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Abstract: Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyper-
polarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of
different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo.
In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use
of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally,
this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in
the healthy and diseased heart. We furthermore show what advances have been made to translate
this technique into the clinic in the near future and what technical challenges still remain, such as
exploring other metabolic substrates.

Keywords: hyperpolarized magnetic resonance; dynamic nuclear polarization; carbon-13; pyruvate;
cardiac metabolism

1. Background

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are
powerful medical techniques able to provide detailed anatomical and functional clinical
information in a non-invasive manner. MRI and MRS obtain structural and metabolic
information noninvasively from nuclei spins that are naturally present in the human body,
such as hydrogen nuclei in water and fat. Protons (1H) are the most commonly used
nuclei due to their high gyromagnetic ratio and natural abundance in the human body
and represent the basis of MRI. Other well-established nuclei commonly used in MRS are
phosphorus (31P) [1], carbon (13C) [2], sodium (23Na) [3], and xenon (129Xe) [4]. In Table 1,
we report the gyromagnetic ratios and the natural abundance of the mentioned nuclei in a
magnetic field of 3 T [5].

Table 1. Gyromagnetic ratios and natural abundance at 3 T [5].

Element Gyromagnetic Ratios γ (MHz/T) Natural Abundance (%)
1H 42.57 99.9885%
31P 11.26 100%
13C 10.70 1.07%

23Na 17.24 100%
129Xe −11.86 26.44%
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Cardiac MRS allows in vivo detection and quantification of myocardial metabolism [6].
1H spectroscopy enables the identification of creatine, triglycerides and lipids. 31P MRS
represents the most widely used technique for myocardial bioenergetics studies. 13C MRS
allows the identification of glucose, lactate, pyruvate, alanine, and bicarbonate, enabling
quantification of myocardial metabolism and pyruvate dehydrogenase [7]. Hence, many
clinical applications are focused on 13C spectroscopy. 13C spectra assure a large spectral
range (162–185 ppm) and narrow line widths [8]. Unfortunately, 13C spectroscopy has a
low sensitivity due to the low gyromagnetic ratio (a quarter with respect to 1H) and a low
natural abundance in vivo (about 1%). Hence, techniques able to enhance the 13C signal
are of great interest, as a higher signal intensity can provide improved sensitivity and
contrast. Hyperpolarization techniques are able to enhance signal intensities by several
orders of magnitude and thus largely overcome the major disadvantage of relatively low
sensitivity [9]. Applications of hyperpolarization techniques include metabolic imaging,
cancer detection, and studying molecular processes in real time [10]. Such in vivo studies
have been carried out by researchers both in animals and, much more recently, in humans.
In the latter case, cancer—especially brain cancer, but also prostate, kidney, and breast
cancer—is the most studied pathology [11]. However, it is well recognized in the literature
that the use of hyperpolarized 13C for cardiac studies in humans can provide very important
metabolic information on the state of the heart, for example, on its viability during or after a
heart attack [12]. Currently, hyperpolarized cardiac magnetic resonance imaging (CMR) can
provide additional information that current myocardial viability assessments are unable to
provide [13]. Indeed, CMR hyperpolarized 13C-pyruvate could potentially give additional
information compared to conventional CMR and/or cardiac positron emission tomography
(PET) due to the added metabolic measurements available [10,14]. The current results
suggest that hyperpolarized CMR holds great potential, so much so that clinical adoption
is starting to be proposed [15].

In this review, we first introduce the principal hyperpolarization techniques used, then
show applications with dynamic nuclear polarization (DNP). We focus on applications in
MR clinical scanners, reporting on dedicated radio frequency (RF) 13C coils and describ-
ing the MRI sequences used for 13C data acquisition. Furthermore, the review provides
an overview of the pre-clinical studies on large animals and clinical studies on cardiac
metabolism in healthy and diseased hearts.

2. Brief Overview of Hyperpolarization and Dissolution–Dynamic Nuclear Polarization

In the context of MRI and MRS studies, hyperpolarization refers to advanced tech-
niques providing a major increase of the nuclear polarization and, therefore, of the signal-
to-noise ratio (SNR). Hyperpolarization deals with the achievement of a so-called hyper-
polarized state, in which the population difference between the nuclear energy states is
increased by several orders of magnitude (Figure 1a). For spin ½ nuclei (such as 1H or
13C), this population difference, or polarization, is commonly defined as P = (N+ − N−)/
(N+ + N−), where N+ and N− are the populations of the two possible spin states. Since
the MR signal is directly proportional to the polarization P, hyperpolarization will result
in a conspicuous enhancement of the MR signal and the SNR [16]. The hyperpolarized
state is a non-equilibrium condition of the nuclear spin system, which means that once the
hyperpolarization process is concluded, the nuclear polarization recovers its thermal equi-
librium through relaxation processes governed by the T1 relaxation time constant, leading
to the decay of the hyperpolarized MR signal. Several hyperpolarization techniques were
proposed in the literature. We only briefly mention here the most common hyperpolariza-
tion techniques that, to date, include the brute force method, the spin exchange by optical
pumping (SEOP) method, the parahydrogen-induced polarization (PHIP) method, and the
dynamic nuclear polarization (DNP) method. Moreover, long-lived spin states (LLSs) allow
the investigation of various slow processes and sustain spin hyperpolarization, providing
large NMR signal enhancements [17]. Relaxation times reach tens of minutes or even more
for 15N and 13C spins [18,19].
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The brute force method represents the most straightforward hyperpolarization ap-
proach based on only a strong magnetic field and low temperature. Operatively, the sample
to be polarized is kept at high field (14 T) and low temperature (∼100 mK < T < 4 K) until
the establishment of a thermal equilibrium polarization [20]. The brute force method does
not use polarizing agents (or other modifications) or microwave irradiation. The technique
was first exploited for gas hyperpolarization [21,22] and later for liquid-state tracers. In
this latter case, the frozen sample is ejected from the polarizer after hyperpolarization and
rapidly dissolved with hot H2O before imaging. Given the slow solid-state spin relaxation,
transport of the hyperpolarized sample has also been demonstrated [23]. However, the
achieved polarization levels are critical for in vivo applications.

The first hyperpolarization technique applied in human studies is the so-called SEOP,
leading to the production of hyperpolarized noble gases, such as 3He and 129Xe. In
SEOP, circularly polarized light is exploited to optically pump rubidium (Rb) electrons
and generate a highly spin-polarized Rb gas; the spin polarization is then transferred to
noble gas nuclei through spin-exchange collisions. 129Xe proved to be a suitable gas for
clinical studies where it can be used for functional MRI in the lungs [24–26] among other
applications [27,28]. Techniques such as parahydrogen-induced polarization (PHIP) and
dynamic nuclear polarization (DNP) showed great promise for the production of injectable
hyperpolarized contrast agents in the liquid state.

The PHIP and DNP methods carry on the ex situ hyperpolarization of small iso-
topically enriched molecules, typically metabolic substrates, which can be subsequently
administered in vivo, mainly for metabolic studies. 13C is, to date, the most used isotope
due to some favorable characteristics, such as its lack of background signal in vivo, a T1
suitable for in vivo studies, and its sparse spectra. In PHIP, hyperpolarized compounds
are produced through a chemical reaction, allowing the transfer of spin polarization from
parahydrogen to a target molecule. The technique provides faster hyperpolarization
and is technologically less demanding than DNP, with minor operational and mainte-
nance costs; however, the yield in terms of final achieved polarization is generally lower.
The first applications of PHIP were restricted to just a few molecules, essentially precur-
sors ensuring direct hydrogenation for polarization transfer. More recent technological
advancements—in particular, the parahydrogen-induced polarization-side arm hydrogena-
tion (PHIP-SAH) [29,30] and the signal amplification by reversible exchange (SABRE) [31]
methods—extended the applicability of the technique to several probes and led to reliable
hyperpolarization and in vivo application of pyruvate; accordingly, PHIP is attracting
increasing attention from the scientific community [32]. In the DNP technique, the high
polarization of electron spins is used to enhance the nuclear spins polarization [33].
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Human and translational studies on large animal experimental models with hyper-
polarized tracers, which are the focus of this review, followed the development of the
instrumentation for the so-called dissolution DNP (d-DNP) [9,34,35]. From an operational
point of view, d-DNP in this kind of study is usually performed at a high magnetic field
(3.35 to 7 T) and extremely low temperature (1.2–1.4 K). The liquid-state sample formu-
lation is doped with a free radical (i.e., the source of polarization) and placed in a strong
magnetic field and low temperature, where it forms a glass. Under such conditions, the
unpaired electrons on the radical molecules are almost fully polarized and sample irradi-
ation with low-power microwave mediates the transfer of such polarization to coupled
nuclear spins. At the end of the polarization build-up, the frozen hyperpolarized sam-
ple is rapidly dissolved through rapid contact with a pressurized and heated dissolution
medium to produce a hyperpolarized solution injectable in vivo (Figure 1b). Providing
a comprehensive description of the different aspects regarding d-DNP, including radical
and hardware development, is out of the scope of this review. We only mention here that
upon the operating conditions of d-DNP, a homogeneous radical distribution is necessary
for the efficient build-up of polarization and can be achieved by adding a biocompatible
glassing agent, such as glycerol or DMSO, to the sample preparation [36–38]; moreover, the
addition of small amounts of lanthanides such as Gd3+ can further improve the achievable
polarization [39].

An interplay between different mechanisms considering the interaction between the
electron and nuclear spins can be invoked to explain DNP. The contribution of these mech-
anisms to the hyperpolarization process depends on several factors, and in particular, the
EPR linewidths of the polarizing agent (the radical) with respect to the nuclear Larmor
frequency. However, a detailed explanation of the theoretical aspects of DNP is not the pur-
pose of this review and we refer to the specialized literature for further discussion [40–45].
An increase in the signal-to-noise ratio by four orders of magnitude has been reported for
13C-labeled compounds using d-DNP [9], but the yield in terms of achieved polarization is
dependent on the hyperpolarized molecule and nuclear spins. In fact, d-DNP is a versatile
and reliable hyperpolarization method: a few other nuclei have been explored besides 13C,
including 15N [46], 29Si [47] and 1H [48]. The development of a d-DNP hyperpolarizer
working in a sterile environment paved the way for direct translation of the technique to
the clinics [49]. The d-DNP method has been recently approved for human studies, and
several clinical trials have been approved and are ongoing to date, most of them focusing
on cancer [50,51].

More recent advancements in d-DNP address some of the limitations of the technique
to further increase the available signal-to-noise ratio and the lifetime of the hyperpolariza-
tion [52]. Novel approaches in sample formulation have been reported—for instance, avoid-
ing the presence of the glassing agent and increasing the nuclear spin concentration [53]
or using radicals incorporated into a mesostructured silica material (HYPSOs) [54] or
UV-induced nonpersistent radicals [55], which are then removed from the hyperpolarized
solution before in vivo injection. Among the most relevant instrumentation improvements,
the development of a cryogen-free d-DNP polarizer [56] holds promise for reducing the
maintenance and operational costs of the original d-DNP configuration.

Unlike conventional MR contrast agents based on gadolinium, hyperpolarized tracers
directly produce the detected MR signal; therefore, the signal intensity in hyperpolarized
MR studies is proportional to the contrast agent concentration in tissue and the MR ac-
quisition is characterized by the lack of background signal. As previously mentioned, the
hyperpolarized MR signal decays over time through relaxation processes governed by the
T1 relaxation time constant. T1 is on the order of units of tens of seconds at clinical magnetic
fields for the isotopically enriched molecules typically used within in vivo studies (the
nominal T1 for the gold standard 13C-pyruvate being 60 s). Furthermore, excitation through
RF pulses during the MR acquisition irreversibly contributes to destroying the gained
polarization. The rapid decay of the hyperpolarization, and consequently of the detectable
MR signal, has two important implications: first, only fast metabolic processes with a
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timescale of a few minutes can be investigated using this approach; second, a specific MR
acquisition setup, dealing with both sequences and RF coil design, should be developed
to provide fast acquisition of the hyperpolarized signal with high spectral and spatial
resolution [57,58]. This is especially challenging when dealing with a moving organ such
as the heart.

3. Biological and Technical Considerations of Pyruvate Metabolism

To date, pyruvate represents the leading probe for hyperpolarization in vivo studies
and is, as far as we know, the only molecule that has received approval for human studies.
This is essentially due to a twofold reason: on the one hand, pyruvate provides the best
chemical and physical properties for d-DNP, including a high 13C concentration and a
long T1 relaxation time (around 60 s); moreover, pyruvic acid is a self-glassing compound,
which means that it is not necessary to add other glassing agents to the DNP formulation.
On the other hand, pyruvate is an endogenous metabolic substrate which undergoes a
rapid metabolic conversion once injected in vivo, in a time frame compatible with the
hyperpolarization decay, thus allowing the real-time observation of its main metabolic
products through sensitivity-enhanced MRS, namely lactate and bicarbonate. Pyruvate
is an intermediate of the cell glucose metabolism at the crossroad between glycolysis and
oxidative phosphorylation (Figure 2).
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Figure 2. In the heart, 13C-pyruvate may undergo transamination to 13C-alanine, reduction to
13C-lactate or oxidation to 13C-CO2 and acetyl-CoA (Ac-CoA). 13C-CO2 is rapidly converted to
13C-bicarbonate by carbonic anhydrase. Acetyl-CoA is metabolized in the tricarboxylic acid (TCA)
cycle. * Please note that the study of Acetyl-CoA and TCA metabolites requires labeling of pyruvate
in C2 position ([2-13C]pyruvate). ALT, alanine transaminase; CA, carbonic anhydrase; LDH, lactate
dehydrogenase; PDH, pyruvate dehydrogenase.

Pyruvate is transported across the cell membrane by the family of the monocarboxylate
transporters (MCTs). Under anaerobic conditions in the cytosol pyruvate is converted
into lactate in a reaction catalyzed by the lactate dehydrogenase (LDH) enzyme and into
alanine by the reaction catalyzed by the enzyme alanine transaminase (ALT). Under aerobic
conditions, pyruvate enters the mitochondria, where the pyruvate dehydrogenase complex
(PDH) regulates the conversion into Acetyl-CoA, which takes part in the Krebs (or TCA)
cycle, where it is further oxidized. In parallel, inside mitochondria, pyruvate is also
converted into CO2, which rapidly equilibrates with bicarbonate through the action of the
enzyme carbonic anhydrase (CA). The hyperpolarization of pyruvate and the detection
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of its downstream metabolites provides a unique opportunity to track and investigate
the balance between glycolysis and oxidative metabolism in different physio-pathologic
conditions, in a non-invasive manner and in real time. In fact, hyperpolarization of the
13C label of the carboxylic group (C1 position) allows tracking of the glycolytic pathway,
while the hyperpolarization of pyruvate labeled in the C2 position (on the carbonyl group)
allows exploring the oxidative and TCA cycle metabolism.

In healthy tissue, the major energy expenditure of the cell is supplied by oxidative
phosphorylation in mitochondria; however, in hypoxia or in certain pathologic conditions,
an increase in energy production through glycolysis can be observed. For instance, cancer
cells are characterized by a different glucose metabolism to provide the energy required
to support their rapid proliferation: due to the so-called Warburg effect, in cancer cells,
the mitochondrial oxidative phosphorylation is replaced with cytosolic glycolysis even in
the presence of oxygen (aerobic glycolysis). Detecting this metabolic alteration in tumor
tissue, which results in increased conversion of pyruvate into lactate, is currently the main
purpose of most of the d-DNP studies in pre-clinical models and in humans [11].

The healthy adult heart relies mainly on the β-oxidation of free fatty acids in the
myocardium (60%–90%) to produce the energy necessary to support the contractile activity,
while the remaining energy derives from the oxidation of pyruvate, ketone bodies and
amino acids [59,60]. Inside cardiomyocytes, fatty acids enter the mitochondrial matrix and
are oxidized by the carnitines palmitoyltransferase type 1 and type 2 (CPT-1 and CPT-2),
and the carnitine acylcarnitine translocase (CT) enzymes [61]. The balance between glucose
and fatty acids oxidation for ATP (and hence energy) production is highly regulated and
depends on several factors; in particular, the PDH complex is a key enzyme and represents
an interesting target for investigating substrate selection in cardiomyocytes.

A metabolic shift towards increased glucose oxidation has been observed in cardiac
diseases such as heart failure and ischemia [62]; conversely, a shift towards fatty acids
oxidation has been observed in diabetes. Hyperpolarized pyruvate in cardiac studies
provides the opportunity to assess the flux of the PDH and LDH enzymes through the de-
tection of bicarbonate and lactate, respectively, as well as to investigate the balance between
aerobic and anaerobic metabolism in the myocardium, in different physio-pathological
conditions. Because fatty acids are the main energy fuel of the myocardium, they rep-
resent an interesting hyperpolarizable probe for cardiac metabolic studies. Short and
medium-chain fatty acids are relatively small molecules and can be successfully hyperpo-
larized with d-DNP. Accordingly, 13C-labeled short and medium-chain fatty acids such
as acetate [63,64], butyrate [65,66] or octanoate [62] have been proposed as alternative
hyperpolarized probes to provide complementary information on cardiac metabolism in
pre-clinical experimental models.

Finally, injection of hyperpolarized 13C-urea, a small molecule with favorable d-DNP
properties that is not metabolized in the time span of the typical hyperpolarized MR ex-
periment, provides the opportunity to investigate cardiac perfusion in real-time [67]. In
particular, the co-polarization of urea and pyruvate can, in principle, provide the investiga-
tion of myocardial perfusion and metabolism non-invasively and in a single study [68].

4. 13C Radiofrequency Coils

In MR experiments, the RF field is generated by a transmit coil and picked up by
a receive coil [69]. Since the extension of the region to analyze is not known a priori,
the transmit coil must produce a highly homogeneous magnetic field in the desired field
of view (FOV). To achieve this, transmit coils are usually large in order to optimize the
magnetic field homogeneity in a significant tissue volume. Conversely, the receive coil
must maximize signal detection while minimizing noise, and for this purpose, its size
must be minimized. When choosing a coil setup for an MR experiment, both transmit
and receive RF coils must be adapted to the specific application and to the human/animal
body portion dimension and shape, although they have to provide good performances
with slightly different subjects. According to their shapes, coils can be categorized into



Diagnostics 2024, 14, 1035 7 of 21

volume, surface, and phased-array coils [70]. Volume coils are often employed both as
transmit and receive coils since they can generate a homogeneous magnetic field in a large
region surrounding the sample portion. Surface coils are much smaller than volume coils
because they must guarantee high SNR in the images, even if with relatively poor magnetic
field homogeneity [71]. Finally, phased-array coils [72] allow the achievement of good
SNR images, typical of surface coils, with a large sensitivity region, usually obtained with
volume coils. They are also employed in parallel imaging applications [73], where the mag-
netic field spatial variation of the single coil elements permits the signal spatial encoding,
which provides substantial reductions in image acquisition time. However, the ideal coil
setup should comprise the use of two different coil configurations: a transmitter highly
homogeneous volume coil and a receiver high local sensitivity (surface or phased-array)
coil [74]. For 1H/13C MR imaging and spectroscopy experiments conducted on clinical
MRI scanners, the system must be equipped with multinuclear spectroscopy capability [75]
for operating at two different frequencies and by using two different coil setups. The
proton images, necessary for providing an anatomical reference for registration [51], are
acquired by using the built-in whole-body coil or a cardiac array receiver coil. For the
carbon image acquisition, dedicated coils placed inside the bore must be employed [76]. In
particular, transmit 13C coils are mainly constituted by Helmholtz and birdcage coils, while
receive 13C coils by surface and phased-array coils [51,74]. However, in some applications,
a custom-built transmit/receive 13C surface coil was employed, both in single [77–79] or
multi-element [67] configurations, especially when a specific heart portion must be interro-
gated. A multiple-channel surface coil provides a high SNR close to the coil surface but a
non-uniform sensitivity in depth, while volumetric coils provide a uniform sensitivity over
the FOV, at the cost of lower SNR. An example of the performance of a flexible 16-channel
phased array coil for application in pig heart studies was reported, assessing both SNR and
signal uniformity in phantom and animal experiments [80].

Clearly, the ideal hardware setup would require the use of a single transmit/receive
dual-tuned coil operating at 1H and 13C nucleus frequencies by guaranteeing data acqui-
sition in sequence without disturbing and repositioning the patient [81,82]. An optimal
coil design should guarantee the minimization of the interactions between the carbon and
the proton signals, starting from the channels’ geometrical decoupling [70]. Moreover, for
optimizing MR experiments, quadrature 13C coils producing/receiving circular polarized
magnetic fields must be designed to reduce by a factor of two the power requirement
in transmission and increase by a factor of

√
2 the received signal SNR [83,84]. Having

13C-nucleus a lower gyromagnetic ratio than that of 1H, the 13C coil tuning frequency
(32.1 MHz at 3 T) is similarly reduced compared to 1H coil tuning frequency (128 MHz
at 3 T). It means that if for 1H the sample noise dominates, 13C frequency has relatively
more noise contribution from the coil with respect to sample [85], meaning that coil design
has a bigger impact [57], although sample noise still is likely the dominant contributor for
human/pig-sized coils [51]. However, the purchase of such 13C coils can be prohibitive
for most centers [10]; therefore, homemade coil-building can be a cheaper solution for
performing hyperpolarized MR experiments.

To achieve this goal, the simulation and the design of RF coils can be carried out using
two different methods. The first one is based on magnetostatic theory and implies the
assumption of a nearly static field. Therefore, it is useful for the design of low-frequency-
tuned coils, whose size is much lower than the wavelength. When the coil tuning frequency
increases, the interaction between RF fields and the body becomes strong and full-wave
methods based on Maxwell’s equation solutions have to be used, including the finite-
difference time domain (FDTD) method, the finite element methods (FEM), and the method
of moments (MoM). However, the computation times of such full-wave methods are much
longer with respect to the magnetostatic approach [86,87].

Figure 3 summarizes the different phases necessary for RF coil construction in general,
divided into simulation, design, and tests.
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As an example, simulation and design of homemade different 13C coil configurations
for hyperpolarized studies on pig hearts with a clinical 3 T MRI scanner was carried out in
our cardiovascular laboratory [88]. In particular, we initially designed a transmit/receive
circular coil [89] which was compared with a commercial transmit/receive birdcage coil
(Rapid Biomedical, Wurzburg, Germany) [90]. We then modified both coils to use the
volume coil for transmission and the surface coil for reception (Figure 4) [91].
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Another improvement in the SNR of the acquired signals was obtained by designing a
quadrature surface coil configuration constituted by a circular and a butterfly coil employed
in transmit/receive configuration [92] and in receive mode in combination with a birdcage
coil as a transmitter [93].

5. 13C-MRI Image Acquisition

For 13C hyperpolarized acquisition, in addition to the use of dedicated RF coils, it is
recommended to use a high-field scanner, as the spectral separation of pyruvate and its
metabolites is greater, even though the larger field strength shortens the relaxation time of
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13C-pyruvate [81]. Therefore, for a good-quality image acquisition, a compromise on the
choice of the scanner must be reached; in the majority of published human 13C-pyruvate
studies, a 3 T scanner has been used. A field strength of 3 T is well-suited also for 1H MRI
anatomical reference and correlative imaging [51].

Hyperpolarized MRSI studies require specialized sequences due to the fast metabolism
and the rapid decay of 13C. Various pulse sequences with different trade-offs between tem-
poral and spatial resolution have been developed for measuring hyperpolarized nuclei,
considering beyond those already mentioned the constraint that the radiofrequency in-
duced signal further reduces the magnetization upon each excitation. The sequences
used most often are based on a simple pulse-and-acquire frame in which a slice-selective
pulse is combined with a specific gradient readout to encode the spectral and spatial
dimensions [94].

The first approach for the study of metabolic imaging using hyperpolarized 13C-
pyruvate consisted of acquiring 1D and 2D dynamic MRS at a temporal resolution (about
3 s) using 13C spectroscopic sequences (FIDCSI); with this sequence it is possible to acquire
single spectra during one-minute acquisition after pyruvate injection [95] and follows the
pyruvate signal and its metabolic derivatives signal: lactate, bicarbonate and alanine. At
a first step in the 13C acquisition, transmit gain calibration is performed to adjust the RF
power levels to the desired flip angles. Calibration is implemented on the basis of the
Bloch–Siegert method [96] with a 13C-pyruvate phantom positioned in the coil sensitivity
area and close to the imaging plane. From the same acquisition, the central frequency, line
broadening, and SNR can also be determined.

Subsequently, the sequence used is echo-planar spectroscopic imaging (EPSI) for
which, after one RF excitation, a single k-space is acquired and repeated in time; accordingly,
the spectral and spatial dimensions are sampled simultaneously [94]. EPSI provides a
significantly increased encoding efficiency relative to FIDCSI because it acquires a full line
of k-space after each excitation [57]. The acquisition time for the biochemical pathways can
be sampled dynamically with a time resolution of a few seconds. The EPSI sequence has a
high gradient demand, and the spectral and spatial resolutions are limited by the maximum
available gradient amplitude and slew rate. To avoid the need for high gradient hardware
performances, Weisenger et al. [97] presented an efficient CSI scheme for hyperpolarized
13C metabolic imaging based on IDEAL single-shot spiral image encoding and echo-time
shifting in between excitations for the CS encoding. To allow the mapping of the full
spectrum rather than a limited number of peaks at certain prescribed frequencies, a free-
induction decay (FID) spectrum is also acquired, and the obtained chemical shift prior
knowledge was useful for the reconstruction. Figure 5 depicts the three main sequence
schemes (FIDCSI, EPSI, and IDEAL SPIRAL) and the related k-space sampling strategies.

Figure 6 shows in vivo pig data acquired using a 3D-IDEAL spiral CSI sequence
showing the spatial distribution of metabolites in the principal cardiac axes’ views of
the heart.

To increase the spectral width that is crucial for acquiring all metabolite behavior,
Durst et al. [94] describe a spiral chemical shift imaging (SPCSI) sequence that obtains
spectral and spatial information simultaneously during readout by repeatedly scanning a
spiral trajectory after RF excitation. In this case, the duration of a single spiral determines
the spectral width. The SPCSI sequence was designed for two different regimes of spatial
resolution: additional excitations with a time-shifted trajectory or the k-space sampling
being split into multiple spiral interleaves. This approach permits having two-dimensional
spatial and spectral information from a single excitation. Rapid multi-slice MR pulse
sequence with the k-space trajectories is the most common acquisition approach for most
cardiac studies [79]. For the 13C heart acquisition, the total length of the pulse is an
important design parameter because it determines the width of the transition between
frequencies that are excited versus those that are not perturbed by the RF pulse at all. This
creates a design tradeoff between longer pulses with sharper transitions versus shorter
pulses that enable a shorter sequence repetition time [79].
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3D-IDEAL spiral CSI sequence. Reprinted by permission from Flori et al., App Magn Reson 2012 [98].

6. Clinical Applications from Pre-Clinical to Human Studies

Several pre-clinical and clinical studies with hyperpolarized 13C molecules have
been performed in recent years. Many 13C-labeled agents have been successfully used in
animal studies, including 13C-pyruvate and 13C-urea to assess perfusion, 13C-fumarate to
detect necrosis, 13C-alpha ketoglutarate to assess isocitrate dehydrogenase (IDH) activity,
13C-butyrate as a measure of fatty acid metabolism, 13C-bicarbonate to assess extracellular
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pH, and 13C-dehydroascorbate to measure redox potential. 13C-acetate has been employed
to assess TCA flux and fatty acid oxidation in heart and skeletal muscles through its
conversion to acetyl-CoA by acetyl-CoA synthase. 13C-glucose has been used to monitor
flux via the pentose phosphate pathway as well as glycolytic flux and lactate production.
13C-alanine has been employed as an alternate probe to study metabolism in the muscle
and liver. Several other biologically relevant, potentially polarizable molecules remain
to be studied [99]. Table 2 lists the most common 13C probes used in pre-clinical and
clinical studies.

Table 2. List of most common 13C-probes used in pre-clinical and clinical studies.

Metabolite Pathway Significance

1-13C-pyruvate Glycolitic pathway

Product of glycolysis, it can be converted to
13C-lactate (anerobic conditions) or to acetyl-coA
with production of 13C-bicarbonate in the
mitochondria (oxidation)

13C-lactate Lactate dehydrogenase (LDH) Derived from 13C-pyruvate from LDH (anerobic
conditions); increased in cancer cells

13C-CO2 Pyruvate dehydrogenase (PDH) Derived as a byproduct of 13C-pyruvate conversion
to Acetil-CoA

13C-bicarbonate Extracellular pH Derived from 13CO2, through extracellular carbonic
anhydrase activity

2-13C-pyruvate Tricarboxylic acid cycle (TCA) The labelled carbon is carried over to acetyl-CoA
13C-butyrate Fatty acid metabolism

13C-acetate
Tricarboxylic acid cycle (TCA) and fatty

acid oxidation Converted to acetyl-CoA by acetyl-CoA synthase

13C-alanine Muscle and liver metabolism
Pyruvate is transaminated to alanine in skeletal
muscle; while alanine is deaminated to pyruvate in
the liver

13C-glucose
pentose phosphate pathway, glycolysis,

lactate production

2-13C-dihydroxyacetone Hepatic gluconeogenesis

13C-glutamine Mutated isocitrate dehydrogenase (IDH)
In cancer cells, mutated isocitrate dehydrogenase
(IDH) converts glutamine to oncometabolite
2-hydroxyglutarate

13C-alpha ketoglutarate (αKG) Mutated isocitrate dehydrogenase (IDH)
In cancer cells, mutated isocitrate dehydrogenase
(IDH) converts αKG to oncometabolite
2-hydroxyglutarate and glutamate

13C-dehydroascorbate Redox potential
It is the oxidized form of Vitamin C; it is rapidly
converted to [1-13C] vitamin C within the liver,
kidneys, brain and tumors

13C-acetoacetate Mitochondrial redox status

13C-glutathione Antioxidant and redox status Antioxidant synthesized from glutamate (glu),
cysteine (cys) and glycine (gly)

13C-cystine Antioxidant and redox status Component of glutathione
13C-urea Perfusion Inert metabolic probe

13C-fumarate Necrosis
In case of cell death, exogenous 13C-fumarate is
converted to 13C-malate by intracellular fumarase
(released in the extracellular space)

13C-malate Necrosis
Absent in healthy cells, while produced from
13C-fumarate by extracellular fumarase released by
necrotic cells
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Most pre-clinical and clinical studies with hyperpolarized 13C compounds are on-
cologic [100]. The first human study investigating hyperpolarized 13C-pyruvate MRI in
cancer was published in 2013: high prostatic 13C-lactate signal was demonstrated in a
patient who had no abnormal signal intensity on conventional proton MR images, sug-
gesting that clinical hyperpolarized 13C-pyruvate MRI could depict some tumors earlier
than conventional 1H MR images [101]. Since then, the metabolism of hyperpolarized
13C-pyruvate to hyperpolarized 13C-lactate has been demonstrated in several tumors, in-
cluding those of the prostate, pancreas, kidney, breast, and brain. Hyperpolarized 13C MRI
in oncology is virtually able to stratify tumors by grade, select therapeutic pathways based
on tumor metabolic profiles, and detect early treatment response through the imaging of
the metabolism shifts that precede tumor structural changes [11,102]. In gliomas, as an
example, it has been demonstrated that hyperpolarized 13C-pyruvate can detect metabolic
subtypes, which can be dichotomized into more glycolytic and oxidative subtypes that
have differing drug and radiation sensitivities [103,104].

Apart from tumors, pyruvate metabolism has also been studied in the neurological
field, including traumatic brain injury and neurodegenerative diseases: measurements of hy-
perpolarized 13C pyruvate metabolism in the human brain can be used to measure regional
variations in metabolism in physiological and pathological conditions [105]. While hyperpo-
larized 13C-pyruvate has been successfully utilized as a probe to quantify the conversion
to 13C-lactate and 13C-bicarbonate in the human brain, its metabolism and conversion to
13C-CO2 through PDH prevents direct detection of TCA cycle metabolism. For this reason,
hyperpolarization of 13C-pyruvate in the C2 position has been performed to provide a
unique MR molecular imaging window into the TCA cycle as the labeled carbon is carried
over to acetyl-CoA and enables the observation of [5–13C]glutamate after enzyme-catalyzed
conversion from α-ketoglutarate [106]. More recently, a novel hyperpolarized 13C MR RF
pulse sequence has been applied in five healthy volunteers for acquiring volumetric and
dynamic EPI of hyperpolarized [2-13C]-pyruvate metabolism to [5-13C]-glutamate and to
[2-13C]-lactate, i.e., probing oxidative and glycolytic simultaneously [107]. In the human
brain, glutamate is the most abundant free amino acid and is at a crossroad between multiple
metabolic pathways, and hyperpolarized MR imaging holds promise to unveil new patho-
physiological insights into neurological disorders. In kidney diseases, hyperpolarized 13C
pyruvate allows to assess the underlying metabolic and pathophysiological changes [108].
The greater sensitivity and specificity of hyperpolarized [1-13C]pyruvate can be used as an
early marker of disease progression and treatment response in clinical trials [109].

6.1. Pre-Clinical Cardiovascular Studies in Large Animal Models

Hyperpolarized 13C CMR has been used in a variety of pig models in the context of
heart failure, including right ventricular heart failure [110], dilated cardiac myopathy [78],
and ischemia/reperfusion injury [83,111] (Table 3). In heart failure, there is increased
glucose metabolism through enhanced glycolysis, but at the same time, oxidative phos-
phorylation is depressed due to impaired flux through PDH. Similarly, in myocardial
ischemia, compromised coronary blood flow and subsequent lack of oxygen supply drive a
metabolic switch to increased anaerobic glycolysis and hence lactate production [81]. For
these reasons, a relative increase in relative lactate-to-bicarbonate appears to be a common
marker in heart disease, albeit with different dynamics over disease progression. Infusion of
hyperpolarized 13C pyruvate before and immediately after ischemia has also been used to
monitor intracellular pH through the HCO3/CO2 ratio using the Henderson–Hasselbalch
equation and resulted in good agreement with 31P MRS measurements of pH [112]. In
a study on ischemia/reperfusion injury (performed with a pneumatic occluder placed
around the left anterior descending artery in seven pigs), hyperpolarized 13C-pyruvate
imaging was performed at rest, during coronary occlusion, and 5 min after reperfusion.
During occlusion, a decrease in 13C-lactate and 13C-bicarbonate was found in myocardial is-
chemic segments compared to remote segments. During reperfusion, the 13C-lactate signal
increased in ischemic segments, while 13C-bicarbonate was persistently reduced [113]. An
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experimental study on eight pigs (five with catheter-induced myocardial infarctions, three
controls) undergoing serial hyperpolarized 13C MR imaging (before infarction and at 6 days,
5 weeks, and 9 weeks postinfarction) revealed temporarily elevated lactate-to-bicarbonate
ratios at Day 6 in the infarcted relative to remote myocardium [14]. The temporal changes
of lactate-to-bicarbonate ratios were found to correlate with changes in T2 and impaired
local contractility. Although LDH is known as a key factor in anaerobic cellular respiration
under ischemic conditions, increased 13C-lactate production has also been associated with
the monocyte/macrophage inflammatory response. Assessment of PDH flux via the hy-
perpolarized 13C bicarbonate signal revealed recovery of aerobic cellular respiration in the
hibernating myocardium, which correlated with recovery of local radial strain.

Table 3. Pre-clinical cardiovascular studies in large animal models.

Author Animals Scanner Spatial
Resolution Sequence Post-Processing Disease Results

Agger et al.,
2020 [110] 5 pigs

3 T HDx (GE
Healthcare,

Waukesha, WI,
USA)

1.01 × 1.45 mm2

Cardiac
triggered 2D

13C IDEAL
spiral

Not reported Pulmonary
banding

Increase in the
lactate/bicarbonate ratio

compared with healthy control

Schroeder et al.,
2013 [78] 5 pigs

3 T MR750 (GE
Healthcare,

Waukesha, WI,
USA)

9 mm

SAGE™ software
(GE Healthcare)

MATLAB
(MathWorks,
Natick, MA,

USA)

Dilated car-
diomyopathy Reduced pyruvate oxidation

Golman et al.,
2008 [83]

10 pigs
(5 with
15 min

occlusion, 5
with 45 min
occlusion)

1.5T Magnetom
Sonata

(Siemens Medical
Solutions,
Erlangen,
Germany)

7.5 mm 13C CSI
in house

developed
software

Effect of
coronary artery

occlusion

15-min occlusion: bicarbonate
reduces in diseased area;

45-min occlusion:
13C-bicarbonate and

13C-alanine signal reduced in
the diseased area

Lewis et al.,
2018 [111] 7 pigs

3 T MR750 3 T
MR750 (GE
Healthcare,

Waukesha, WI,
USA)

10.7 mm Spiral
sequence Not reported

Myocardial
infarction after
coronary artery

balloon-
occlusion

Increase 13C-lactate signal in
infarct. No significant

difference in
13C-bicarbonate signal

Aquaro et al.,
2015 [113] 7 pigs

3 T HDx
TWINSPEE 3 T

MR750 (GE
Healthcare,

Waukesha, WI,
USA)

15 mm 3D-IDEAL
spiral CSI

MATLAB
(MathWorks,
Natick, MA,

USA)

Ischemic
myocardium

after pneumatic
occlusion

Increase 13C-lactate signal;
reduced 13C-bicarbonate

within the area at risk

Fuetterer et al.,
2022 [14] 8 pigs

3 T (Philips
Medical Systems,

Best,
The Netherlands)

1 mm

Customized
spatial-
spectral

excitation
(IDEAL

approach)

MRecon
(GyroTools LLC,

Zurich,
Swizerland)

Catheter-based
90-min

occlusion

Elevated
lactate-to-bicarbonate ratios at

day 6 after infarction

Chen et al.,
2012 [77]

Not
reported

3 T MR750 (GE
Healthcare,

Waukesha, WI,
USA)

Not reported Pulse-acquire
sequence

SAGE™ software
(GE Healthcare) Healthy pig

Feasibility of using
dual-labeled hyperpolarized

[1,2-13C2]pyruvate as a
substrate for dynamic cardiac

metabolic MRS studies

Fuetterer et al.,
2016 [67] 6 pigs

3 T Ingenia
wide-bore

scanner (Philips,
Best,

The Netherlands)

3 mm

Velocity-
selective
binomial
excitation

scheme

MRecon
(GyroTools LLC,

Zurich,
Switzerland)

Healthy pig
Potential of hyperpolarized

13C-urea imaging for
diagnostic purposes.

Besides metabolic imaging, 13C can also be used for angiographic applications, because
13C hyperpolarized contrast media can be imaged at a resonance frequency other than
that of protons. The intracoronary injection of hyperpolarized 13C-hydroxyethylproponate
has been tested in five pigs. With projection imaging using a fully balanced SSFP pulse
sequence, angiograms of the right and left coronaries of the beating heart were obtained,
with a SNR value in the range of 10–40 [84]. More recently, first-pass myocardial perfusion
imaging using hyperpolarized 13C-urea has been performed in six pigs, with good data
quality compared to conventional Gd-based contrast agents [67].
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6.2. Human Cardiovascular Studies

Several human studies can be found in the literature (Table 4). In 2016, the first hy-
perpolarized 13C metabolic magnetic resonance imaging (MRI) of the human heart was
reported in four healthy subjects [74]. After injection of 0.1 mmol/kg hyperpolarized
13C-pyruvate, its signal appeared within the chambers but not within the muscle. Imaging
of the downstream metabolites showed the 13C-bicarbonate signal mainly confined to
the left ventricular myocardium whereas the 13C-lactate signal appeared both within the
chambers and in the myocardium. A recent report on two patients with acute myocar-
dial infarctions undergoing hyperpolarized 13C-pyruvate imaging showed that nonviable
segments with transmural infarction show reduced PDH-mediated aerobic conversion to
13C-bicarbonate, while viable segments have preserved 13C-bicarbonate signal. Similarly,
13C-lactate signals were absent in nonviable segments but were seen in viable segments [12].

Table 4. Human cardiovascular studies.

Author Subjects Scanner Spatial
Resolution Sequence Post-

Processing Disease Results

Cunningham
et al., 2016 [74] 4

3 T MR750 (GE
Healthcare,

Waukesha, WI,
USA)

8.8 mm

Slice-selective
spectral-
spatial

excitation

Not reported Healthy
subjects

13C-bicarbonate in this
healthy cohort

Apps et al.,
2021 [12] 2

3 T Tim Trio
(Siemens
Medical

Solutions,
Erlangen,
Germany)

Not reported Hybrid-shot
spiral

AMARES
algorithm

Myocardial
Infarction

Reduced
PDH-mediated aerobic

conversion to
13C-bicarbonate

Rider et al.,
2020 [15]

13 (Diabetes)
12 (healthy

group)

3 T Tim Trio
(Siemens
Medical

Solutions,
Erlangen,
Germany)

8 mm Pulse-acquire
spectroscopy Not reported Diabetes

mellitus
13C-bicarbonate

reduced

Joergensen et al.,
2022 [76] 6 Not reported 13.3 mm

Spectral-
spatial (SPSP)

excitation with
spiral read-out

MATLAB
(MathWorks,
Natick, MA,

USA)

Healthy
subjects

Increased pyruvate
oxidation during low to
moderate cardiac stress

Chen et al.,
2024 [75] 3

3 T MR750 (GE
Healthcare,

Waukesha, WI,
USA)

Not reported Dynamic slab
spectroscopy

MATLAB
(MathWorks,
Natick, MA,

USA)

Healthy
subjects

Cardiac metabolite
measurement in the

fasting/fed states
provides information
on cardiac metabolic

flexibility and the
acetylcarnitine pool.

In a study on 5 diabetic patients, cardiac metabolic flux through cardiac PDH (as-
sessed by the 13C-bicarbonate to 13C-pyruvate ratio) was significantly reduced compared to
5 healthy controls, while the lactate dehydrogenase pathway (reflected by the 13C-lactate to
13C-pyruvate ratio) was increased. Transamination of 13C-pyruvate to 13C-alanine, which
is proportional to the intracellular availability of pyruvate, was not different between
patients and controls. After a 75 g oral glucose challenge, a significant increase in metabolic
flux through PDH was observed (reflected by an increased 13C-bicarbonate to 13C-lactate
ratio) [15]. In a study on six healthy subjects undergoing cine CMR and HP 13C-pyruvate
CMR at rest and during adenosine stress, myocardial 13C-pyruvate perfusion was signifi-
cantly increased during stress, accompanied by an overall increase of both 13C-lactate and
13C-bicarbonate. Adenosine stress testing combined with HP 13C-pyruvate CMR was not
only feasible and well-tolerated but also successful in demonstrating an increased pyruvate
oxidation during cardiac stress [76] (Figure 7).
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Figure 7. (A): Metabolic maps of 13C-pyruvate, 13C-lactate, 13C-bicarbonate, and 13C-alanine map.
Metabolite data are shown overlaid with an anatomical cine image and as raw metabolite im-
ages. (B): Temporal dynamics for 13C-pyruvate and dynamics for 13C-pyruvate and its downstream
metabolites from arrival of pyruvate in the lumen of the right ventricle (RV) and left ventricle (LV) to
downstream appearance of 13C-lactate, 13C-bicarbonate, and 13C-alanine. Reprinted with permission
from Joergensen et al., J Cardiovasc Magn Reson, 2022 [76].

In particular, the increased 13C-pyruvate signal was explained by an increased myocar-
dial uptake and/or an increased vascular signal due to coronary vasodilation. The increase
in 13C-lactate signal was explained by 13C-pyruvate to 13C-lactate exchange (which depends
on pyruvate concentration), but the increase in PDH flux was even larger, demonstrat-
ing that the healthy heart increases oxidative energy production during moderate stress.
The feasibility of using dual-labeled hyperpolarized [1,2-13C]-pyruvate as a substrate for
dynamic cardiac metabolic studies was demonstrated in phantoms and in pigs [77]. [2-13C]-
pyruvic acid has been also administered in three healthy subjects under both fasting and
oral glucose load conditions; key downstream metabolites of [2-13C]-pyruvate metabolism
in the heart included glycolytic derivative [2-13C]-lactate, TCA-associated metabolite
[5-13C]-glutamate, and [1-13C]-acetylcarnitine, all of which increased after glucose load [75].

Currently, there are some ongoing clinical studies based on 13C-hyperpolarization,
which are focusing on cardiac metabolism in cardiomyopathies (NCT03057002) and in
ischemic cardiomyopathies (NCT06047028).
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7. Current Limitations and Future Perspectives

Overall, hyperpolarized 13C imaging presents several advantages over other current
noninvasive metabolic imaging techniques. Hyperpolarized scans are fast (<2 min), have
no ionizing radiation, and—due to the ability to simultaneously acquire standard magnetic
resonance imaging acquisitions—have the potential to directly assess perfusion, ischemia,
viability, and altered substrate selection in the same imaging examination. On the other
hand, the main limitations of the clinical use of hyperpolarization are complexity and costs,
although the hyperpolarization cost is generally lower with respect to the high cost of MR
scanners. In particular, specialized equipment in the form of the SPINLab with a sterile
fluid pathway and 13C cardiac coils is required; during the hyperpolarization process,
the fluid path is under severe thermal and mechanical stress, being partly cooled to 1 K
superfluid helium and partly heated to 130 ◦C under a pressure of 16 bar. Moreover, rapid
transfer of the sample from the hyperpolarizer to the scanner is still needed to minimize
the time between sample dissolution and image acquisition. Differently from positron
emission tomography, which is able to detect picomolar amounts of radiolabeled molecules,
hyperpolarized imaging requires injection of millimolar concentrations of pyruvate, i.e., a
supra-physiological dose, which might theoretically impact the metabolic processes that are
being assessed. In perspective, hyperpolarized MR is expected to become cost-effective for
specific indications, with similar costs compared to other molecular imaging contrast agents.
To preserve low temporal acquisition and processing times and therefore to optimize the
experimental design, simulations permitting the evaluation of the influence of SNR on
temporal MRS signal analysis were performed and confirmed by in vivo experiments on
medium-sized animals injected with hyperpolarized 13C-pyruvate [114].

Recent technological advancements (including novel parahydrogen methods, biochem-
ical probes and MR sequences), as well as recent scientific efforts towards standardization
of the technology and larger multicenter studies, are paving the way for hyperpolarized 13C
MR to become much easier to use and more reliable in the near future, with the potential to
scale up quickly to more widespread usage [10].
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