symptoms.

2.4. Blood Sample Collection

Peripheral venipuncture was used to obtain blood samples, which were then put into
tubes with K3-EDTA for plasma analyses. All tubes were centrifuged for 15 min at 1500× g.
and supernatants were transferred to fresh tubes and kept at −80 ◦C until analysis.

2.5. Label-Free Liquid Chromatography/Tandem Mass Spectrometry (LC–MS/MS)

Label-free quantification (LFQ) proteomics was performed using an EASY-nLC 1000
and an LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). Full information on sample preparation, instrument parameters, protein identi-
fication, and quantification procedures has been published elsewhere ([20] and its on-line
supplement).

2.6. Statistical Analysis and Data Processing

Sample size calculation: The sample size for the study was estimated based on
some of our previous studies and using the PC-size software GRANMO 7.10, 2010; https:
//laalamedilla.org/Investigacion/Recursos/granmo.html [20–22]. We assumed an 80%
power to detect differences of more than 20% in primary outcomes, with a level of signifi-
cance (p) equal to or less than 0.05.

Clinical data: Descriptive statistics on demographic and clinical data are presented as
mean ± standard deviation or proportions. All continuous variables were examined for
normal distribution with the Kolmogorov–Smirnov test and variance homogeneity with the
Levene test. Since all clinical variables showed normal distribution, independent samples
t-tests were used to compare groups pairwise, whilst Pearson’s coefficient was employed
to evaluate potential correlations among quantitative variables. Categorical variables were
analyzed pairwise with the Fisher exact test. Bonferroni p-value adjustment was applied

https://laalamedilla.org/Investigacion/Recursos/granmo.html
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when multiple comparisons were present. An adjusted p-value ≤ 0.05 was again judged as
statistically significant.

2.7. Proteomic Data Preprocessing

Data normalization: To lessen the skewness of variable distributions and make them
available for parametric analysis, protein quantitation values were log2 transformed.

Immunoglobulin standardization: LC–MS/MS divides immunoglobulins into constant
chain and/or complete protein codes. So, a unifying method that combines both codes into
a unique classification was applied to ensure the consistency of data. The sum of raw LFQ
values was subsequently conducted for these new groups, resulting in the generation of
“normalized datasets”.

Data filtering: We calculated the proportion of missing values in Log2 normalized raw
proteomics datasets for each protein and discarded those proteins missing in more than
10% of samples.

Missing Value’s imputation: After removing proteins with >10% of missing values,
SampMin imputation was used on the already filtered datasets [23]. These imputed values
were calculated following the formula 0.95*min-value and were used for further steps of
the statistical analysis.

Generation of sub-datasets for cluster analyses: The following two sub-datasets were
generated for cluster analyses based on raw data: the dataset for COPD diagnosis in-
cluded data from controls and SCOPD groups, whereas the dataset for identification of
exacerbations included data from SCOPD and AECOPD subgroups.

2.8. Biological Cluster Generation and Evaluation

Machine-Learning unsupervised cluster generation: Clustering methods grouped study
individuals based only on their proteomic profile. Scikit-learn Machine Learning module in
Python (Wilmington, DE, USA) and K-means for either 2, 3, or 4 clusters, indistinctly, were
generated, and a total of 5000 iterations was set to detect the best clustering [24]. We used the
machine learning method proposed by Monti et al. to obtain the best informative and more
robust number of K-means clusters, and this procedure also generated new ensemble cluster-
ing [25]. Finally, other complementary clustering methods, including Affinity propagation,
MeanShift, and Agglomerative Clustering (i.e., Ward), were also tested [24].

Differences in general clinical characteristics between proteomic-based clusters: The
general characteristics (age, sex, and BMI, among others) of the individuals included
in the study were analyzed in each of the clusters obtained and selected in the earlier
steps. As previously mentioned, we used the Fisher exact test to determine differences
between categorical data, while independent samples t-tests were used to pairwise compare
continuous data.

Evaluation of clinical composition of clusters: Following the above-mentioned blind
approach, the obtained clusters were finally confronted with clinical groups. Based on
coincidences or discrepancies of the former with the latter, a confusion matrix was generated
and sensibility (SE), specificity (SP), Predictive Positive Value (PPV), Predictive Negative
Value (PNV), Overall Detection Accuracy (Acc), and Matthews Correlation Coefficient
(MCC, commonly known as the phi coefficient, φ, or rφ) were calculated for the most
relevant clusters.

Analysis of the Proteomic Profiles of selected clusters: Once clusters had been blindly
obtained, evaluated, and selected, the proteomic differences between them were analyzed.
For that, the initially obtained “normalized datasets” were used again but the imputation
of missing values was omitted in this particular case, and quantitative comparisons were
limited to those proteins detected in at least 50% of individuals in each cluster. As previously
mentioned, the homogeneity of the variances was determined by Levene’s test. When
data met the homogeneity assumption, single pairwise comparisons were analyzed using
the Student’s independent samples t-test, while the Welch t-test was used for data with
unequal variances. We then calculated the protein fold change (log2FC). To consider the
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presence of multiple comparisons, the Benjamini–Hochberg procedure was used to calculate
false discovery rates (FDR) [26], and only groups of peptides and/or proteins reaching
values <0.05 were deemed to be of high confidence. Those groups of proteins/peptides
differentially abundant between clusters (DAP) were mapped with UniProt (Uniprot,
Geneve, Switzerland) via REST API, being limited to human proteins in the UniProtKB
dataset (v2023) (Uniprot) [27].

Protein–protein interactions (PPI): The STRING platform (STRING Consortium, Kearney,
NE, USA) was used (interaction score ≥ 0.4) to further evaluate the biological significance
of DAPs, and, since this database’s coverage of immunoglobulin interactions is very un-
even, the following additional databases were also employed: UniProt, tfact2gene (EXTRI,
Herning, Denmark), Reactome-FIs (Cytoscape, Seattle, WA, USA), MPIDB MINT (Database
Commons, Beijing, China), MatrixDB (Database Commons), iRefIndex, Int-Act, InnateDB,
IMEx, HPIDb, EBI-GOA-nonIntAct (UCL-EBI, London-Hinxton, UK), ChEMBL (EMBL-EBI,
Heilderberg-Hinxton, Germany-UK), and British Heart Foundation—University College
London (bhf-ucl). The Cytoscape program (v3.8.0, http://www.cytoscape.org, accesed on
15 January 2024) was used to create network representations, which were then used to
visualize combined interactions.

3. Results
3.1. Subject Characteristics

The final population was composed of 24 clinically stable COPD patients (SCOPD),
10 patients with an AECOPD, and 10 healthy individuals (control), and a summary of
the most relevant clinical features in these groups is presented in Table 1. Concerning
the demographic data, all the groups were comparable, and the two COPD groups were
also comparable regarding their cigarette exposure, lung function, illness severity, and
exacerbator profiles. Only the leukocyte and neutrophil counts were higher in the AECOPD
group when compared with the other two groups, and the C-reactive protein (CRP) shows
a strong tendency along the same lines. However, all these differences were nullified when
new analyses were performed in the former group during the next phase of clinical stability.

Table 1. Clinical characteristics of the study population.

COPD

CONTROL
(n = 10)

SCOPD
(n = 24)

AECOPD
(n = 10)

General characteristics

Age, yr. 63 ± 11 66 ± 9 63 ± 7
Males, % in the group 60 58 56

BMI, kg/m2 25.3 ± 2.0 24.8 ± 6.9 26.2 ± 4.7

Smoking status

Current or Ex, % in the
group 60 100 * 100 *

Pack/years smoking 13.2 ± 15.5 52.8 ± 22.8 *** 62.0 ± 34.2 **

Lung Function

FEV1, % pred. 82 ± 3 40 ± 10 *** 36 ± 12 ***
FEV1/FVC, % 80 ± 2 49 ± 10 *** 52 ± 12 **
DLco, % pred. NA 45 ± 14 40 ± 8

GOLD Stage

I–II, % within the group --- 21 22
III–IV, % within the group --- 79 78
A–B, % within the group --- 25 20

E, % within the group --- 75 80

http://www.cytoscape.org
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Table 1. Cont.

COPD

CONTROL
(n = 10)

SCOPD
(n = 24)

AECOPD
(n = 10)

Exacerbations

last year, n --- 2.6 ± 2.6 2.4 ± 1.6
0–2/year, % in the group --- 42 50
>2/year, % in the group --- 58 50

Conventional Blood Analysis

Leucocytes, n/µL 7216 ± 1356 8384 ± 2693 12,486 ± 5551 *,#

Neutrophils, n/µL 4337 ± 1030 5409 ± 2323 10,243 ± 5665 *,##

Eosinophils, n/µL 221 ± 142 214 ± 230 119 ± 181
CRP, mg/dL 0.4 ± 0.2 0.9 ± 1.4 3.1 ± 3.9

Fibrinogen, mg/dL 207 ± 31 210 ± 57 221 ± 65
Values are shown as mean± SD or percentages. Significances (p-adjusted values): *, p < 0.05; **, p < 0.01;
***, p < 0.001 for COPD compared to control; #, p < 0.05; ##, p < 0.01 for SCOPD compared to AECOPD. Abbre-
viations: SCOPD, stable COPD; AECOPD, exacerbated COPD; BMI, body mass index; FEV1, forced expiratory
volume in the first second; FVC, Forced Vital Capacity; DLCO, diffusion capacity for carbon monoxide; CRP,
C-reactive protein; NA, non-available.

3.2. Characteristics of the Detected Proteins

Overall, 256 peptide groups, which correspond to 361 single proteins/peptides, and
93 groups of immunoglobulin peptides, corresponding to 125 single peptides, were detected
in the plasma of the study participants. The complete list of the identified proteins/peptides
is available in the Supplementary Materials (Table S1, Supplementary Materials).

3.3. Clinical-Blind Clusters under Evaluation
3.3.1. COPD Diagnosis in a Stable Condition

To assess the potential of the clustering method for identifying the presence of COPD,
a total of 11 clusters using SCOPD and control proteomic data were used (Table S2, Sup-
plementary Materials). Twenty-seven of these clusters were then generated through a
simple K-means analysis arranged to generate two, three, or four clusters (i.e., nine for
each one). As previously mentioned, the best cluster number was chosen following Monti’s
machine-learning approach, and it was two.

Unfortunately, this clustering analysis was unable to approximate the segregation
between COPD and healthy controls when proteomic data were finally confronted with
these clinical groups (Tables 2 and 3). The accuracy was low, reflecting poor sensitivity and
even worse specificity [28].

Table 2. Main clinical characteristics in each K-means-2 cluster found by proteomics, and confronta-
tion of these clusters with the distribution of actual COPD and control groups.

Proteomic Clusters

A B

Individuals, n 24 10

General characteristics

Age, yr. 64 ± 9 67 ± 10
Males, n (% in the cluster) 12 (50) 8 (80)

BMI, kg/m2 25.7 ± 6.2 23.1 ± 4.8

Group

CONTROL, n (% in the cluster) 8 (33) 2 (20)
SCOPD, n (% in the cluster) 16 (67) 8 (80)

Values are expressed as mean ± SD, or percentage. Abbreviations: BMI, body mass index; SCOPD, stable COPD.
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Table 3. Clustering outcomes for COPD diagnosis.

N of
Clusters SP SE PPV PNV ACC MCC Raw

p-Value Bonferroni

2 20 (16) 67 (19) 67 (19) 20 (16) 53 (20) −0.13 0.68 1
Values are expressed as percentage (CI95). Cross-validation Fisher and Bonferroni p-values are included. Abbre-
viations: SP, specificity; SE, sensitivity; PPV, Predictive Positive Value; PNV, Predictive Negative Value; ACC,
accuracy; MCC, Matthews correlation coefficient.

3.3.2. Identification of Exacerbation Episodes

The same general procedure was performed to identify the acute episodes, but this
time data from AECOPD and SCOPD were used. The best cluster number was again two.
However, on this occasion, the proteomic clustering was able to detect most of the patients
with exacerbation, clearly differentiating them from those in a stable condition, with a high
degree of accuracy (79.3%) (Tables 4 and 5). Indeed, this two-cluster approach showed good
specificity and sensitivity. The other algorithms that were also tested (Affinity Propagation,
Mean Shift, and Ward Agglomerative Clustering) did not add significant improvements to
the former results.

Table 4. Main clinical characteristics in each K-means-2 cluster and confrontation with the distribution
of stable and exacerbated COPD patients.

Proteomic Clusters

A B

Individuals, n 13 21

General characteristics

Age, yr. 66 ± 8 64 ± 9
Males, n (% in the cluster) 6 (46) 13 (62)

BMI, kg/m2 29.3 ± 7.4 23.6 ± 4.8 *

COPD group

SCOPD, n (% in the cluster) 5 (39) 19 (91) **
AECOPD, n (% in the cluster) 8 (61) 2 (9) **

Values are expressed as mean± SD, or percentage. Significance: *, p < 0.05; **, p < 0.01 B compared to A.
Abbreviations: AECOPD, acutely exacerbated COPD; SCOPD, stable COPD; BMI, body mass index.

Table 5. Clustering outcomes for identification of exacerbations.

N of
Clusters SP SE PPV PNV ACC MCC Raw

p-Value Bonferroni

2 79 (25) 80 (25) 62 (30) 91 (18) 79.3
(25) 0.55 <0.01 <0.01

Values are expressed as percentage (CI95). Cross-validation Fisher p-value and Bonferroni correction value are
shown. Abbreviations: SP, specificity; SE, sensitivity; PPV, Predictive Positive Value; PNV, Predictive Negative
Value; ACC, accuracy; MCC, Matthews correlation coefficient.

3.4. Key Biological Processes Differentiating AECOPD from Clinical Stability According to
Clinically Blinded Clusters

Since K-means-2 clusters accurately differentiated the exacerbated patients from stable
ones, a deeper analysis was performed to identify the differential proteomic profile of both
clusters. Cluster A (the one closer to an “exacerbator-like profile”) vs. Cluster B (a “SCOPD-
like profile”) reported a total of 38 groups of DAPs, 13 over- and 25 under-represented in the
former cluster. These results correspond to 54 proteins/peptides in the UniProt Database
(14 would be over- and 40 under-represented) (Table S3, Supplementary Materials). The
protein–protein interaction network analysis of those results revealed that the DAPs were
associated with five biological processes, including the global inflammatory response,
antibody-mediated immune mechanisms, blood coagulation, lipid profile modulation, and
complement pathways (Figures 1 and 2).
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remodeling systems, and (V) the complement system.
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4. Discussion

The most relevant result of the present study is the demonstration that it is possible
to blindly approximate the identification of COPD patients with an acute exacerbation,
segregating them from those in stable conditions, by using only their systemic proteomic
profile. Moreover, the entire approach was independent of clinical data. In other words,
the differences observed between the stable and acutely exacerbated COPD came from
a technique unbiased by any pre-existing hypothesis. Our findings not only enabled the
obtention of new biomarkers for AECOPD but also may suggest additional pathophysio-
logical mechanisms occurring in these acute episodes, thus potentially opening the way
for new therapeutic strategies. To offer more personalized and precise medicine for COPD
patients, a more accurate diagnosis and treatment are especially interesting [12,29]. Unfortu-
nately, our methodological approach was unable to differentiate stable COPD patients from
healthy individuals, which would have been of potential utility in the screening procedures.

The present findings reinforce our general hypothesis that a proteomic analysis blind to
any clinical data may be useful to characterize certain circumstances linked to COPD, such
as in the case of AECOPD. Some of the biomarkers obtained in the blood of exacerbated pa-
tients are relatively new since they do not fully correspond to those suggested in most of the
earlier literature. Although the proteomic network disclosed two relatively expected groups
(proteins/peptides related to inflammatory and antibody-mediated immune responses),
they appeared along with other aggregations composed of the molecules involved in blood
coagulation, the modulation of the lipid profile, and the complement system. Moreover,
the approach used in the present study may also be useful to characterize different COPD
phenotypes (chronic bronchitis, pulmonary emphysema, frequent exacerbator, eosinophilic
inflammation, etc.). This possibility should be explored in further studies.

4.1. The Clinically Blind Approach

Many of the previous ‘omic’ studies carried out to identify the biological markers of
COPD and/or its different circumstances have been performed through transcriptomic
analyses since this approach enables the obtention of very broad results at a relatively
low cost [30–32]. However, there is also a need to incorporate studies on proteins since
these molecules are ultimately the actual performers in most biological processes. How-
ever, former proteomic studies have generally followed strategies that include different
components linked to pre-existing hypotheses. On the one hand, some of these studies
have been oriented to detect the markers that were predefined by the most widely ac-
cepted hypotheses on the pathophysiology of either COPD or AECOPD [9,10,33]. This
is a restrictive bias that intrinsically limits the scope of the results [34]. In our study, the
broadest search was performed blindly via untargeted protein screening using LC–MS/MS.
The other non-blind strategy used in most of the previous studies consisted of directly
comparing the biological results between well-predefined clinical groups (i.e., patients
vs. healthy controls, or among different sets of COPD patients grouped by their clinical
characteristics, phenotypes, or even treatable traits) [9,10,33]. This is a logical design to
assess the differences between clear clinical profiles [12,35]. However, this latter strategy
does not enable obtaining biological profiles that would be completely independent of
the previous knowledge. Moreover, some of these studies have been based on pools of
blood samples from patients considered to belong to the same clinical group, an approach
that has an implicit bias that involves the loss of inter-individual information and avoids
potential post-hoc segregation based on the biological results. In contrast, the approach
used here consists of a protein-based cluster analysis, which did not consider any clinical
data until the final step of the analysis, and then only investigated whether proteomic
clusters make clinical sense. This is an approach that provides maximum independence to
data, facilitating the obtention of novel findings [25,36,37].

Although the use of cluster analysis is not new in the field of COPD, in the vast
majority of the already published studies, it has only been applied to clinical variables,
including some co-authored by members of our group [38–40]. This strategy is fully
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justified to identify new clinical phenotypes, but it does not consider the contribution of the
corresponding biological substrates (endotypes) and, therefore, that of their corresponding
pathophysiological mechanisms.

The specific usefulness of cluster analysis to identify each one of the two targeted
clinical populations of interest for the present study (i.e., COPD and its AECOPD) is
analyzed in the following two sections.

4.2. Clinical Usefulness
4.2.1. COPD Diagnosis

One of the main objectives of the present study was to assess the usefulness of our
approach in detecting the presence of COPD. This could be useful to reduce underdiag-
nosis (considered to be around 70%) [41,42], especially in patients with mild to moderate
disease, who are permanently in stable clinical conditions, when the symptoms may not
be very suggestive of the disease. Unfortunately, the clusters obtained here only showed
moderate-to-low levels of accuracy to identify the disease. This could be explained simply
by the heterogeneity of COPD. In fact, due to its open design, our population included
stable patients who combined different characteristics and phenotypes (males and females,
with rare or more frequent exacerbations and the presence or absence of blood eosinophilia,
etc.). These are groups that may show mildly differentiated proteomic profiles, as seems
to be indicated in some previous studies [43,44]. Other authors, however, also using a
case–control design and a similar proteomic methodology, have found a relatively common
profile for stable COPD patients [12,45,46]. It is therefore possible that future cluster analy-
ses including larger populations, with a high number of subjects from each demographic
and phenotypic group, and/or incorporating more biological levels (RNA, metabolites,
etc.), will enable the obtention of more promising results. Another explanation for our
poor results in COPD diagnosis would be that the biological changes were of a very low
intensity in the stable patients, which would make them partially undetectable through the
methods employed here and their proteomic differences with the controls.

4.2.2. Identification of AECOPD

The acute episodes were identified through the cluster analysis used in the present
investigation. This is the first proteomic study that enables such an identification, which can
be potentially useful for both clinical practice and the more objective and precise inclusion
of AECOPD patients in clinical trials. The current definition of AECOPD is based on
worsening symptoms requiring modifications to the treatment. As previously mentioned,
this has undoubted subjective components both on the side of the patient and from the
perspective of the care team.

4.2.3. Main Protein Groups Differentiating Exacerbations from Stability According to
Biological Clusters

When the differentially expressed proteins were analyzed among the clusters obtained
in the present study, they appeared to be concentrated into five large groups (Figure 1). Two
of them were certainly expected from the beginning since they were those belonging to in-
flammation and the antibody-mediated immune response [3,4,7]. Indeed, the inflammatory
proteins were generally overexpressed in the cluster linked predominantly to AECOPD,
indicating the already well-known increase in inflammatory activity occurring during
these acute events [4]. These proteins included some that have already been described
to be increased in AECOPD, as is the case for Serum Amyloid A1 (SAA), Haptoglobin
(HP), Lipopolysaccharide binding protein (LBP), and other markers related to inflamma-
tion [12,47–49]. In particular, SAA is known to induce the activation and chemotaxis of
neutrophils and other inflammatory cells, promoting the release of matrix metalloproteases
and inducing the expression of proinflammatory cytokines [50]. The proteins/peptides
present in the second group, in turn, were mostly immunoglobulin fractions, which were
decreased in the cluster most closely associated with AECOPD. These fractions were free
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light chains (Kappa and Lambda), a finding that can be interpreted in two different ways.
It may be due to a reduction in their concentration, secondary to the increased use dur-
ing AECOPD episodes, or it may have been the result of a synthesis failure in different
immunoglobulins, which in turn could have facilitated the acute episodes. This latter hy-
pothesis appears to be more feasible since various authors have reported low blood levels
of free light chains of immunoglobulins in COPD patients, both at AECOPD or even during
stable conditions [51–53]. In the following paragraphs, the other three protein groups
that were associated with the cluster most closely linked to AECOPD will be analyzed in
more detail.

A third group was constituted by proteins participating in blood coagulation, which
is not entirely surprising. In fact, a prothrombotic environment is not rare in COPD
patients [54,55], especially during AECOPD, where some additional factors such as a
greater reduction in physical activity are also added [56–58]. Our present proteomic
findings suggest that the specific prothrombotic status during AECOPD may be due to
a specific pathway imbalance derived from the reduced activation of plasminogen as a
result of the action of the histidine-rich glycoprotein (HRG) [59] and/or the activation of
fibrinogen production (FGB/FGA) and further transformation to fibrin [60].

However, the major biological novelties found in the present study are related to the
remaining two groups, the proteins/peptides participating in the lipid profile modulation
or in the complement system. On the one hand, two proteins involved in lipid transport
and metabolism (APOC1 and APOA2) were decreased in the cluster associated with
AECOPD. This is in accordance with the results of a previous hypothesis-driven study on
COPD [61], also being similar to what has been reported in other entities, such as severe
infections and sepsis, where most of the lipoproteins, lecithin, and lipid transporters (such
as cholesterol acyltransferase and plasma cholesteryl ester transfer protein) seem to be
decreased due to the inhibition of the reverse cholesterol transport [62]. Even though the
underlying mechanism is partially unknown in the particular case of COPD [63], it would
be possible to speculate that it might be similar to that described for infections since this
is the main cause of most AECOPD. Likewise, the α(2)-Heremans–Schmid glycoprotein
(AHSG), which is related to obesity and a lack of activity [64,65], was also found to be
decreased in this same cluster. It is known that obesity and reduced physical activity
are frequently observed in COPD patients. Moreover, some members of our group also
demonstrated the role of these two circumstances as risk factors for AECOPD [39,66]. In
contrast, the zinc-α-2-glycoprotein (AZGP1) was found to be increased in that same protein
cluster. This protein is involved in lipolysis and body fat loss and has been associated with
tobacco smoking, although the latter is controversial [67,68]. It is interesting to highlight
that the body weight and/or lean mass loss become enhanced during AECOPD, a factor
that is associated with patients’ vital prognosis [56,69,70].

The present findings in some of the proteins of the complement system (C3, C5, and
the C4BPA inhibitor) also stand out among our results and are in close agreement with one
of our previous articles [20]. This system directly promotes bacterial lysis, is involved in
the opsonization of pathogens, and contributes to washing out immune complexes from
the blood. The activation of the complement system occurs through three interconnected
pathways: the classical (bound to the antigen–antibody complex), the lectin pathway
(involving the recognition of surface carbohydrates), and the so-called ‘alternative pathway’
(started when the C3b protein binds a microorganism, and with a relatively low level
of activity) (Figure 2). These three pathways concur to sequentially produce C3 and C5
convertases, and the membrane attack complex (MAC) that induces cell lysis by generating
gaps in the membrane [71–73]. In the present study, an overrepresentation of the α chain of
the C4b-binding protein (C4BPA), which is an inhibitor of the C3 convertase in the classical
and lectin pathways but not in the alternative one [74], was also observed. The parallel
increase in C3 and C5 (the initial products of the two main reactions of the complement
cascade) together with that of its inhibitor (C4BP) would indicate a decrease in the global
efficiency of the activation of the complement system during AECOPD. Our results suggest
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three possible interpretations and consequences for these findings. First, this, along with a
probably diminished humoral immune response (evidenced by the previously discussed
coexistence of a reduction in immunoglobulins), would lead to compromising the host’s
defenses against infections. Second, the increase in C3 may also reflect the greater activation
of the alternative pathway as a possible compensatory effect. Finally, our findings in C3 and
C5 could alternatively be the consequence of the action of certain pathogens to evade the
complement system. It is worth noting that some of the previously published hypothesis-
driven studies have found increases in C7 and C9 (later participants in the MAC activation)
in AECOPD [20,75], a particular finding that would agree with any of the three above-
mentioned possibilities. Therefore, the clarification of this specific point merits further and
more specific investigations.

In contrast, the simultaneous absence of the overexpression of the β chain of C4BPA
could be interpreted as a reflection of an actual increase in the α7β0 isoform. It is
well-known that the latter increases in the presence of inflammatory stimuli, inducing
a state of tolerance to noxae in certain dendritic cells [76,77]. Interestingly, it has been
reported that various bacteria, including Streptococcus pyogenes, recruit C4BP to evade
the immune system [78].

4.3. Strengths and Limitations

The main strength of the present study is its completely blind approach to clinical
conditions: in other words, a non-biased approximation to the diagnosis of either a very
prevalent chronic respiratory disease or its acute episodes of clinical impairment. Although
it failed in the primary objective, it was accurate for the latter.

A secondary strength is more technical. We used K-means to generate the clusters
since this approximation enables a global analysis of the proteome without considering any
pre-hoc selection of proteins based on criteria such as their variability or potential relevance.
This, by contrast, would have been the case for some classical alternatives such as principal
component analysis (PCA) or partial least-squares regression analysis (PLS). PCA “opti-
mizes” data as it reduces protein values’ dimensionality, transforming them into principal
components and focusing more on those with the higher overall variability but ignoring
the individual influence of either the magnitude or relative correlations of each element. In
turn, the PLS approach builds the results around an initially selected variable [79,80].

The study also has some potential limitations. First of all, the sample size is relatively
small, although it is appropriate for the objectives of the study and similar to other previ-
ously published proteomic studies [35,61]. The single-center character of our design can be
viewed as both a limitation and a strength since it ensures the strict homogeneity in the
inclusion–exclusion criteria for the two different COPD groups, a point that is especially
relevant in the case of AECOPD for the potential bias discussed above. Moreover, our
results do not differ substantially from some of the previous hypothesis-driven studies
carried out by our group with a multicenter design [20].

Certainly, the observational and cross-sectional design of the present study does not
enable the drawing of any causal inferences between the proteomic findings and clinical
conditions. However, it suggests novel pathophysiological hypotheses that should be
tested in the future with complementary designs.

Moreover, although it is worth noting that this study provides relevant insights into
potential proteomic profiles for Caucasian COPD patients during exacerbations and clinical
stability, further studies should test their validity in other populations. In any case, and
according to the estimations of a recent publication, our findings may be especially useful
for what constitutes a significant fraction of the global COPD population [81].

Finally, we wish to mention that the entire proteome spectrum has not been explored
in the present study. Since we did not deplete the most abundant plasmatic proteins,
those with the lowest abundance became lost. However, the alternative technical option of
depleting these abundant proteins would have resulted in the loss of many components of
the humoral immune response and the complement system. Nevertheless, we have tried to
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overcome this specific limitation by adding some of these proteins to a post-hoc analysis
(data not included in the present paper but in the Supplementary Materials). For this, we
employed multiplex panels containing most of the more accepted protein candidates to be
linked to AECOPD but with presumably low concentrations in the blood. However, this
did not improve the accuracy of our blind prediction either for COPD nor for AECOPD.

5. Conclusions

The most relevant conclusion of the present study is that the use of a completely blind
methodology enables the reasonable identification of patients with AECOPD through a
massive proteomic analysis of their blood samples. In addition, it has made it possible
to complement previous studies carried out with alternative designs, suggesting new
pathophysiological pathways related to these acute episodes. Indeed, it has not only
confirmed the involvement of inflammation and changes in humoral immunity in AECOPD,
as were quite predictable, but also modifications in the coagulation pathways and the
regulation of lipid metabolism and the complement system. On the contrary, our method
added no new elements for the screening of COPD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13100866/s1, Table S1: Immune-based multiplex: acute
phase proteins and cytokines/chemokines/growth factors. Table S2: Number of clusters generated for
the analysis by comparison, assay and type of algorithm. Table S3: Significant Differential Abundant
Proteins/Peptides (DAPs) between both clusters obtained by Kmeans (Cluster A ort “exacerbator-
like profile” vs. Cluster B or “SCOPD-like profile”). Table S4: Main clinical characteristics in each
Kmeans-2 cluster found by proteomics, and confrontation of these clusters with the distribution of
actual COPD and Control groups. Table S5: Clustering outcomes for COPD diagnosis. Table S6:
Main clinical characteristics in each Kmeans-2 cluster found with both laboratory techniques and
confrontation of these clusters with the distribution of exacerbated and stable COPD patients. Table S7:
Best clustering outcomes for identification of exacerbations. References [28,82] are cited in the
supplementary materials.
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