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Featured Application: The research introduced in the paper develops an automatic bird species
recognition system powered by feature enhancement and contrast learning, aimed at advancing
ecological conservation and biological research. This system bolsters the precision of identifying
bird species, aiding in the protection of endangered birds and automating the monitoring of bird
populations and their migratory behaviors. It also supports in-depth behavioral and ecological
research and evaluates the impact of human activities on avian life. The technology’s potential
applications are vast, including its use in citizen science initiatives, environmental impact as-
sessments, educational programs, and the tourism sector, where it can provide real-time species
identification, thereby enriching eco-tourism experiences and raising biodiversity awareness.

Abstract: Accurate bird species recognition is crucial for ecological conservation, wildlife monitoring,
and biological research, yet it poses significant challenges due to the high variability within species
and the subtle similarities between different species. This paper introduces an automatic bird species
recognition method from images that leverages feature enhancement and contrast learning to address
these challenges. Our method incorporates a multi-scale feature fusion module to comprehensively
capture information from bird images across diverse scales and perspectives. Additionally, an
attention feature enhancement module is integrated to address noise and occlusion within images,
thus enhancing the model’s robustness. Furthermore, employing a siamese network architecture
allows effective learning of common features within instances of the same class and distinctions
between different bird species. Evaluated on the CUB200-2011 dataset, our proposed method achieves
state-of-the-art performance, surpassing existing methods with an accuracy of 91.3% and F1 score of
90.6%. Moreover, our approach showcases a notable advantage in scenarios with limited training
data. When utilizing only 5% of the training data, our model still achieves a recognition accuracy of
65.2%, which is significantly higher than existing methods under similar data constraints. Notably,
our model exhibits faster execution times compared to existing methods, rendering it suitable for
real-time applications.

Keywords: bird species recognition; feature enhancement; contrastive learning; multi-scale feature

1. Introduction

Birds serve as vital indicators of ecosystem health, their populations and diversity
reflecting the environmental state [1,2]. Accurate and efficient bird species recognition
is crucial for conservation efforts. Traditional methods, such as expert identification [3],
radar [4,5], and sound recognition [6,7], face inherent limitations. Expert identification
is both time-consuming and expensive, while radar accuracy is low. Sound recognition
struggles with ambient noise interference [8,9]. Advancements in sensor technology enable
image-based recognition, offering advantages like reduced environmental impact, remote
capture, and leveraging existing ecological data [10,11].
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Deep learning revolutionizes bird species recognition by enabling machines to auto-
matically extract and learn informative features from images, surpassing the limitations of
traditional methods [12,13]. Within the realm of deep learning, two primary approaches
have emerged: strongly supervised and weakly supervised classification [14,15]. Strongly
supervised methods, while achieving high accuracy, demand a significant investment of
time and effort in meticulously annotating training data [16,17]. These annotations typically
encompass not only the bird species label but also detailed information such as bounding
boxes around the bird and annotations for various body parts [18]. This labor-intensive
process can become a bottleneck, especially when dealing with large datasets or rare bird
species [19].

In contrast, weakly supervised methods rely solely on image-level category labels, sig-
nificantly reducing annotation effort [20,21]. As a result, weakly supervised methods have
become a major focus of research in fine-grained bird species recognition. Sermanet et al. [22]
modeled the dynamic way humans observe objects to improve fine-grained classification
performance. Zhao et al. [23] introduced a diverse visual attention network that reduces the
reliance on strongly supervised information during network training. Xiao et al. [24] utilized
an attention mechanism to predict separate features for both the bird and its individual parts
before combining them for classification.

While image-level labels simplify data collection, their limited information necessitates
both large labeled datasets and complex models for high accuracy in weakly supervised
bird recognition [21]. This leads to three challenges: High computing power is a barrier for
real-time and resource-constrained applications due to the complexity of models required
to learn from simple labels; Large, labeled datasets for weakly supervised bird recognition
are expensive and time-consuming to create, especially for complex images [19]; Visually
similar birds, especially rare species, challenge weakly supervised recognition due to
limitations of image-level labels. Addressing these challenges requires developing methods
that effectively balance label simplicity and accuracy, making weakly supervised bird
species recognition more practical and scalable [25].

We address the limitations of existing methods by proposing a novel architecture
that incorporates two key modules: a multi-scale feature fusion module and a feature
enhancement module. The multi-scale feature fusion module integrates features extracted
at different scales within the image. By combining coarse global information with finer local
details, the model gains a more comprehensive understanding of the bird’s appearance.
The feature enhancement module leverages an attention mechanism to dynamically adjust
feature response values. This allows the model to selectively amplify informative feature
channels by exploiting the relationships between them. Furthermore, the module utilizes
correlations within the feature space to enhance features in the target bird region while
suppressing irrelevant noise.

Finally, we propose a Siamese network [26] that employs contrastive learning to exploit
the limited image-level labels for effective feature learning. This network utilizes triplet
loss to minimize the distance between feature vectors belonging to the same bird species,
while maximizing the distance between feature vectors of different species. This approach
encourages the network to focus on extracting features that are common within a bird
class while simultaneously learning to differentiate between fine-grained variations that
distinguish different bird species. Through these complementary strategies, our proposed
architecture aims to achieve high accuracy in weakly supervised bird species recognition.

By integrating a multi-scale feature fusion module, a feature enhancement module,
and a Siamese network, we present an automated method for bird species recognition. Our
approach offers several key advantages over previous works:

(1) We propose a feature fusion network that integrates features at different scales,
enabling the classifier to better distinguish between similar classes.

(2) We design a feature enhancement module that selectively enhances effective feature
channels and suppresses irrelevant noisy regions.
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(3) We introduce a siamese network that mines the feature differences between bird
species while learning common features among instances of the same class.

(4) We validate our method on the CUB200-2011 [27] bird recognition dataset and
demonstrate the superior performance of our proposed model through extensive experiments.

The structure of this paper is organized as follows. In Section 2, we provide an
overview of our proposed method and present a detailed description of each module.
Section 3 describes the dataset used in our experiments and reports our experimental
results. Extensive experiments and in-depth analyses are presented in Section 4. Finally, in
Section 5, we provide our conclusions and discuss future work.

2. Materials and Methods
2.1. Dataset

To benchmark our method’s effectiveness, we utilized the CUB-200-2011 (Caltech-
UCSD Birds-200-2011) dataset. This widely used resource for fine-grained image classifi-
cation, particularly in bird species recognition, features 11,788 images across 200 North
American bird species (at least 30 images per species). Split into training (5994 images) and
testing (5794 images) sets, CUB-200-2011 offers valuable annotations beyond image labels,
including bounding boxes, keypoint regions, and bird attributes. This comprehensive
dataset provides all the necessary attributes for fine-grained bird classification research.

2.2. The Overview of Our Proposed Method

An overview of our proposed method is presented in Figure 1, which consists of
consists of three key components: feature extraction, feature enhancement, and softmax
function. The feature extraction component utilizes a multi-feature fusion module to extract
informative features from input bird images. This allows the model to distinguish between
various bird species based on these extracted features. The feature enhancement component
improves the performance of the bird classifier by enhancing the robustness and accuracy
of the extracted features, thereby facilitating better differentiation between different bird
species. The softmax function is used to classify bird features and output the probability of
each bird species. By working together, these three modules form a comprehensive bird
classification system for automated image identification.

We further propose a novel approach using contrastive learning and Siamese networks
to enhance bird species classification performance. A Siamese network consists of three
identical sub-networks with shared weights and architecture that process input data in
parallel. Given three input images, the network generates embedding vectors for each
image. We then leverage the triplet loss function [28] to optimize the Siamese network.
This ensures that images from the same class have embedding vectors closer together in the
embedding space, while those from different classes are farther apart. This process helps
our model learn more distinctive feature representations, ultimately leading to improved
classification accuracy.

To evaluate our proposed approach, we input the test dataset into our classifier model.
The model then classifies the images and assigns class labels to each image. Finally, we
employ various performance metrics to assess the accuracy and effectiveness of our method
in classifying bird species.

2.3. Multi-Scale Feature Fusion

Bird images often exhibit significant variations in size. Traditional single-scale feature
extraction approaches might miss crucial details, leading to inaccurate classification. To
address this challenge, we propose a novel multi-scale feature fusion module (Figure 2)
that captures both local fine-grained details and global structural information from the
bird image. This comprehensive feature representation ultimately improves bird image
classification performance.
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We leverage a pre-trained ShuffleNetV2 [29,30] model for its efficient architecture,
strong feature extraction capabilities, and transfer learning potential. This efficient model
excels at balancing accuracy and computational cost, making it suitable for our task. As
shown in Figure 2, the ShuffleNetV2 model takes an input image of size 224 × 224 and
processes it through multiple convolutional layers. The lower layer captures fine-grained
details like feather textures and eye shapes. To maintain this spatial resolution for detailed
information, we employ max pooling to downsample the feature map from its original size
112 × 112 to 56 × 56. The intermediate layer captures a balance between local and global
information. The feature map from this layer already has a resolution of 56 × 56, so no
further scaling is necessary. The higher layer captures global structural information about
the bird’s pose and overall body shape. To increase the resolution and incorporate more
contextual information, we use a deconvolutional operation to upsample the feature map
to 56 × 56.

All the processed feature maps from the three scales (each with a resolution of 56 × 56)
are concatenated into a single high-dimensional feature representation, which we refer to
as the “output cube”. This concatenation process allows us to comprehensively capture the
semantic information extracted at different resolutions (refer to Figure 2). The output cube
encodes both the fine-grained details from the lower layer, local and global information from
the intermediate layer, and global structural information from the higher layer, providing a
richer and more informative representation for bird image classification [31].

To further reduce the computational complexity and memory footprint of the model,
we apply a combination of convolution and pooling operations to the output cube, com-
pressing its spatial dimensions from 56 × 56 to 28 × 28. The resulting compressed output,
now with a size of 28 × 28, serves as the multi-scale feature representation for the bird
image classification task. This compressed representation retains the essential information
extracted from different scales while reducing the computational burden, making the model
more efficient for both training and inference [32].

2.4. Feature Enhancement

The feature enhancement module is designed to enhance the object cues and weaken
the background noise, as shown in Figure 3. The enhancement module first divides the
given feature map into groups along the channel dimension, infers channel and spatial
attention maps for each sub-feature in parallel, and then generates refined sub-feature by
multiplying the attention map with the input feature. Finally, all the refined sub-features
are concatenated as the new feature map for fine-grained classification.

The feature enhancement module first divides the feature map F into m groups along
the channel dimension, where each sub-feature Fk captures a specific semantic response
during training. Each sub-feature Fk is then split into two branches, as shown in Figure 3.
One branch is used to create a channel attention map by leveraging the inter-relationship
of channels, while the other branch generates a spatial attention map by utilizing the
inter-spatial relationship of features.

By applying global average pooling operation [33] to the feature map Fk1 for feature
compression, a feature vector containing global information is obtained. Then, the vector
is passed through a fully connected layer and a sigmoid activation function to calculate
the channel weight coefficients. Finally, the channel weight coefficients are multiplied
with the feature map Fk1 to generate a feature map Ak1 embedded with channel attention
mechanism [34].

Ak1 = σ(W1 · GP(Fk1) + b1) · Fk1 (1)

where W1, b1 represent the parameters to be learned, GP represents global pooling operation,
and σ(·) represents the sigmoid activation function.
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Figure 3. The framework of feature enhancement module. It splits channels and processes sub-
features concurrently. Two branches extract informative features: channel attention focuses on
important channels using GAP, while spatial attention captures spatial dependencies with group
normalization. Both branches are concatenated, followed by sub-feature aggregation and a channel
shuffle operation to promote information exchange. This enhances the overall feature representation
for tasks like fine-grained bird recognition.

First, the feature map Fk2 is subjected to group normalization operation. Then, the
calculated result is passed through a convolutional layer and a sigmoid function to calculate
the spatial weight coefficients. Finally, the spatial weight coefficients are multiplied with
the feature map Fk2 to generate the feature map Ak2 with embedded spatial attention
mechanism [35].

Ak2 = σ(W2 · GN(Fk2) + b2) · Fk2 (2)

where W2, b2 represent the parameters to be learned, and GN(·) represents group normal-
ization operation.

Merge the outputs Ak1, Ak2 of two branches, concatenate all grouped features Ak
together to generate a feature map A embedded with attention mechanism. Compared to
input features, the output features are enhanced through the attention mechanism.

2.5. Siamese Network

Siamese network is proposed to learn similarity or distance between inputs that
consists of three identical subnetworks (sharing weights) which process three inputs in
parallel. Each subnetwork employs the same architecture and parameters, and processes
the three inputs separately during forward propagation to obtain corresponding feature
vectors [36,37]. These feature vectors can then be passed into a metric learning layer to
compute the similarity or distance between the three inputs.

Training a siamese network involves using a triplet loss and softmax loss. Triplet
loss is a loss function used for learning similarity or distance metrics, which uses triplets
to define the relationship between samples. Each triplet consists of an anchor sample, a
positive sample, and a negative sample, where the positive sample is similar to the anchor
sample and the negative sample is dissimilar to the anchor sample.

The goal of triplet loss is to minimize the distance between the anchor sample and
the positive sample, while maximizing the distance between the anchor sample and the
negative sample, such that the distance between the anchor sample and the positive sample
is less than the distance between the anchor sample and the negative sample. This can
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encourage the model to learn an embedding space where similar samples are closer together
and dissimilar samples are farther apart.

Ltp = max(0, d( f (a), f (p))− d( f (a), f (n)) + margin) (3)

where f (a), f (p), and f (n) represent the feature vectors of the anchor sample, positive sample,
and negative sample in the embedding space, respectively, d(u,v) represents the distance
between two feature vectors, and margin is a hyperparameter used to control the difference
between the distances of the positive and negative samples.

Softmax loss is used to measure the difference between the predicted probability
distribution and the true probability distribution of the classes. The softmax loss function
penalizes the model when the predicted probability for the correct class is low and rewards
the model when the predicted probability for the correct class is high. The softmax loss
function can then be defined as:

Lst = − 1
N

K

∑
j=1

yi,jlogP(yi,j = 1) (4)

where yi,j is a binary indicator (0 or 1) whether the j-th class is the correct classification for
the i-th training sample, and P

(
yi,j = 1

)
is the predicted probability of the j-th class for the

i-th training sample.
The total loss is a weighted sum of the triplet and softmax losses, where the weights

are determined by the relative importance of each component to the overall task.

L = Lst + λLtp (5)

During training, a batch of randomly selected triplets are used, and their triplet and
softmax losses is computed. The goal is to minimize the loss function by adjusting the
weights and biases of the neural network using backpropagation. This process updates
the parameters of the network until the loss function is minimized, and the network can
accurately classify the input data.

3. Results
3.1. Implementation Details

To accelerate convergence, we initialized our model with weights pre-trained on the
ImageNet dataset. During training, we employed the Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9 and weight decay of 0.0001. SGD is a widely used and
efficient optimizer, while momentum (0.9) aids in smoother convergence by dampening
fluctuations in gradient updates. Weight decay (0.0001) introduces an L2 penalty to prevent
overfitting. Additionally, a learning rate scheduler that reduces the learning rate by a factor
of 10 at specific epochs (e.g., 60th and 100th) was employed. The entire training process ran
for 120 epochs using the PyTorch framework on a Tesla T4 GPU.

3.2. Evaluation Metrics

We employed two key metrics to quantitatively assess our model’s performance: accuracy
and F1 score. This combination provides a comprehensive analysis of the model’s effectiveness.

Accuracy reflects the proportion of images correctly classified by the model out of the
total number of images in the dataset. The F1 score considers both precision (proportion of
true positives among predicted positives) and recall (proportion of true positives among
actual positives) to provide a more balanced view of the model’s performance.

Additionally, we consider running time as a metric to assess speed. Running time
refers to the average time taken by the classification model to process individual input
images and generate classification outcomes. It’s a critical performance metric, especially
for real-time applications where efficiency is crucial.
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3.3. Ablation Experiments

To assess the contribution of each core module in our bird species recognition model,
we performed ablation experiments. This involved removing each module individually
and retraining the modified model. Table 1 summarizes the results.

Table 1. Ablation experiments. We evaluated four model variants: (1) baseline, which includes all
three modules; (2) without multi-scale feature fusion; (3) without feature enhancement; and (4) without
siamese network training. For each variant, we report the accuracy and F1 score on the test set.

Models Accuracy (%) F1 Score

Proposed Model (All Modules) 91.3 90.6
w/o multi-scale feature fusion 87.4 87.1

w/o feature enhancement 85.2 84.8
w/o siamese network training 86.9 86.2

We first conducted an experiment to assess the impact of multi-scale feature fusion
by removing this module from the proposed model and training the modified model from
scratch. The results showed that the accuracy decreased from 91.3% to 89.6% without this
module, indicating the crucial role of capturing multi-scale information in bird images.
Additionally, we observed a decline in F1 score from 0.906 to 0.871, further highlighting the
importance of multi-scale feature fusion in the proposed model.

Next, we evaluated the effectiveness of attention feature enhancement by removing
this module and training the modified model from scratch. As shown in Table 1, the
removal of attention feature enhancement resulted in a decrease in both accuracy, from
91.3% to 85.2%, and F1 score, from 0.906 to 0.848. These results indicate that the feature
enhancement module enhances important features for bird classification.

Finally, we conducted an experiment to evaluate the importance of siamese network
training by training a modified model from scratch without this module. The results in
Table 1 indicate a significant decrease in both accuracy, from 91.3% to 86.9%, and F1 score,
from 0.906 to 0.862, upon removing the siamese network training module. These findings
underscore the importance of exploring the interaction between features and optimizing
the model during training through the use of the siamese network.

3.4. State-of-the-Art Comparison

To validate the efficacy of our proposed model, we compared it with established
fine-grained classification approaches, encompassing both strongly supervised (HSnet [38],
Mask-CNN [39]) and weakly supervised (RA-CNN [40], ADKD [41]) techniques.

We evaluated the models’ performance on a benchmark dataset. As shown in Table 2,
our model achieves a superior accuracy of 91.3%, surpassing HSnet, Mask-CNN, RA-
CNN, and ADKD_T by 3.8%, 4.0%, 5.9%, and 1.8%, respectively. This demonstrates
the effectiveness of our multi-scale feature fusion, attentional feature enhancement, and
contrastive learning strategies in bird classification.

Table 2. Comparison of the accuracy results of different models on the CUB-200-2011 dataset.

Models Backbone Network Accuracy (%)

HSnet [31] GoogLeNet 87.5
Mask-CNN [36] VGG-16 87.3
RA-CNN [40] VGG-19 85.4
ADKD_T [41] Densenet121 89.5

FS-NET(Proposed Model) ShuffleNetV2 91.3

Beyond classification accuracy, we compared model size and execution time. Our
model utilizes a ShuffleNetV2 backbone, resulting in a compact size of approximately
193 MB (Table 3). This is significantly smaller than the compared models: 20% of HSnet,
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11% of Mask-CNN, 1.8% of RA-CNN, and 74% of ADKD_T. Furthermore, our model
exhibits faster execution times compared to all benchmarks. It achieves speedups of 7×,
14×, 8×, and 4.8× against HSnet, Mask-CNN, RA-CNN, and ADKD_T, respectively. This
efficiency makes our model suitable for real-time applications.

Table 3. The comparison of the model size and running time of the model.

Models Model Size Params Running Time

HSnet [31] 293.85 MB 24.62 MB 1.64 s
Mask-CNN [36] 634.53 MB 48.74 MB 3.47 s
RA-CNN [40] 3.06 GB 265.94 M 1.79 s
ADKD_T [41] 1.32 GB 6.95 M 1.1 s

FS-NET(Proposed Model) 193.58 MB 5.17 M 234 ms

We further investigated the proposed method’s performance under conditions with
limited training data. The experimental results depicted in Figure 4 demonstrate a clear
advantage for our model. When the training data is scarce (only 5.0%), our method achieves
a recognition accuracy of 65.2%, which is about 10% higher than the second-best method.
This advantage persists even as the training data volume increases. With 25.0% training
data, our model still maintains a lead of approximately 5% over the second-best performer.
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4. Discussion

Following our experimentation, the incorporation of the three core modules—multi-
scale feature fusion, feature enhancement, and Siamese network training—significantly
improves the model’s performance. Evaluation results unequivocally demonstrate that our
model outperforms the compared methods in both accuracy and F1 score, underscoring the
effectiveness of our approach in fine-grained bird classification. Notably, the multi-scale
feature fusion module enables the model to capture comprehensive information from bird
images across various scales and perspectives, thereby enhancing classification accuracy
by providing a more nuanced feature representation. The feature enhancement module
plays a crucial role in mitigating the impact of noise and occlusion within images, thereby
strengthening the model’s overall robustness. Additionally, the Siamese network training
module effectively learns feature interactions and optimizes the model during training,
resulting in a better balance between precision and recall.

In addition to superior classification accuracy and F1 score, the experimental results
also highlight that our proposed model exhibits faster execution times compared to HSnet,
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Mask-CNN, RA-CNN, and ADKD_T. This efficiency is primarily attributed to the utilization
of the ShuffleNetV2 backbone, renowned for its computational efficiency. Moreover, our
model achieves faster execution times compared to all benchmarks, rendering it suitable
for real-time applications where speed is paramount.

Furthermore, our proposed model achieves significantly better recognition accuracy
than other methods, particularly when trained with limited data (as depicted in Figure 4).
Even with only 5.0% of the training data, our method achieves a remarkable 10% higher
recognition accuracy compared to the second-best performing model. This suggests that
our approach is exceptionally efficient in learning effective feature representations even
with a scarcity of training examples. Moreover, as the volume of training data increases,
our model maintains its performance lead, indicating its superior utilization of available
data and consistent performance across varying data volumes. This robustness underscores
the scalability and effectiveness of our model in real-world applications.

In summary, our proposed model featuring three modules has demonstrated superior
performance in terms of accuracy, F1 score, and efficiency, underscoring its efficacy in fine-
grained bird classification. The research outcomes presented in this study carry substantial
implications and opportunities for advancement across various domains. Accurately classi-
fying bird species holds promise for driving progress in wildlife conservation endeavors,
biodiversity research, and ecosystem health assessments. Researchers, ornithologists, and
environmentalists can leverage these findings for studying bird behavior, ecology, and
evolution. Additionally, industries involved in construction and tourism stand to benefit
from informed decision-making enabled by precise species identification.

However, the current study highlights potential concerns, including data bias and
class imbalance within the training dataset, which could affect performance, particularly
for underrepresented species. Generalizing to unseen scenarios and optimizing default
hyperparameter values are also noteworthy considerations. Moreover, enhancing the
interpretability of the model’s decision-making process remains a significant challenge.

Looking ahead, optimization efforts will involve broader evaluation metrics, improved
robustness to environmental variations, sustainable integration into real-world applica-
tions, and collaboration with domain experts. These refinements aim to ensure broader
applicability, reliability, and a deeper comprehension of the model’s classifications.

5. Conclusions

Our work introduces a groundbreaking bird species recognition method, achieving
state-of-the-art accuracy of 91.3% and F1 score of 90.6% on the CUB200-2011 dataset. Our
approach incorporates multi-scale feature fusion, attention feature enhancement, and
a Siamese network architecture to effectively capture comprehensive information from
bird images and enhance robustness to noise and occlusion. Additionally, our method
demonstrates a notable advantage in scenarios with limited training data, achieving a
recognition accuracy of 65.2% with only 5% of the training data. This research highlights the
importance of multi-scale features and attention enhancement for fine-grained classification
tasks and opens doors for further exploration of efficient deep learning model integration
strategies in bird classification and potentially other related fields.

Moving forward, our research trajectory will focus on exploring more efficient and
effective strategies to incorporate attention mechanisms and siamese networks into deep
learning models tailored for fine-grained classification tasks. This endeavor aims to further
advance the capabilities of our proposed method and enhance its applicability across
various domains, ultimately contributing to the broader advancement of fine-grained
classification techniques.
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